Fluent中升力系数阻力系数定义

合集下载

流体力学Fluent报告——圆柱绕流【范本模板】

流体力学Fluent报告——圆柱绕流【范本模板】

亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。

一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大.相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。

Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。

关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。

当流体流过圆柱时,由于漩涡脱落,在圆柱体上产生交变作用力。

这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。

因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。

沈立龙等[1]基于RNG k⁃ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数C d与Strouhal 数随雷诺数的变化规律.姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。

使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。

他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势.费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L 为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析.计算均在Re = 200 的非定常条件下进行.计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。

圆柱绕流的一个重要特征是流动形态取决于雷诺数。

升力系数及阻力系数

升力系数及阻力系数

答:首先要在-里设置参考速度和长度然后--中设置监测,就可以了阻力和升力是可以得到地,得到之后再除以**就可以了问题:中升阻力系数如何定义?答:升力系数定义:地升力系数是将升力除以参考值计算地动压(**(**)***(**)*),可以说只是对作用力进行了无量纲化,对自己有用地升力系数还需要动手计算一下,一下积分地面积和力,自己计算.文档收集自网络,仅用于个人学习其实本身系数就是一个无量纲化地过程,不同地系数有不同地参考值,就像计算数时地参考长度,是一个特征长度,反应特征即可作为、也是具有特定含义地系数,参考面积地取法是特定地,比如投影面积等等,但是这个在里是没有体现地里面你不做设置,就是照上面地帖子这样计算出来地,并不是你所期望地参考值,自己需要设定,对需要地参考值要做在里面设定文档收集自网络,仅用于个人学习风阻系数:空气阻力是汽车行驶时所遇到最大地也是最重要地外力.空气阻力系数,又称风阻系数,是计算汽车空气阻力地一个重要系数.它是通过风洞实验和下滑实验所确定地一个数学参数, 用它可以计算出汽车在行驶时地空气阻力.文档收集自网络,仅用于个人学习空气阻力是汽车行驶时所遇到最大地也是最重要地外力.风阻系数是通过风洞实验和下滑实验所确定地一个数学参数,用它可以计算出汽车在行驶时地空气阻力.风阻系数地大少取决于汽车地外形.风阻系数愈大,则空气阻力愈大.现代汽车地风阻系数一般在之间. 文档收集自网络,仅用于个人学习下面是一些物体地风阻:垂直平面体风阻系数大约球体风阻系数大约一般轿车风阻系数好些地跑车在赛车可以达到飞禽在飞机达到目前雨滴地风阻系数最小在左右风阻是车辆行驶时来自空气地阻力,一般空气阻力有三种形式,第一是气流撞击车辆正面所产生地阻力,就像拿一块木板顶风而行,所受到地阻力几乎都是气流撞击所产生地阻力. 第二是摩擦阻力,空气与划过车身一样会产生摩擦力,然而以一般车辆能行驶地最快速度来说,摩擦阻力小到几乎可以忽略.第三则是外型阻力(下图可说明何谓外型阻力),一般来说,车辆高速行驶时,外型阻力是最主要地空气阻力来源.外型所造成地阻力来自车后方地真空区,真空区越大,阻力就越大. 一般来说,三厢式地房车之外型阻力会比掀背式休旅车小.文档收集自网络,仅用于个人学习车辆在行驶时,所要克服地阻力有机件损耗阻力、轮胎产生地滚动阻力(一般也称做路阻)及空气阻力. 车辆在行驶时,所要克服地阻力有机件损耗阻力、轮胎产生地滚动阻力(一般也称做路阻)及空气阻力. 随著车辆行驶速度地增加,空气阻力也逐渐成为最主要地行车阻力,在时速以上时,空气阻力几乎占所有行车阻力地. 文档收集自网络,仅用于个人学习一般车辆在前进时,所受到风地阻力大致来自前方,除非侧面风速特别大.不然不会对车辆产生太大影响,就算有,也可通过方向盘来修正.风阻对汽车性能地影响甚大.根据测试,当一辆轿车以公里时前进时,有地耗油是用来克服风阻地. 风阻系数是衡量一辆汽车受空气阻力影响大小地一个标准.风阻系数越小,说明它受空气阻力影响越小,反之亦然,因此说风阻系数越小越好.一般来讲,流线性越强地汽车,其风阻系数越小.文档收集自网络,仅用于个人学习风阻系数可以通过风洞测得.当车辆在风洞中测试时,借由风速来模拟汽车行驶时地车速,再以测试仪器来测知这辆车需花多少力量来抵挡这风速,使这车不至于被风吹得后退.在测得所需之力后,再扣除车轮与地面地摩擦力,剩下地就是风阻了,然后再以空气动力学地公式就可算出所谓地风阻系数.文档收集自网络,仅用于个人学习风阻系数=正面风阻力× ÷(空气密度车头正面投影面积车速平方).一辆车地风阻系数是固定地,根据风阻系数即可算出车辆在各种速度下所受地阻力.工具栏里面,然后里面选定气体地进口面,点击就可以了文档收集自网络,仅用于个人学习流线,不就是等流函数线吗?^使用>> 不就可以得到了?这个功能局限于维文档收集自网络,仅用于个人学习。

流体力学Fluent报告——圆柱绕流之欧阳家百创编

流体力学Fluent报告——圆柱绕流之欧阳家百创编

亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟欧阳家百(2021.03.07)摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。

一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。

相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。

Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。

关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。

当流体流过圆柱时 , 由于漩涡脱落,在圆柱体上产生交变作用力。

这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。

因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。

沈立龙等[1]基于RNG k⁃ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数Cd与Strouhal 数随雷诺数的变化规律。

姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。

使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。

他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr 数随Re数的变化趋势。

费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。

计算均在Re = 200 的非定常条件下进行。

计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。

基于CFD的翼型绕流数值模拟

基于CFD的翼型绕流数值模拟

基于CFD的翼型绕流数值模拟摘要:本文重点介绍使用FLUENT软件包模拟流体流动的现象,包括使用GAMBIT进行二维的图形对象绘制,计算域的网格划分技术以及边界条件的设定,利用FLUENT求解定常或非定常,二维或三维,外流或内流,可压缩或不可压缩等各种流场流动的物理现象。

结合相关实例,熟悉GAMBIT的建模技巧和网格划分技术,运用FLUENT计算各种流场的操作和计算结果的后处理以及动画制作等技术。

关键词:FLUENT;流体流动;GAMBIT;建模;网格划分;边界条件;后处理0 引言自然界和工程问题中遇到的流动现象多种多样,根据不同的分类方法,可以分为层流和湍流,二维流动和三维流动,可压缩流动和不可压缩流动,定常流动和非定常流动等。

实际问题中以湍流现象较为普遍。

直到目前为止,还没有一个通用的湍流模型可以解决所有的工程湍流问题,所以选择湍流模型的时候需要注意具体问题具体分析,例如流动物理现象的特点、计算精度的要求、计算能力、计算时间要求等。

进而,根据所需解决问题的特点选择最合适的湍流模型。

我们将利用GAMBIT进行建模并熟悉过程中的操作技巧,例如各种生成体的方法,还有网格划分的技术,例如视对象的复杂程度选择生成结构化或非结构化的网格。

我们通过实战操作的学习,可以迅速掌握解决实际问题的基本思路和基本方法,以下我们就实例二维NACA 0006翼型的外部亚声速可压缩定常流动进行数值模拟分析。

1 二维定常可压缩流场分析—NACA 0006翼型气动力计算翼型的气动力计算是空气动力学领域中十分常见的问题,而实际的翼型是由翼型的几何数据文件所描述的,三角机翼、矩形机翼等规则形状的翼型很少见。

本实例中,我们将针对一个实际的NACA0006翼型,使用FLUENT软件包对其进行气动力计算分析。

1.1 概述使用FLUENT软件包进行翼型气动力分析需要计算出不同工况下(攻角、来流马赫数等)翼型的外部绕流流场,流动一般是假设定常、可压缩的,FLUENRT软件就起到一个数值风洞的作用。

fluent管路阻力系数

fluent管路阻力系数

fluent管路阻力系数摘要:1.Fluent 软件简介2.管路阻力系数的含义与作用3.如何在Fluent 中设置管路阻力系数4.惯性阻力系数的含义及其计算方法5.应用案例与注意事项正文:一、Fluent 软件简介Fluent 是一款由美国CFD Research Corporation 开发的计算流体动力学(Computational Fluid Dynamics,简称CFD)软件,广泛应用于工程领域,如能源、化工、航空航天等。

Fluent 通过计算机模拟流体的流动、传热和传质过程,为用户提供精确的流体动力学分析结果。

二、管路阻力系数的含义与作用管路阻力系数是描述流体在管道内流动时所受到的阻力大小的一个参数。

在Fluent 中,阻力系数可以分为摩擦阻力系数和惯性阻力系数两类。

1.摩擦阻力系数:摩擦阻力是由于流体与管道壁之间的摩擦而产生的阻力。

摩擦阻力系数通常用希腊字母μ表示,其值与流体的粘度、管道材料的粗糙程度及流体的流速有关。

2.惯性阻力系数:惯性阻力是由于物体在流体中做加速运动所引起的附加阻力。

惯性阻力系数通常用希腊字母ζ表示,其值与物体外形、流体的粘度及物体的加速度有关。

三、如何在Fluent 中设置管路阻力系数在Fluent 中设置管路阻力系数主要通过custom field function(自定义场函数)来实现。

以下是具体操作步骤:1.在Fluent 中打开或创建一个项目。

2.在主界面的"Geometry"或"Mesh"选项卡中,选择要设置阻力系数的管道区域。

3.单击鼠标右键,选择"Create/Modify Mesh",在弹出的对话框中选择"Add Node"。

4.在管道的入口和出口处添加节点,并连接成网格。

5.在"Field"选项卡中,单击鼠标右键,选择"Create/Modify Field"。

升力系数如何设定

升力系数如何设定

消息 查看 搜索 好友 复制 引用 回复
[第 6 楼]
当气液分离很快的时候,升力系数就比较重要,但是在FLUENT里面没 有这种关联式可选 。只有none\constant\udf三个选项。
职衔: 资料: 威望: +1 现金: 16010 华元 存款: 510 华元 来自: 浙江杭州 发帖: 115 篇 精华: 0 篇 在线: 04 时 49 分 05 秒 注册: 2005/06/02
主题管理: 总固顶 取消总固顶 区固顶 取消区固顶 固顶 取消固顶 加重 取消加重 精华 取消精华 提升 锁定 解锁 删除 删除回复 移动
到上投摩根网开基金账户 电子直销优惠便利,申购费率低 至6折 轻松开户,支持建行农行 等多张银行卡

全佳·全斯美德 纵跨办公、商业地产的专业全程 服务商 联系电话:86 21-
上传附件或图片 (最大容量 512KB)
请先登陆才能上传文件! 目前附件:(如不需要某个附件,只需删除内容中的相应 [UploadFile ...] 标签即可) [删除]
选项
使用 LeoBBS 标签? 显示您的签名? 使用表情字符转换? 使用字体转换?
发表回复
预览内容
清除
快速引用第
楼层的回复
顶端 加到"个人收藏夹"
2006/04/03 08:08pm IP: 已设置保密 消息 查看 搜索 好友 复制 引用 回复
UDF
[本文共8字节] [第 8 楼]
cuijuejian 勋章:
2006/04/03 09:35pm IP: 已设置保密
[本文共3字节]
消息 查看 搜索 好友 复制 引用 回复
[第 9 楼]
我是想用UDF,不过UDF这方面还不太懂。还有就是气液两相的升力系 数关联式还没有找到呢。

fluent中升力系数,阻力系数和压力系数定义

fluent中升力系数,阻力系数和压力系数定义

问题:圆柱绕流在fluent中如何得到阻力系数和升力系数?具体的设置是怎样的?是要监测得到阻力和升力吗?它们分别怎么设置来得到?答:首先要在report-reference value里设置参考速度和长度然后solve-monitor-force中设置监测drag,lift就可以了阻力和升力是可以得到的,得到之后再除以1/2pV**2S就可以了问题:fluent中升阻力系数如何定义?答:升力系数定义:FLUENT的升力系数是将升力除以参考值计算的动压(0.5*density*(velocity**2)*area=0.5*1.225*(1**2)*1=0.6125),可以说只是对作用力进行了无量纲化,对自己有用的升力系数还需要动手计算一下,report一下积分的面积和力,自己计算。

其实本身系数就是一个无量纲化的过程,不同的系数有不同的参考值,就像计算Re数时的参考长度,是一个特征长度,反应特征即可作为Cl、Cd也是具有特定含义的系数,参考面积的取法是特定的,比如投影面积等等,但是这个在Fluent 里是没有体现的Fluent里面你不做设置,就是照上面的帖子这样计算出来的,并不是你所期望的参考值,自己需要设定,对需要的参考值要做在里面设定另外:参考值的改变不影响迭代计算的过程,只是在后处理一些参数的时候应用到user guide 的相关内容26.8 Reference Values页脚内容1You can control the reference values that are used in the computation of derived physical quantities and nondimensional coefficients. These reference values are used only for postprocessing.Some examples of the use of reference values include the following:Force coefficients use the reference area, density, and velocity. In addition, the pressure force calculation uses the reference pressure.Moment coefficients use the reference length, area, density and velocity. In addition, the pressure force calculation uses the reference pressure.Reynolds number uses the reference length, density, and viscosity.Pressure and total pressure coefficients use the reference pressure, density, and velocity.Entropy uses the reference density, pressure, and temperature.Skin friction coefficient uses the reference density and velocity.Heat transfer coefficient uses the reference temperature.页脚内容2Turbomachinery efficiency calculations use the ratio of specific heats.26.8.1 Setting Reference ValuesTo set the reference quantities used for computing normalized flow-field variables, use the Reference Values panel (Figure 26.8.1).You can input the reference values manually or compute them based on values of physical quantities at a selected boundary zone. The reference values to be set are Area, Density, Enthalpy, Length, Pressure, Temperature, Velocity, dynamic Viscosity, and Ratio Of Specific Heats. For 2D problems, an additional quantity, Depth, can also be defined. This value will be used for reporting fluxes and forces. (Note that the units for Depth are set independently from the units for length in the Set Units panel.)If you want to compute reference values from the conditions set on a particular boundary zone, select the zone in the Compute From drop-down list. Note, however, that depending on the boundary condition used, only some of the reference values may be set. For example, the reference length and area will not be set by computing the reference values from a boundary condition; you will need to set these manually.To set the values manually, simply enter the value for each under the Reference Values heading.不同的Cd、Cl在各行业叫法一一致,如在汽车行业叫风阻系数风阻系数:空气阻力是汽车行驶时所遇到最大的也是最重要的外力。

流体力学Fluent报告——圆柱绕流

流体力学Fluent报告——圆柱绕流

亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟摘要:本文运用Fluent软件中的RNGk-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。

一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。

相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。

Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。

关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。

当流体流过圆柱时, 由于漩涡脱落,在圆柱体上产生交变作用力。

这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。

因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。

沈立龙等[1]基于RNG k⁃ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数C与Stroduhal 数随雷诺数的变化规律。

姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。

使用非结构化网格六面体单元和有限体积法对二维N-S方程进行求解。

他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。

费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。

计算均在Re= 200的非定常条件下进行。

计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。

圆柱绕流的一个重要特征是流动形态取决于雷诺数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题:圆柱绕流在fluent中如何得到阻力系数和升力系数?具体的设置是怎样的?是要监测得到阻力和升力吗?它们分别怎么设置来得到?
答:首先要在report-reference value里设置参考速度和长度
然后solve-monitor-force中设置监测drag,lift就可以了
阻力和升力是可以得到的,得到之后再除以1/2pV**2S就可以了
问题:fluent中升阻力系数如何定义?
答:升力系数定义:
FLUENT的升力系数是将升力除以参考值计算的动压 (0.5*density*(velocity**2)*area=0.5*1.225*
(1**2)*1=0.6125),可以说只是对作用力进行了无量纲化,对自己有用的升力系数还需要动手计算一下,report一下积分的面积和力,自己计算。

其实本身系数就是一个无量纲化的过程,不同的系数有不同的参考值,就像计算Re数时的参考长度,是一个特征长度,反应特征即可
作为Cl、Cd也是具有特定含义的系数,参考面积的取法是特定的,比如投影面积等等,但是这个在Fluent 里是没有体现的
Fluent里面你不做设置,就是照上面的帖子这样计算出来的,
并不是你所期望的参考值,自己需要设定,对需要的参考值要做在里面设定
另外:参考值的改变不影响迭代计算的过程,只是在后处理一些参数的时候应用到
user guide 的相关内容
26.8 Reference Values
You can control the reference values that are used in the computation of derived physical quantities and nondimensional coefficients. These reference values are used only for postprocessing.
Some examples of the use of reference values include the following:
Force coefficients use the reference area, density, and velocity. In addition, the pressure force calculation uses the reference pressure.
Moment coefficients use the reference length, area, density and velocity. In addition, the pressure force calculation uses the reference pressure.
Reynolds number uses the reference length, density, and viscosity.
Pressure and total pressure coefficients use the reference pressure, density, and velocity.
Entropy uses the reference density, pressure, and temperature.
Skin friction coefficient uses the reference density and velocity.
Heat transfer coefficient uses the reference temperature.
Turbomachinery efficiency calculations use the ratio of specific heats.
26.8.1 Setting Reference Values
To set the reference quantities used for computing normalized flow-field variables, use the Reference Values panel (Figure 26.8.1).
You can input the reference values manually or compute them based on values of physical quantities at a selected boundary zone. The reference values to be set are Area, Density, Enthalpy, Length, Pressure, Temperature, Velocity, dynamic Viscosity, and Ratio Of Specific Heats. For 2D problems, an additional quantity, Depth, can also be defined. This value will be used for reporting fluxes and forces. (Note that the units for Depth are set independently from the units for length in the Set Units panel.)
If you want to compute reference values from the conditions set on a particular boundary zone, select the zone in the Compute From drop-down list. Note, however, that depending on the boundary condition used, only some of the reference values may be set. For example, the reference length and area will not be set by computing the reference values from a boundary condition; you will need to set these manually.
To set the values manually, simply enter the value for each under the Reference Values heading.
不同的Cd、Cl在各行业叫法一一致,如在汽车行业叫风阻系数
风阻系数:空气阻力是汽车行驶时所遇到最大的也是最重要的外力。

空气阻力系数,又称风阻系数,是计算汽车空气阻力的一个重要系数。

它是通过风洞实验和下滑实验所确定的一个数学参数, 用它可以计算出汽车在行驶时的空气阻力。

空气阻力是汽车行驶时所遇到最大的也是最重要的外力.风阻系数是通过风洞实验和下滑实验所确定的一个数学参数,用它可以计算出汽车在行驶时的空气阻力.风阻系数的大少取决于汽车的外形.风阻系数愈大,则空气阻力愈大.现代汽车的风阻系数一般在0.3-0.5之间.
下面是一些物体的风阻:
垂直平面体风阻系数大约1.0
球体风阻系数大约0.5
一般轿车风阻系数0.28-0.4
好些的跑车在0.25
赛车可以达到0.15
飞禽在0.1-0.2
飞机达到0.08
目前雨滴的风阻系数最小
在0.05左右
风阻是车辆行驶时来自空气的阻力,一般空气阻力有三种形式,第一是气流撞击车辆正面所产生的阻力,就像拿一块木板顶风而行,所受到的阻力几乎都是气流撞击所产生的阻力。

第二是摩擦阻力,空气与划过车身一样会产生摩擦力,然而以一般车辆能行驶的最快速度来说,摩擦阻力小到几乎可以忽略。

第三则是外型阻力(下图可说明何谓外型阻力),一般来说,车辆高速行驶时,外型阻力是最主要的空气阻力来源。

外型所造成的阻力来自车后方的真空区,真空区越大,阻力就越大。

一般来说,三厢式的房车之外型阻力会比掀背式休旅车小。

车辆在行驶时,所要克服的阻力有机件损耗阻力、轮胎产生的滚动阻力(一般也称做路阻)及空气阻力。

车辆在行驶时,所要克服的阻力有机件损耗阻力、轮胎产生的滚动阻力(一般也称做路阻)及空气阻力。

随著车辆行驶速度的增加,空气阻力也逐渐成为最主要的行车阻力,在时速200km/h以上时,空气阻力几乎占所有行车阻力的85%。

一般车辆在前进时,所受到风的阻力大致来自前方,除非侧面风速特别大。

不然不会对车辆产生太大影响,就算有,也可通过方向盘来修正。

风阻对汽车性能的影响甚大。

根据测试,当一辆轿车以80公里/时前进时,有60%的耗油是用来克服风阻的。

风阻系数Cd是衡量一辆汽车受空气阻力影响大小的一个标准。

风阻系数越小,说明它受空气阻力影响越小,反之亦然,因此说风阻系数越小越好。

一般来讲,流线性越强的汽车,其风阻系数越小。

风阻系数可以通过风洞测得。

当车辆在风洞中测试时,借由风速来模拟汽车行驶时的车速,再以测试仪器来测知这辆车需花多少力量来抵挡这风速,使这车不至于被风吹得后退。

在测得所需之力后,再扣除车轮与地面的摩擦力,剩下的就是风阻了,然后再以空气动力学的公式就可算出所谓的风阻系数。

风阻系数=正面风阻力× 2÷(空气密度x车头正面投影面积x车速平方)。

一辆车的风阻系数是固定的,根据风阻系数即可算出车辆在各种速度下所受的阻力。

相关文档
最新文档