遥感原理与应用复习重点整理

合集下载

遥感技术与实用应用复习重点整理

遥感技术与实用应用复习重点整理

遥感技术与实用应用复习重点整理
1. 遥感技术的概念与原理
- 定义:遥感技术是利用遥感仪器对地球表面进行观测和测量,获取地表信息的一种技术手段。

- 原理:遥感技术通过感知遥远地物的辐射能量,并将其转化
为电信号进行记录与分析。

2. 遥感技术的分类
- 按感知方式:被动遥感和主动遥感。

- 按遥感平台:航空遥感和卫星遥感。

- 按波段范围:可见光遥感、红外遥感、微波遥感等。

3. 遥感数据的类型
- 光学遥感数据:包括可见光、红外和紫外波段的数据,能够
提供地表物体的表面特征。

- 热遥感数据:测量地表温度,可以用于环境监测和资源调查。

- 微波遥感数据:穿透云层和大气,适用于湿地、雨林等地区
的观测。

4. 遥感技术的应用
- 地质勘探:通过遥感技术可以寻找矿体的迹象和地质构造的线索。

- 农业监测:利用遥感数据可以监测农作物的生长情况、病虫害的发生和土地利用状况。

- 环境监测:遥感技术可以提供大气污染、水质污染和土地退化等环境信息。

- 城市规划:通过遥感技术,可以获得城市建设的信息,包括用地分布、交通状况等。

5. 遥感技术的优势与局限性
- 优势:能够获取大范围、多时相的信息,具有高效、经济的优点。

- 局限性:受云层、大气、地表覆盖等因素的影响,限制了遥感技术的应用范围和精度。

以上是遥感技术与实用应用的复习重点整理,希望对您的学习有所帮助!。

遥感原理与实用应用复习重点整理

遥感原理与实用应用复习重点整理

遥感原理与实用应用复习重点整理
1. 遥感原理
- 遥感概念:遥感是通过感知和获取地球表面信息的一种技术
手段,通过卫星、飞机等载体对地球进行观测和测量。

- 遥感数据:遥感数据是由传感器接收到的地球表面辐射能量
变换为数字信息后的结果,可以用来获取地表特征和变化信息。

2. 遥感应用
- 地表覆盖分类与监测:遥感技术可以通过获取地表反射或辐
射能量的特征,对地表覆盖进行分类和监测,如农田、森林、湖泊等。

- 地表变化检测:遥感数据可以用来监测地球表面的变化,如
城市扩张、冰川退缩等,这对环境监测和城市规划有重要意义。

- 灾害监测与评估:利用遥感技术可以实时监测和评估自然灾害,如地震、洪涝和森林火灾等,提供及时的灾情信息和救援指导。

- 农业与粮食安全:遥感数据可以用来评估农田的水稻、小麦
等作物的生长状况和产量,提供农业生产和粮食安全的参考依据。

- 环境监测与保护:遥感技术可以监测大气污染、水质污染和土壤退化等环境问题,有助于制定环境保护政策和措施。

以上是遥感原理与实用应用的一些重点内容,希望能够帮助您复习和理解。

如有需要,请随时与我联系。

遥感原理与应用复习重点整理 .doc

遥感原理与应用复习重点整理 .doc

学习好资料欢迎下载绪论1、遥感的概念:在不直接接触的情况下,在地面,高空和外层空间的各种平台上,运用各种传感器获取各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状、位置、性质、变化及其与环境的关系的一门现代应用技术学科。

遥感概念:在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。

2、遥感的分类:按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。

按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感、多光谱遥感等。

按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等。

按照资料的记录方式:成像方式、非成像方式。

按照传感器工作方式分类:主动遥感、被动遥感。

3、遥感起源于航空摄影、摄影测量等。

第一章1、电磁波:通过变化电场周围产生变化的磁场,而变化的磁场又产生变化的电场之间的相互联系传播的过程。

电磁波的特性:具有二象性,即波动性(干涉、衍射、偏振现象)和粒子性。

2、波长最长的是无线电波,最短的是γ 射线。

3、电磁波谱图:按电磁波在真空中传播的波长或频率递增或递减顺序排列制成的图案。

4、地物的反射率概念:地物对某一波段的反射能量与入射能量之比。

反射率随入射波长变化而变化。

反射类型:漫反射、镜面反射、方向反射。

5、影响地物反射率的 3 个因素:入射电磁波的波长,入射角的大小,地表颜色与粗糙程度。

附:影响地物光谱反射率变化的因素:a 太阳的高度角和方位角。

B 传感器的观测角和方位角 c 不同的地理位置 d 地物本身的变异e时间、季节的变化6、地物反射光谱曲线:根据地物反射率与波长之间的关系而绘成的曲线。

1.不同地物在不同波段反射率存在差异 2. 同类地物的反射光谱具有相似性,但也有差异性。

不同植物;植物病虫害 3. 地物的光谱特性具有时间特性和空间特性。

(同物异谱,同谱异物)。

7、地物发射电磁波的能力以发射率作为衡量标准;地物的发射率是以黑体辐射作为参照标准。

遥感原理与应用各章节知识点总结

遥感原理与应用各章节知识点总结

遥感原理与应用各章节知识点总结
遥感原理与应用各章节知识点总结如下:
1. 遥感定义:遥感是指通过非接触的方式,远距离感知目标物体的基本属性,包括位置、形状、大小、方向、表面温度等。

2. 电磁波谱:遥感的工作基础是电磁波谱,包括可见光、红外线、微波等不同波段的电磁波。

不同的物体对不同波段的电磁波有不同的反射和吸收特性,因此通过测量这些特性,可以反演出物体的基本属性。

3. 传感器:传感器是遥感的“眼睛”,它能够接收和记录电磁波谱中特定波段的信息。

常见的传感器包括光学相机、红外扫描仪、微波雷达等。

4. 数据处理:数据处理是遥感中非常重要的环节,它包括预处理、增强、变换和分析等步骤。

通过这些步骤,可以将原始的遥感数据进行处理,提取出有用的信息,并对这些信息进行解释和识别。

5. 应用领域:遥感的应用领域非常广泛,包括资源调查、环境保护、城市规划、交通管理、气象监测、灾害预警等。

6. 发展趋势:随着科技的不断发展,遥感技术也在不断进步和完善。

未来的遥感技术将更加注重智能化、自动化和实时化,同时也会更加注重多源数据的融合和综合应用。

以上是遥感原理与应用各章节知识点总结,如需获取更具体的内容,建议查阅相关教材或权威资料。

《遥感原理与应用》期末复习重点

《遥感原理与应用》期末复习重点

《遥感》重点章节1.3.5.8绪论1.1遥感的概念狭义的遥感:应用探测仪器,不与探测目相接触,从远处把目标的电磁波特性纪录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

广义的遥感:泛指一切无接触的远距离探测,包括对电磁波、机械波(声波、地震波)、重力场、地磁场等的探测。

遥感探测的基本过程 辐射源:目标的电磁辐射能量(自身发射,散射、反射) 记录设备(传感器,或有效载荷):扫描仪(多光谱扫描仪),相机(CCD 相机、全景相机、高分辨率相机等)、雷达、辐射计、散射计等。

存储设备:胶片、磁带、磁盘传送系统:人造卫星的信号是地面发送到卫星的,在卫星中经过放大、变频转发到地面,由地面接收站接收。

分析解译(人工解译、计算机解译)1)国外航天遥感的发展 第一代1G1957年10月4日,苏联第一颗人造地球卫星发射成功1960年4月1日,美国发射第一颗气象卫星Tiros 1,为真正航天器对地球观测开始。

1960年Evelyn L. Pruitt 提出“遥感”一词。

1962年在美国密歇根大学召开的第一次环境遥感国际讨论会上,美国海军研究局的Eretyn Pruitt (伊·普鲁伊特)首次提出“Remote Sensing ”一词,会后被普遍采用至今 。

1972年7月23日第一颗陆地卫星ERTS-1(Earth Resources Technology Satellite 1 )发射(后改名为Landsat-1),装有MSS 传感器,分辨率为79米。

1975年1月22日,Landsat-2发射,1978年3月5日,Landsat-3发射。

1978年6月,美国发射了第一颗载有SAR (Synthetic Aperture Radar ,合成孔径雷达)卫星的Seasat ,以后不同国家陆续发射载有SAR 的卫星。

1982年7月16日,Landsat-4反射,装载MSS ,TM 传感器,分辨率提高到30米。

遥感原理与应用重点

遥感原理与应用重点

第一章遥感物理基础1 遥感:使用某种传感器,不直接接触被研究的目标,感测目标的特征信息(一般是电磁波的反射或者发射辐射),经过传输、处理,从中提取人们感兴趣的信息的过程。

2电磁波谱:把各种电磁波按照波长或频率的大小依次排列,就形成了电磁波谱。

3绝对黑体:指能够全部吸收而没有反射电磁波的理想物体。

4灰体:在各种波长处的发射率相等的实际物体。

5色温:在实际测定物体的光谱辐射通量密度曲线时,常常用一个最接近灰体辐射曲线的黑体辐射曲线作为参照这时的黑体辐射温度就叫色温。

6大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高、对遥感有利的波段。

7发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。

8光谱反射率:物体的反射辐射通量与入射辐射通量之比。

9波粒二象性:电磁波具有波动性和粒子性。

10光谱反射特性曲线:反射波谱曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。

11 方向反射:实际地物表面由于地形起伏,在某个方向上反射最强烈的现象。

12 漫反射:如果入射电磁波波长λ不变,表面粗糙度h逐渐增加,知道h和λ同数量级,这时整个表面均匀反射入射光电磁波,入射到此表面的电磁辐射按照朗伯余弦定律反射。

13 波谱特性:是指各种地物各自具有的电磁波特性(发射辐射或反射辐射)。

二、问答题1黑体辐射遵循哪些规律?(1由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度W随温度T的增加而迅速增加。

(2 绝对黑体表面上,单位面积发射的总辐射能与绝对温度的四次方成正比。

(玻尔兹曼公式)(3 黑体的绝对温度升高时,它的辐射峰值向短波方向移动。

(维恩位移定律)(4 好的辐射体一定是好的吸收体。

(基尔霍夫)(5 在微波段黑体的微波辐射亮度与温度的一次方成正比。

(瑞利金斯公式)2电磁波谱由哪些不同特性的电磁波段组成?遥感中所用的电磁波段主要有哪些?a. 包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等b. 微波、红外波、可见光3 物体的辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少?(1 与光谱反射率,太阳入射在地面上的光谱照度,大气光谱透射率,光度计视场角,光度计有效接受面积。

遥感原理与实际应用复习重点整理

遥感原理与实际应用复习重点整理

遥感原理与实际应用复习重点整理一、遥感原理1. 遥感概述- 遥感定义:通过获取地球表面信息的传感器和设备,从远距离获取地球表面特征的科学和艺术。

- 遥感系统组成:传感器、平台和数据处理系统。

- 遥感数据类型:光学遥感数据、微波遥感数据和热红外遥感数据。

2. 光学遥感原理- 光电转换原理:通过接收、记录和处理电磁辐射来获取地球表面信息。

- 电磁波谱:包括可见光、红外线和紫外线等不同波长的电磁波。

- 遥感图像的解译:通过解译图像获得地表要素信息。

3. 微波遥感原理- 微波辐射和吸收特性:微波信号与地表特征的相互作用。

- 微波传感器:主要用于测量气象、海洋和地球表面的微波辐射。

- 微波遥感应用:气象预测、海洋监测和土地覆盖分类等。

二、遥感实际应用1. 土地覆盖分类- 目的:识别和分类地表上的不同土地覆盖类型。

- 方法:利用遥感数据和图像处理技术进行土地分类。

- 应用:农业监测、城市规划和环境保护等领域。

2. 环境监测- 目的:监测环境变化、污染和自然资源利用情况。

- 方法:利用遥感数据进行环境参数提取和监测。

- 应用:水质监测、森林资源管理和土地退化监测等领域。

3. 灾害监测与预警- 目的:实时监测和预警自然灾害的发生和发展情况。

- 方法:利用遥感技术获取灾害前兆信息和灾害区域的变化。

- 应用:地震、火山喷发和洪水等自然灾害的监测和预警。

4. 气象预测- 目的:获取大气和气象信息,预测天气变化和气候趋势。

- 方法:利用卫星遥感数据和气象模型进行气象预测。

- 应用:天气预报、气候研究和农业生产等领域。

以上是关于遥感原理与实际应用的复习重点整理,希望对您有所帮助。

遥感原理与应用重点

遥感原理与应用重点

绪论一、遥感:狭义的遥感是指对地观测,级从不同高度的工作平台通过传感器,对地球表面目标的电磁反射或辐射信息进行探测,并经信息的记录、传输、处理和解译分析,对地球的资源与环境进行探测和监测的综合性技术。

二、遥感的特点:全局与局部观测并举,宏观与微观信息兼取;快速持续的观测能力;技术手段多样,可获取海量信息;应用领域广泛,经济效益高。

三、遥感技术系统:1、信息获取 2、信息记录与传输 3、信息处理4、信息应用第二章一、电磁波谱:将电磁波按照波长或频率递增或递减顺序排列二、黑体:能够完全吸收任何波长入射能量的物体三:基尔霍夫定律:凡是吸收热辐射能力强的物体,它们的热发射能力也强;凡是吸收热辐射能力弱的物体,它们的热发射能力也弱四、黑体辐射特性:1、总辐射通量密度W随温度T的增加而迅速增加2、分谱辐射能量密度的峰值波长随温度的增加向短波方向移动3、每根曲线彼此不相交,故绝对温度越高,所有波长上的波谱辐射通量密度也越大五、太阳常数:在距离地球的一个天文单位内,太阳辐射在大气上界处的垂直入射的辐射通量密度六、比辐射率(发射率):单位面积上地物发射的某一波长的辐射通量密度与同温度下黑体在同一波长上的辐射通量密度之比七、地物反射波谱曲线:地物波谱反射率随波长变化而改变的特性成为地物的反射波谱特性,将其与波长的关系在直角坐标系中描绘出的曲线称为地物反射波谱曲线八、大气窗口:电磁波辐射在大气传输中透过率较高的波段九、大气散射分类:瑞利散射、米氏散射、无选择性散射第三章一、传感器:收集、探测、记录地物电磁波辐射信息的装置二、传感器分类:1、按工作方式分类:主动式、被动式2、按记录方式分:成像类、非成像类3、按成像方式分:摄影型、扫描型、微波4、按成像波段分:单波段、多光谱、高光谱、超高光谱传感器三、传感器性能:1、空间分辨率 2、波谱分辨率 3、辐射分辨率 4、时间分辨率 5、视场角四、侧视雷达优点:1、微波能穿透云雾和雨雪,有全天候工作能力,适用于实时动态监测2、微波对地物有一定的穿透能力3、SAR图像不仅包含了地物对微波的反射或辐射的强弱,而且还包含回波相对信息,从而可利用雷达干涉测量来确定目标的高度4、SAR图像的地面距离分辨率与平台高度无关第四章一、遥感平台:用于搭载传感器的工具统称遥感平台第五章一、数字图像:是一个离散的数学矩阵或阵列,矩阵中的每个元素代表一个像元,其行和列号代表像元的位置,其值大小代表对应地物辐射电磁波的强弱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绪论1、遥感的概念:在不直接接触的情况下,在地面,高空和外层空间的各种平台上,运用各种传感器获取各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状、位置、性质、变化及其与环境的关系的一门现代应用技术学科。

遥感概念:在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。

2、遥感的分类:按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。

按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感、多光谱遥感等。

按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等。

按照资料的记录方式:成像方式、非成像方式。

按照传感器工作方式分类:主动遥感、被动遥感。

3、遥感起源于航空摄影、摄影测量等。

第一章1、电磁波:通过变化电场周围产生变化的磁场,而变化的磁场又产生变化的电场之间的相互联系传播的过程。

电磁波的特性:具有二象性,即波动性(干涉、衍射、偏振现象)和粒子性。

2、波长最长的是无线电波,最短的是γ射线。

3、电磁波谱图:按电磁波在真空中传播的波长或频率递增或递减顺序排列制成的图案。

4、地物的反射率概念:地物对某一波段的反射能量与入射能量之比。

反射率随入射波长变化而变化。

反射类型:漫反射、镜面反射、方向反射。

5、影响地物反射率的3个因素:入射电磁波的波长,入射角的大小,地表颜色与粗糙程度。

附:影响地物光谱反射率变化的因素:a太阳的高度角和方位角。

B传感器的观测角和方位角c不同的地理位置d地物本身的变异e时间、季节的变化6、地物反射光谱曲线:根据地物反射率与波长之间的关系而绘成的曲线。

1.不同地物在不同波段反射率存在差异2. 同类地物的反射光谱具有相似性,但也有差异性。

不同植物;植物病虫害3. 地物的光谱特性具有时间特性和空间特性。

(同物异谱,同谱异物)。

7、地物发射电磁波的能力以发射率作为衡量标准;地物的发射率是以黑体辐射作为参照标准。

8、绝对黑体:对任何波长的电磁波辐射都全部吸收的物体。

(灰体发射率小于1)。

9、黑体辐射的三个特性:a.辐射通量密度随波长连续变化,每条曲线只有一个最大值。

b.温度越高,辐射通量密度越大,不同温度的曲线不同。

(绝对黑体表面,单位面积发出的总辐射能与绝对温度的四次方成正比)c.随着温度的升高,辐射最大值所对应的波长向短波方向移动。

(维恩位移定律)10、大气的垂直分层:对流层(航空遥感活动区)、平流层、电离层和外大气层。

在可见光波段,引起电磁波衰减的主要原因是分子散射。

在紫外、红外与微波区,引起衰减的主要原因是大气吸收。

引起大气吸收的主要成分是:氧气、水(0.7~1.95)、臭氧(0.3以下)、二氧化碳(2.6~2.8)。

11、散射作用:太阳辐射在长波过程中遇到小微粒而使传播方向改变,并向各个方向散开。

改变了电磁波的传播方向;干扰传感器的接收;降低了遥感数据的质量、影像模糊,影响判读。

12、三种散射方式:米氏散射:当微粒的直径与辐射波长差不多时的大气散射。

均匀散射:当微粒的直径比辐射波长大得多时发生的散射。

瑞利散射:当微粒的直径比辐射波长小得多时发生的散射。

13、大气窗口的概念:通过大气而较少被反射、吸收或散射,衰减程度较小,透过率较高的电磁辐射波段。

第二章1、遥感平台的概念与分类遥感平台:遥感中搭载传感器的工具。

有:地面平台、航空平台、航天平台。

2、全球定位系统GPS的组成有:地面控制部分(主控站、地面天线。

监测站和通信辅助系统组成)空间部分(21颗工作卫星,3颗备用卫星组成),用户部分(天线、接收机、微处理机和输入输出设备组成)。

3、卫星姿态角定义:定义卫星质心为坐标原点,沿轨道前进的切线方向为x轴,垂直轨道的方向为y轴,垂直xy平面的为z轴,则卫星的姿态角有三种情况:绕x轴旋转的姿态角为滚动角,绕y轴旋转的姿态角为俯仰角,绕z轴旋转的姿态角为航偏角。

用姿态测量仪测定:红外姿态测量仪、星相机、陀螺仪。

4、卫星运行周期:指卫星绕地一圈所需要时间,即从升交点开始运行到下次过升交点时的时间间隔。

重复周期:指卫星从某地上空开始运行,经过若干时间的运行后,回到该地上空时所需要的天数。

5、陆地卫星的种类:高分辨陆地卫星,高光谱陆地卫星,合成孔径雷达,小卫星。

6、Landsat卫星的特点:近圆形,近极地,与太阳同步(卫星轨道面与太阳地球连线之间在黄道面内的夹角,不随地球绕太阳公转而改变),可重复的轨道。

7、landsat-7(美)传感器改型为ETM+、spot卫星(法)、IRS系列卫星(印度)、中国资源一号卫星系列(中国与巴西),合成孔径雷达型:SAR类卫星,Radarsat系列卫星(加拿大),ERS系列(欧洲),ENVISAT卫星,ALOS卫星(日),Terrasar-x卫星(德)。

小卫星:a重量轻,体积小b研制周期短,成本低c发射灵活,启动速度快,抗毁性强d技术性能高。

8、什么是TM影像:指美国陆地卫星4~5号专题制图仪(thematic mapper)所获取的多波段扫描影像。

分为7个波段。

主要特点为具较高空间分辨率、波谱分辨率、极为丰富的信息量和较高定位精度。

多光谱扫描仪(MSS)、反速光导管摄像机(RBV)、增强型专题制图仪(ETM+)第三章1、遥感传感器可分为四类:(1)、摄影类型的传感器。

(2)、扫描成像类型的传感器。

(3)、雷达成像型的传感器。

(4)、非图像类型的传感器。

2、扫描成像类传感器是逐点逐行以时序方式获取的二维图像,有两种,一对物面扫描的成像仪(如:红外扫描仪、MSS多光谱扫描仪、成像光谱仪等)。

二对像面扫描的成像仪(如:线阵列CCD推扫式成像仪、电视摄像机等)。

3、TM是一个高级的多波段扫描型的地球资源敏感仪器,与多波段扫描仪MSS性能相比,它具有更高的空间分辨率,更好的频谱选择性,更好的几何保真度,更高的辐射准确度和分辨率。

Tm增加了一个扫描改正器。

4、ETM+是一台8谱段的多光谱扫描辐射计。

HRV是一种线阵列推扫式扫描仪。

5、成像光谱概念:是以多路、连续并具有高光谱分辨率方式获取图像信息的仪器,基本上属于多光谱扫描仪。

6、真实孔径侧视雷达的分辨率包括距离分辨率和方位分辨率。

距离分辨率指在脉冲发射方向上,能分辨两个目标的最小距离,与脉冲宽度有关,与距离无关。

(采用脉冲压缩技术来提高)。

方位分辨率指:在雷达飞行方向上,能分辨两个目标的最小距离。

(采用波长较短的电磁波,加大天线孔径,缩短观测距离来提高)。

7、INSAR数据处理的步骤:影像配准,干涉图生成,噪声滤除,基线估算,平地效应消除,相位解缠,高程计算和纠正等。

第四章1、图像的表示形式:光学图像和数字图像。

光学图像:是一个二维的连续的光密度函数。

数字图像:是一个二维的离散的光密度函数。

光学图像转化为数字图像指:把一个连续的光密度函数转化为一个离散的光密度函数。

2、贮存的格式有三种:BSQ格式即按波段记载数据文件,BIL格式即按照波段顺序交叉排列的遥感数据格式,GeoTIFF格式是一种通用的图像格式。

3、主流遥感图像处理系统主要有:envi,pci,erdas imagine等。

第五章1、遥感图像的几何变形(1)、传感器成像方式引起的图像变形。

(2)、传感器外方位元素变化的影响。

(3)、地形起伏引起的像点位移。

(4)、地球曲率引起的图像变形。

(5)、大气折射引起的图像变形。

(6)、地球自转的影响。

2、遥感影像的几何处理(1)粗加工处理即做系统误差的改正。

(2)精纠正处理。

(消除图像中的几何变形,产生一副符合某种地图投影要求的新图像)3、遥感影像精纠正处理的过程:(1)像素坐标的变换,即将图像坐标转变为地图或地面坐标。

(2)对坐标变换后的像素亮度值进行重采样。

具体如下:(1)根据图像的成像方式确定图像坐标和地面坐标之间的数学模型。

(2)根据地面控制点和对应像点坐标进行平差计算变换参数,评定精度。

(3)对原始图像进行几何变换计算,像素亮度值重采样。

4、纠正方法有:基于多项式的遥感图像纠正,基于共线方程的遥感图像纠正,基于有理函数的遥感图像纠正。

5、直接法与间接法纠正的概念。

答:直接法方案是从原始图像阵列出发,按行列的顺序依次对每个原始像素点位求其地面坐标系中的正确位置。

间接法方案是从空白的输出图像阵列出发,按行列的顺序依次对每个输出像素点位反求原始图像坐标的位置。

6、雷达图像几何纠正是在粗校正图像的基础上,消除由地形引起的几何位置的误差,生成地理编码的正射图像。

7、图像间的自动配准是以spot影像为基准,TM影像为配准的。

第6章1、为什么要进行辐射纠正?答:传感器输出的能量包含了由于太阳位置和角度条件、大气条件、地形影响和传感器本身的性能等所引起的各种失真,这些失真不是地面目标本身的辐射,对图像的使用和理解造成影像,必须加以校正和消除。

2、辐射定标和辐射校正是遥感数据定量化的最基本环节。

3、辐射误差来源:答:1)传感器本身的性能引起的辐射误差;2)大气的散射和吸收引起的辐射误差。

3)地形影响和光照条件的变化引起的辐射误差;4、传感器的辐射定标:建立传感器每个探测元所输出的信号的数值量化值与该探测器对应像元内的实际地物辐射亮度值之间的定量关系。

5、遥感图像的辐射增强的实质是增强感兴趣目标和周围背景图像间的反差。

6、图像增强技术可分为两大类:空间域处理和频率域处理。

空间域处理是指直接对图像进行各种运算以得到需要的增强效果。

频率域处理指将空间域图像变换成频率域图像,然后在频率域中对图像的频谱进行处理,已达到增强图像的目的。

7、图像融合的概念:将多源遥感图像按照一定的算法,在规定的地理坐标系,生成新的图像的过程。

第7章1、景物特征主要有:光谱特征、空间特征和时间特征。

2、空间特征指景物的各种几何形态。

判读标志是:形状、大小、图形、阴影、位置、纹理、类型等。

3、影响景物判读的因素:地物本身的复杂性,传感器特性的影响,目视能力的影响。

第8章1、遥感图像的计算机分类概念?答:就是利用计算机对地球表面及其环境在遥感图像上的信息进行属性识别和分类,以达到识别图像信息所对应的实际地物,提取所需地物信息的目的。

2、遥感图像自动分类常用的特征变换有:主分量变换、哈达玛变换、生物量指标变换、比值变换和恵帽变换等。

3、计算机分类主要有:监督分类和非监督分类。

监督分类是基于我们对遥感图像上样本区内地物的类别已知,利用这些样本类别的特征作为识别非样本数据类别的依据。

而非监督分类是人们事先对分类过程不施加任何的先验知识。

仅凭遥感影像的光谱特征的分布规律进行“盲目”的分类过程。

其结果只是区分不同的类不能确定类别的属性特征。

相关文档
最新文档