分数简便运算

合集下载

分数运算简便方法

分数运算简便方法

分数运算简便方法
在分数运算中,有一些简便的方法可以帮助我们进行计算:
1. 分数化简:将分数化简为最简形式。

比如,对于分数2/4,我们可以将其化简为1/2。

2. 分数相加:将两个分数相加时,需要先找到它们的公共分母,然后将分子相加。

比如,计算1/4 + 2/3,我们可以先将1/4化为3/12,再将2/3化为8/12,然后将分子相加得到11/12。

3. 分数相减:将两个分数相减时,也需要先找到它们的公共分母,然后将分子相减。

比如,计算5/8 - 1/4,我们可以先将5/8化为10/16,再将1/4化为4/16,然后将分子相减得到6/16,最后化简为3/8。

4. 分数乘法:将两个分数相乘时,只需将分子相乘,分母相乘。

比如,计算2/3 ×3/5,我们可以直接将分子相乘得到6,分母相乘得到15,最后化简为2/5。

5. 分数除法:将一个分数除以另一个分数时,可以将除法问题转化为乘法问题。

将被除数乘以倒数即可。

比如,计算2/3 ÷1/4,可以将其转化为2/3 ×4/1,然后按照分数乘法的方法进行计算。

通过这些简便的方法,我们可以更方便地进行分数的运算。

能够进行分数的简便运算

能够进行分数的简便运算

能够进行分数的简便运算分数的简便运算是数学学科中的重要内容之一。

掌握分数的加减乘除运算方法,能够在实际生活与学习中快速计算,提高计算效率。

本文将介绍几种能够进行分数的简便运算方法。

一、分数的加减运算1.同分母情况下的加减运算:对于两个分数的加减运算,只需将分数的分子相加(或相减),分母保持不变,即可得到结果。

例如:1/5 + 2/5 = 3/53/7 - 1/7 = 2/72.异分母情况下的加减运算:当两个分数的分母不相同时,需要通过通分后再进行运算。

通分的方法是将两个分数的分母相乘,分子分别乘以对方的分母,然后再进行相加(或相减)。

例如:1/3 + 2/5 = (1×5)/(3×5) + (2×3)/(5×3) = 5/15 + 6/15 =11/154/7 - 2/9 = (4×9)/(7×9) - (2×7)/(9×7) = 36/63 - 14/63 = 22/63二、分数的乘除运算1.分数的乘法:两个分数相乘,只需将分子与分母相乘即可,结果的分子为原分子的乘积,分母为原分母的乘积。

例如:1/2 × 2/3 =(1×2)/(2×3)= 2/6 = 1/33/5 × 4/7 =(3×4)/(5×7)= 12/352.分数的除法:两个分数相除,只需将第一个分数的分子乘以第二个分数的倒数,结果的分子为原分子的乘积,分母为原分母的乘积。

例如:1/2 ÷ 2/3 =(1×3)/(2×2)= 3/43/5 ÷ 4/7 =(3×7)/(5×4)= 21/20三、应用实例下面通过几个实际问题演示分数的简便运算方法:例1:小明买了书包,花费了5/6的存款,还剩下2/3的存款,请计算他原来的存款有多少。

解:假设小明原来的存款为x,根据题意可得方程式:x - 5/6x = 2/3x化简可得:(6 - 5)/6x = 2/3x1/6x = 2/3x1/6 = 2/3将方程两边乘以6,消去分母,得到:1x = 4因此,小明原来的存款为4。

分数计算中的简便运算

分数计算中的简便运算

分数简便运算包括但不限于以下几种:
1、连乘——乘法交换律的应用:
涉及定律:乘法交换律——a×b×c=a×c×b。

基本方法:将分数相乘的因数互相交换,先行运算。

2、乘法分配律的应用:
涉及定律:乘法分配律——(a±b)×c=ac±bc。

基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。

3、乘法分配律的逆运算(提取公因数):
涉及定律:乘法分配律逆向定律——a×b±a×c=a(b±c)。

基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。

4、添加因数“1”
涉及定律:乘法分配律逆向运算、
基本方法:添加因数“1”,将其中一个数n转化为1×n的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。

5、数字化加式或减式:
涉及定律:乘法分配律逆向运算。

基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。

六年级数学分数简便运算

六年级数学分数简便运算

六年级数学分数简便运算1、分数乘整数的计算方法:分子和整数相乘;分母不变。

2、分数乘分数的计算方法:分子乘分子;分母乘分母。

3、小数乘分数的计算方法:可以把小数化成分数;也可以把分数化成小数。

计算技巧:能约分的;先约分再算。

一个数(0除外)乘比1大的数;得数就比它本身大;乘比1小的数;得数就比它本身小。

分数简便运算常见题型第一种:连乘——乘法交换律的应用例题:(1)135×74×14 (2)53×61×5 (3)1413×83×266涉及定律:乘法交换律 a ×b ×c=a ×c ×b基本方法:将分数相乘的因数互相交换;先行运算。

第二种:乘法分配律的应用例题:(1)(98+274)×27 (2)(101+41)×4 (3)(43+21)×16涉及定律:乘法分配律(a ±b )×c=ac ±bc基本方法:将括号中相加减的两项分别与括号外的分数相乘;符号保持不变。

第三种:乘法分配律的逆运算例题:(1)21×151+31×21 (2)65×95+95×61 (3)54×7+51×7涉及定律:乘法分配律逆向定律 a ×b ±a ×c=a (b ±c )基本方法:提取两个乘式中共有的因数;将剩余的因数用加减相连;同时添加括号;先行运算。

第四种:添加因数“1”例题(1)75-95×75 (2)92-167×92 (3)3114×23+3117×23+23涉及定律:乘法分配律逆向运算基本方法:添加因数“1”。

将其中一个数N 转化为1×N 的形式;将原式转化为两两之积相加减的形式。

再提取公有因数;按乘法分配律逆向定律运算。

分数乘除法简便运算100题有答案

分数乘除法简便运算100题有答案

分数乘除法简便运算100题有答案分数乘除法的简便运算在数学学习中是一项非常重要的技能,它能够帮助我们快速而准确地解决各种数学问题。

下面为您呈现 100 道分数乘除法简便运算题目及答案,希望对您的学习有所帮助。

一、乘法交换律1、 1/2 × 3/4 × 4/3 = 1/2 ×(3/4 × 4/3)= 1/2 × 1 = 1/22、 2/3 × 5/6 × 6/5 = 2/3 × 1 = 2/33、 3/5 × 7/8 × 8/7 = 3/5 × 1 = 3/5二、乘法结合律1、(1/3 × 2/5)× 5/6 = 1/3 ×(2/5 × 5/6)= 1/3 × 1/3 = 1/92、(2/7 × 3/8)× 8/3 = 2/7 × 1 = 2/73、(3/11 × 4/9)× 9/4 = 3/11 × 1 = 3/11三、乘法分配律1、 1/2 ×(1/3 + 1/4)= 1/2 × 7/12 = 7/242、 2/3 ×(1/4 + 1/5)= 2/3 × 9/20 = 3/103、 3/4 ×(1/5 + 1/6)= 3/4 × 11/30 = 11/40四、除法的性质1、 1/2 ÷ 3/4 ÷ 4/3 = 1/2 ÷(3/4 × 4/3)= 1/2 ÷ 1 = 1/22、 2/3 ÷ 5/6 ÷ 6/5 = 2/3 ÷ 1 = 2/33、 3/5 ÷ 7/8 ÷ 8/7 = 3/5 ÷ 1 = 3/5五、拆分法1、 1/2 × 15 = 1/2 ×(16 1)= 1/2 × 16 1/2 × 1 = 8 1/2 = 7 又1/22、 2/3 × 21 = 2/3 ×(20 + 1)= 2/3 × 20 + 2/3 × 1 = 14 + 2/3 = 14 又 2/33、 3/4 × 36 = 3/4 ×(32 + 4)= 3/4 × 32 + 3/4 × 4 = 24 + 3 =27六、约分法1、 12/25 × 5/18 = 2/152、 18/35 × 7/27 = 2/153、 24/39 × 13/32 = 1/4七、转化法1、 1/4 ÷ 2/5 = 1/4 × 5/2 = 5/82、 2/7 ÷ 4/9 = 2/7 × 9/4 = 9/143、 3/8 ÷ 6/11 = 3/8 × 11/6 = 11/16八、综合运用1、 1/2 × 3/4 + 1/2 × 1/4 = 1/2 ×(3/4 + 1/4)= 1/2 × 1 = 1/22、 2/3 × 5/6 2/3 × 1/6 = 2/3 ×(5/6 1/6)= 2/3 × 2/3 = 4/93、 3/4 ÷ 5/8 × 4/5 = 3/4 × 8/5 × 4/5 = 24/25接下来是剩下的题目及答案:4、 4/5 × 5/6 × 6/7 = 4/75、 5/7 × 7/8 × 8/9 = 5/96、 6/11 × 11/12 × 12/13 = 6/137、 1/3 ×(1/2 1/5)= 1/108、 2/5 ×(1/3 + 1/4)= 7/309、 3/7 ×(1/4 1/5)= 3/14010、 1/2 ÷ 4/5 ÷ 5/6 = 3/411、 2/3 ÷ 5/6 ÷ 6/7 = 14/1512、 3/4 ÷ 7/8 ÷ 8/9 = 27/2813、 1/2 × 20 = 1014、 2/3 × 27 = 1815、 3/5 × 40 = 2416、 15/28 × 7/9 = 5/1217、 21/32 × 8/27 = 7/3618、 27/44 × 11/18 = 3/819、 1/3 ÷ 3/5 = 5/920、 2/5 ÷ 6/7 = 7/1521、 3/7 ÷ 9/11 = 11/2122、 1/2 × 4/5 1/2 × 1/5 = 3/1023、 2/3 × 6/7 + 2/3 × 1/7 = 2/324、 3/4 × 8/9 3/4 × 1/9 = 2/325、 7/8 × 8/9 × 9/10 = 7/1026、 8/11 × 11/12 × 12/14 = 4/727、 9/13 × 13/15 × 15/17 = 9/1728、 1/4 ×(1/3 + 1/6)= 1/829、 2/7 ×(1/4 + 1/5)= 9/7030、 3/8 ×(1/5 1/6)= 1/8031、 1/2 ÷ 5/6 ÷ 6/7 = 7/1032、 2/3 ÷ 6/7 ÷ 7/8 = 8/933、 3/4 ÷ 7/8 ÷ 8/9 = 27/2834、 1/2 × 30 = 1535、 2/3 × 36 = 2436、 3/5 × 50 = 3037、 18/35 × 7/20 = 9/10038、 24/39 × 13/36 = 2/939、 30/47 × 47/60 = 1/240、 1/4 ÷ 4/7 = 7/1641、 2/7 ÷ 7/9 = 18/4942、 3/8 ÷ 8/11 = 33/6443、 1/2 × 5/6 + 1/2 × 1/6 = 1/244、 2/3 × 7/8 2/3 × 1/8 = 1/245、 3/4 × 9/10 + 3/4 × 1/10 = 3/446、 10/11 × 11/12 × 12/13 = 10/1347、 11/14 × 14/15 × 15/16 = 11/1648、 12/17 × 17/18 × 18/19 = 12/1949、 1/5 ×(1/4 + 1/5)= 9/10051、 3/8 ×(1/6 1/7)= 3/33652、 1/2 ÷ 6/7 ÷ 7/8 = 4/353、 2/3 ÷ 7/8 ÷ 8/9 = 24/2154、 3/4 ÷ 8/9 ÷ 9/10 = 15/855、 1/2 × 40 = 2056、 2/3 × 45 = 3057、 3/5 × 60 = 3658、 21/32 × 8/24 = 7/3259、 27/40 × 10/27 = 1/460、 33/48 × 16/33 = 1/361、 1/5 ÷ 5/8 = 8/2562、 2/7 ÷ 7/10 = 20/4963、 3/8 ÷ 8/13 = 39/6464、 1/2 × 6/7 1/2 × 1/7 = 5/1465、 2/3 × 8/9 + 2/3 × 1/9 = 2/366、 3/4 × 10/11 3/4 × 1/11 = 3/468、 14/17 × 17/18 × 18/19 = 14/1969、 15/20 × 20/21 × 21/22 = 15/2270、 1/6 ×(1/5 + 1/6)= 11/18071、 2/8 ×(1/6 + 1/7)= 26/33672、 3/9 ×(1/7 1/8)= 1/21673、 1/2 ÷ 7/8 ÷ 8/9 = 9/774、 2/3 ÷ 8/9 ÷ 9/10 = 5/375、 3/4 ÷ 9/10 ÷ 10/11 = 11/476、 1/2 × 50 = 2577、 2/3 × 55 = 110/378、 3/5 × 70 = 4279、 24/35 × 7/28 = 3/3580、 30/41 × 11/30 = 11/4181、 36/49 × 7/36 = 1/782、 1/6 ÷ 6/10 = 5/1883、 2/8 ÷ 8/12 = 3/884、 3/9 ÷ 9/14 = 14/2785、 1/2 × 7/8 + 1/2 × 1/8 = 1/286、 2/3 × 9/10 2/3 × 1/10 = 2/387、 3/4 × 11/12 + 3/4 × 1/12 = 3/488、 16/17 × 17/18 × 18/19 = 16/1989、 17/20 × 20/21 × 21/22 = 17/2290、 18/23 × 23/24 × 24/25 = 18/2591、 1/7 ×(1/6 + 1/7)= 13/29492、 2/8 ×(1/7 + 1/8)= 30/22493、 3/9 ×(1/8 1/9)= 1/21694、 1/2 ÷ 8/9 ÷ 9/10 = 5/495、 2/3 ÷ 9/10 ÷ 10/11 = 22/2796、 3/4 ÷ 10/11 ÷ 11/12 = 9/1097、 1/2 × 60 = 3098、 2/3 × 65 = 130/399、 3/5 × 80 = 48100、 27/40 × 10/30 = 9/40希望这些题目和答案能够帮助您熟练掌握分数乘除法的简便运算方法,提高数学运算能力。

分数简便运算方法

分数简便运算方法

分数简便运算方法一、引言分数是数学中常见的概念,它由分子和分母组成,表示一个整体被等分的情况。

在数学运算中,我们经常需要对分数进行加减乘除等操作,因此掌握分数简便运算方法是很重要的。

二、分数加法分数加法是指两个分数相加的运算。

假设有两个分数a/b和c/d,其中a、b、c、d都是整数且b、d不为零。

那么,分数a/b加上分数c/d的结果可以通过以下步骤得到:1. 求出两个分数的公共分母,即b和d的最小公倍数,记为e。

2. 将a/b和c/d的分母都改为e,并按照相同的比例调整分子,得到新的分数ae/b和 ce/d。

3. 将新分数ae/b和ce/d的分子相加,得到分子的和。

4. 将和与公共分母e组合起来,得到最终的结果。

三、分数减法分数减法是指一个分数减去另一个分数的运算。

假设有两个分数a/b和c/d,其中a、b、c、d都是整数且b、d不为零。

那么,分数a/b减去分数c/d的结果可以通过以下步骤得到:1. 求出两个分数的公共分母,即b和d的最小公倍数,记为e。

2. 将a/b和c/d的分母都改为e,并按照相同的比例调整分子,得到新的分数ae/b和 ce/d。

3. 将新分数ae/b的分子减去ce/d的分子,得到分子的差。

4. 将差与公共分母e组合起来,得到最终的结果。

四、分数乘法分数乘法是指两个分数相乘的运算。

假设有两个分数a/b和c/d,其中a、b、c、d都是整数且b、d不为零。

那么,分数a/b乘以分数c/d的结果可以通过以下步骤得到:1. 将分数a/b和c/d的分子相乘,得到新的分子。

2. 将分数a/b和c/d的分母相乘,得到新的分母。

3. 将新的分子和分母组合起来,得到最终的结果。

五、分数除法分数除法是指一个分数除以另一个分数的运算。

假设有两个分数a/b和c/d,其中a、b、c、d都是整数且b、d不为零。

那么,分数a/b除以分数c/d的结果可以通过以下步骤得到:1. 将分数a/b的分子乘以分数c/d的分母,得到新的分子。

分数的简便运算100道

分数的简便运算100道

分数的简便运算100道一、简单分数的加减运算1、1/2+1/4=3/42、3/4-1/2=1/43、1/3+2/3=14、5/6-2/3=1/25、2/5+3/5=5/5=16、2/3-3/4=-1/127、1/4+1/4=2/4=1/28、4/5-3/4=1/209、3/4+1/3=7/1210、2/3-1/4=1/12二、简单分数的乘除运算1、1/2*2/3=1/32、2/3÷1/2=4/33、1/4*3/4=3/164、2/5÷2/3=3/55、1/3×3/4=1/46、3/4÷2/3=3/27、1/2*4/5=2/58、3/4÷1/3=9/49、2/3×3/4=1/210、2/5÷1/4=8/5三、简单分数的混合运算1、1/2+2/3*3/4=7/82、2/3÷2/5+1/4=11/203、1/3*2/5+3/4=13/204、2/3-1/2÷1/3=5/65、1/2*2/3-3/4=-1/126、3/4+2/5÷1/3=11/127、1/4*3/4-1/2=-3/88、2/3÷1/4+1/3=7/49、1/2+2/3*2/5=2/510、2/3÷1/2-1/4=-1/12由上可见,简单分数的加减运算,乘除运算以及混合运算都是需要学生们重点掌握的运算知识。

首先,在进行简单分数的加减运算时,需要将分子分母分别相加或相减,然后将得出的结果化简,得出最终的答案。

其次,在简单分数的乘除运算时,需要将分子分母分别相乘或相除,最后再将得出的结果化简,得出最终的答案。

最后,在简单分数的混合运算中,应先对乘除运算,然后再对加减运算,最后将得出的结果化简,得出最终的答案。

研究简单分数的加减乘除以及混合运算,除了要掌握具体的计算方法外,更重要的是要养成良好的数学思维方式,以更有效率地解决数学问题。

分数运算简便方法

分数运算简便方法

分数运算简便方法分数运算是数学中的一种重要运算方式,简便方法可以帮助我们更快速、准确地进行分数运算。

下面我将介绍几种常用的分数运算简便方法。

一、分数的相加与相减1.找到两个分数的公共分母,如果两个分数的分母相同,则直接将分子相加或相减即可;2.如果两个分数的分母不同,则需要通过找到最小公倍数将两个分数的分母转化为相同的数,然后将分子相加或相减;3.如果两个分数的分子相同,则直接将分母相加或相减。

二、分数的相乘与相除1.分数相乘时,将两个分数的分子相乘得到新的分子,分母也相乘得到新的分母;2.分数相除时,将除数的分子乘于被除数的分母得到新的分子,除数的分母乘于被除数的分子得到新的分母;3.注意化简分数,将结果一般化简为最简分数形式。

三、分数的比较与排序1.比较分数大小时,可以将两个分数的分子相乘得到新的分子,分母也相乘得到新的分母,然后比较两个新的分数大小。

例如,分数1/2与2/3比较时,可以计算1×3=3与2×2=4,因为3<4,所以1/2<2/3;2.排序分数时,可以将分数化为相同的分母,然后按照分子大小进行排序。

四、分数的运算规律1.分数的分子与分母乘以相同的数,分数的值不变。

例如,分数1/2乘以2/2得到2/4,其值依然为1/2;2.分数的分子与分母同时除以相同的数,分数的值不变。

例如,分数2/4除以2/2得到1/2,其值依然为1/2;3.对于分数的加减乘除运算,先将分数化为最简分数,然后按照整数的运算规律进行计算,最后化简结果。

五、分数的应用1.在日常生活中,分数可以用来表示比例关系,比如:1/4表示四分之一,1/2表示一半;2.在商业计算中,分数可以用来表示价格折扣、比例利润等;3.在科学研究中,分数可以用来表示几何比例、物质比例等。

总结:分数运算虽然看似复杂,但是掌握了分数运算的简便方法,我们可以更加轻松、准确地进行分数的加减乘除运算。

通过寻找公共分母、化简分数、化为最简分数等技巧,可以帮助我们在分数运算中节省时间、减少错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数简便计算
教学目标:
1.经历自主解决问题、尝试进行有关分数乘法简便计算的过程
2.能解决有关分数乘法的简单问题,能运用运算定律进行分数简便运算
3.感觉运算定律应用的广泛性,能对简便运算的方法和结果的合理性作出有说服力的说明
重难点:
1.重点:运算定律的准确运用
2.难点:能选择合适的简便方法解决实际问题
教学过程:
教学环节
学生活动预设
教师活动预设
一.创设情境
快速计算,总结出运算定律:
乘法交换律ab=ba
乘法结合律abc=a(bc)
乘法分配律 (a+b)c=ac+bc
1.口算练习
(主要是一些简便计算的题,并总结运算定律)
2.引入课题并板书
二.探究新知
三.尝试应用
(1)相互交流,理解题意
(2)尝试解决问题
(2)引导讨论
对比刚才的两种算法,有什么发现和体会?
1.出示例题,引导独立试做
(老师重点指导第(1)题的书写方法和第(2)题的解题依据)
2.练习巩固
(完成试一试成练一练
五.课堂小结
总结收获
引导学生自我总结本节课的收获
六.布置作业
练一练
板书设计:
简便计算
整数乘法运算律对于分数乘法同样适用
(3)交流算法
(将式子板演到黑板上,并讲解自己的做题思路)
讨论过后,达成共识
(1)整数运算定律在分数运算中同样适用
(2)利用运算律可以使一些分数混合运算简便
(1)独立试做
(2)到黑板上板演并交流做法
独立完成(交流简算过程及依据)
1.探究例题
(1)出示例题,理解题意
鼓励学生用多种方法解答,如果学生可列出分步计算的式子,要引导列出综合算式
乘法交换律: a×b=b×a
乘法结合律: a×b×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
相关文档
最新文档