专题6:碰撞与动量守恒知识点(教师版)

合集下载

第一章。碰撞和动量守恒。知识点总结

第一章。碰撞和动量守恒。知识点总结

第一章。

碰撞和动量守恒。

知识点总结在一定的联系和区别。

二、冲量1、冲量:是外力作用时间的积分,是矢量,方向与外力方向相同;冲量的单位是N·s,也可以写成kg·m/s;冲量的大小等于动量的变化量。

2、冲量定理:外力作用时间内,物体动量的变化量等于外力的冲量。

即FΔt=Δp。

三、动量定理1、动量定理:物体所受合外力的冲量等于物体动量变化的量。

即FΔt=Δp。

2、动量定理的适用条件①物体受到合外力的作用;②外力是恒定的;③外力作用时间足够短,使物体的速度变化可以不计;④物体的质量不变。

3、动量定理的应用①解决碰撞问题;②解决爆炸问题;③解决推力问题;④解决弹性绳的问题;⑤解决万有引力的问题;⑥解决流体的问题。

四、动量守恒定律1、动量守恒定律:在没有合外力作用的情况下,物体或物体系统的动量不变。

2、动量守恒定律的适用条件①物体或物体系统不受合外力作用;②物体或物体系统内部的相互作用力是保守力;③物体或物体系统内部相互作用力的合力为零。

3、动量守恒定律的应用①解决碰撞问题;②解决爆炸问题;③解决弹性绳的问题;④解决流体的问题。

4、动量守恒定律和动量定理的关系①动量定理是描述物体运动状态变化的定理,而动量守恒定律是描述物体或物体系统运动状态稳定的定律;②动量定理适用于物体受到合外力作用的情况下,而动量守恒定律适用于物体或物体系统不受合外力作用的情况下;③动量定理和动量守恒定律都是描述动量变化的定理,但侧重点不同,动量定理侧重于动量变化量,而动量守恒定律侧重于动量的守恒。

2.动量的变化及其计算方法动量的变化是指物体末态的动量减去初态的动量。

它是一个非常重要的物理量,对应于某一过程(或某一段时间),是矢量。

计算动量变化有两种方法。

一种是ΔP=P₂-P₁,其中P₁和P₂分别是物体在初态和末态时的动量。

这种方法适用于计算物体在一条直线上运动时的动量变化。

另一种方法是利用动量定理ΔP=F·t,其中F是作用在物体上的合外力,t是力作用的时间。

第一章碰撞和动量守恒知识点总结

第一章碰撞和动量守恒知识点总结
动量守恒定律的表述
单击此处添加项标题
单击此处添加项标题
单击此处添加项标题
单击此处添加项标题
动量守恒定律的适用条件
系统不受外力或所受外力的矢量和为零
适用于高速运动和低速运动的惯性参考系,相对论亦适用
系统内力远大于外力,如爆炸、碰撞等短暂过程
动量守恒定律的数学表达形式
动量守恒定律的公式:p=mv,其中p表示动量,m表示质量,v表示速度
碰撞和动量守恒知识点总结
CONTENTS
目录
01.
碰撞的基本概念
02.
动量守恒定律
03.
碰撞过程中的动量守恒
04.
碰撞过程中的能量守恒
05.
碰撞过程中的动量与能量综合应用
06.
碰撞和动量守恒的应用领域
01
弹性碰撞与非弹性碰撞
完全非弹性碰撞:碰撞后两物体粘在一起运动,机械能损失最大
弹性碰撞:碰撞过程中能量守恒,动量守恒,无机械能损失
军事防御:通过研究碰撞和动量守恒原理,提高军事防御设施的抗打击能力和稳定性
感谢您的观看
添加标题
推导:设碰撞过程中,两物体之间的相互作用力为内力,根据牛顿第三定律,作用力和反作用力大小相等,方向相反。因此,内力所做的功为零。
添加标题
结论:由于内力所做的功为零,所以系统动能的变化等于外力所做的功,即ΔEk=ΔEp。
添加标题
碰撞过程中能量守恒的实例
完全非弹性碰撞:两个小球碰撞后停在地面,动能完全损失,但总能量仍然守恒
动量守恒定律适用于封闭系统,即系统内的物体之间相互作用力忽略不计
动量守恒定律在碰撞过程中成立,即碰撞前后的动量守恒
动量守恒定律是自然界的基本规律之一,适用于宏观和微观领域

动量守恒与碰撞

动量守恒与碰撞

动量守恒与碰撞动量守恒定律是物理学中的基本定律之一,它与碰撞过程密切相关。

本文将探讨动量守恒与碰撞之间的关系,并探讨在碰撞中如何应用动量守恒定律。

1. 动量的定义动量是物体的运动量,定义为物体的质量乘以其速度。

即动量(p)等于质量(m)乘以速度(v)。

公式表示为p = mv。

2. 碰撞类型碰撞是指物体发生相互作用的过程。

根据碰撞中物体的相对运动情况,碰撞可以分为两种类型:完全弹性碰撞和非完全弹性碰撞。

2.1 完全弹性碰撞在完全弹性碰撞中,碰撞物体的总动能保持不变。

在这种碰撞中,物体之间相互碰撞之后,能量不会损失,只会转化为势能。

碰撞后物体的速度会发生改变,但总动量在碰撞前后保持不变。

2.2 非完全弹性碰撞在非完全弹性碰撞中,碰撞物体的总动能发生变化。

物体在碰撞过程中会发生形变,能量损失也会发生。

因此,在非完全弹性碰撞中,碰撞后物体的速度以及动量都会发生改变。

3. 动量守恒定律动量守恒定律是指在一个封闭系统内,系统的总动量在碰撞前后保持不变。

无论是完全弹性碰撞还是非完全弹性碰撞,总动量始终保持不变。

根据动量守恒定律,可以用以下公式来描述碰撞过程:m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'其中m₁和m₂分别为两个物体的质量,v₁和v₂为碰撞前物体的速度,v₁'和v₂'为碰撞后物体的速度。

4. 动量守恒定律的应用动量守恒定律在碰撞问题中具有广泛的应用。

通过运用动量守恒定律,可以解决各种碰撞问题,包括弹性碰撞和非完全弹性碰撞。

4.1 弹性碰撞的应用在弹性碰撞中,通过应用动量守恒定律,可以求解碰撞后物体的速度。

根据动量守恒定律的公式,通过已知的物体质量和碰撞前的速度,可以计算出碰撞后物体的速度。

4.2 非完全弹性碰撞的应用在非完全弹性碰撞中,动量守恒定律同样适用。

但由于能量损失的存在,需要额外考虑碰撞中的能量转化和损失。

在求解碰撞后物体速度的问题中,还需要使用能量守恒定律来解决。

动量守恒定律、碰撞、反冲现象知识点归纳总结

动量守恒定律、碰撞、反冲现象知识点归纳总结

动量守恒定律、碰撞、反冲现象知识点归纳总结1、动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。

2、动量守恒定律的条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。

当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。

即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。

(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。

(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。

3、动量守恒定律应用中需注意:(1)矢量性:表达式m1v1+m2v2=中守恒式两边不仅大小相等,且方向相同,等式两边的总动量是系统内所有物体动量的矢量和。

在一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。

(2)系统性:即动量守恒是某系统内各物体的总动量保持不变。

(3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。

(4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物)、4、碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。

按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类。

(1)弹性碰撞碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。

例如:钢球、玻璃球、微观粒子间的碰撞。

(2)一般碰撞碰撞结束后,形变部分消失,碰撞前后系统的总动量相等,动能有部分损失、例如:木制品、橡皮泥球的碰撞。

微专题6:动量守恒的典型模型及应用优秀教案

微专题6:动量守恒的典型模型及应用优秀教案

动量守恒定律的典型模型及其应用旺苍 余仕林几个模型:〔一〕碰撞中动量守恒〔二〕子弹打木块类的问题〔三〕碰撞中弹簧模型〔四〕人船模型:平均动量守恒〔五〕类碰撞中绳模型动量守恒典型模型:〔一〕碰撞模型一.弹性碰撞1.在碰撞过程中物体间只有弹性内力做功,系统机械能守恒,这样的碰撞叫弹性碰撞。

弹性碰撞前后系统动能相等。

2.弹性碰撞应满足: 经解得:m v m v m v m v m v m v m v m v 1122112211222211222212121212////+=++=+⎧⎨⎪⎩⎪3. 特点:⑴碰撞过程无机械能损失。

⑵相互作用前后的总动能相等。

⑶可以得到唯一的解。

1=m 2时, v 1′ = v 2,v 2′ = v 1 〔速度交换〕二、完全非弹性碰撞碰撞后系统以相同的速度运动 v 1=v 2=v动能损失为:例1.如下列图,位于光滑水平桌面上的小滑块P 和Q 都可视作质点,质量分别为m p =2kg ,m Q =6kg 相等。

Q 与轻质弹簧相连。

设Q 静止,P 以初速度v 0=2m/s 向Q 运动并与之弹簧发生碰撞不粘连。

在整个碰撞过程中,〔1〕弹簧形弹性势能最大时的最大弹性势能,此时二者的速度〔2〕P 与Q 别离时,二者速度变式训练1 如下列图,光滑水平面上质量为m 1=2kg 的物块以v 0=2m/s 的初速冲向质量为m 2=6kg 静止的光滑1/4圆弧面斜劈体。

求:〔1〕物块m 1滑到最高点位置时,二者的速度〔2〕 m 1上升的最大高度〔3〕物块m 1从圆弧面滑下后,二者速度〔4〕假设m 1= m 2物块m 1从圆弧面滑下后,二者速度二.子弹打木块的模型:子弹对地在滑动摩擦力作用下匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动。

:子弹和木块组成的系统动量守恒,机械能不守恒。

3.共性特征:一物体在另一物体上,在恒定的阻力作用下相对运动,系统动量守恒,机械能不守恒,Q=ΔE = f 滑d 相对例2.如下列图,质量为M 的木块放在光滑水平面上,质量为m 的子弹以速度v 0沿水平方向射中木块,并最终留在木块中与木块一起以速度v 运动。

高三物理一轮复习第六章碰撞与运量守恒第1讲动量动量定理课件

高三物理一轮复习第六章碰撞与运量守恒第1讲动量动量定理课件
的物块a和b,从同一时刻开始,a自由下落,b沿圆弧下
滑。以下说法正确的是 ( )
A.a比b先到达S,它们在S点的动量不相等 B.a与b同时到达S,它们在S点的动量不相等 C.a比b先到达S,它们在S点的动量相等 D.b比a先到达S,它们在S点的动量相等
【解析】选A。在物体下落的过程中,只有重力对物体 做功,故机械能守恒 故有mgh=1 mv2
2.用动量定理解释现象: (1)Δ p一定时,F的作用时间越短,力就越大;时间越长, 力就越小。 (2)F一定,此时力的作用时间越长,Δ p就越大;力的作 用时间越短,Δ p就越小。 分析问题时,要把哪个量一定,哪个量变化搞清楚。
3.动量定理的两个重要应用: (1)应用I=Δ p求变力的冲量。 如果物体受到大小或方向改变的力的作用,则不能直接 用I=Ft求变力的冲量,可以求出该力作用下物体动量的 变化量Δ p,等效代换为力的冲量I。
【易错辨析】 (1)动量越大的物体,其速度越大。 ( ) (2)物体的动量越大,其惯性也越大。 ( ) (3)物体所受合力不变,则动量也不变。 ( ) (4)物体沿水平面运动时,重力不做功,其冲量为零。
()
(5)物体所受合外力的冲量方向与物体末动量的方向相 同。 ( ) (6)物体所受合外力的冲量方向与物体动量变化的方向 相同。 ( )
【高考命题探究】 【典例1】(2017·合肥模拟)一质量为m的物体放在光 滑的水平面上,今以恒力F沿水平方向推该物体,在相同 的时间间隔内,下列说法正确的是 ( )
世纪金榜导学号42722132 A.物体的位移相等 B.物体动能的变化量相等 C.F对物体做的功相等 D.物体动量的变化量相等
【解析】选D。物体在水平恒力作用下做匀加速直线运 动,在相同的时间间隔内物体的位移逐渐增大,故A错误; 根据动能定理得知,物体动能的变化量逐渐增大,故B错 误;由功的公式W=FL知道,在相同的时间间隔内,F做功 增大,故C错误;根据动量定理得:Ft=Δ P,F、t相等,则 Δ P相等,即物体动量的变化量相等,故D正确。

动量守恒定律、碰撞、反冲现象知识点总结

动量守恒定律、碰撞、反冲现象知识点归纳总结一.知识总结归纳1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。

动量守恒定律的条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。

当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。

即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。

(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。

(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。

2.几种常见表述及表达式;(1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′).(2)Δp=0(系统总动量不变).(3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相等、方向相反).其中(1)的形式最常用,具体到实际应用时又有以下三种常见形式:①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统).②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,两者速率与各自质量成反比).③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完全非弹性碰撞).[3.理解动量守恒定律:矢量性、瞬时性、相对性、普适性.4.应用动量守恒定律解题的步骤:(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.|碰撞现象完全非弹性碰撞动量守恒,机械能损失最大#碰撞前后动量是否共线对心碰撞(正碰)碰撞前后速度共线非对心碰撞(斜碰)碰撞前后速度不共线2.弹性碰撞的规律:两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律.在光滑的水平面上,有质量分别为m1、m2的钢球沿一条直线同向运动,m1、m2的速度分别是v1、v2,(v1、>v2)m1与m2发生弹性正碰。

碰撞和动量守恒知识点总结

第一章碰撞和动量守恒知识点总结知识点1 物体的碰撞1.生活中的各种碰撞现象碰撞的种类有正碰和斜碰两种.(1)正碰:像台球的碰撞中若两个小球碰撞时的速度沿着连心线方向,则称为正碰.(2)斜碰:像台球的碰撞中若两个小球碰撞前的相对速度不在连心线上,则称为斜碰.2.弹性碰撞和非弹性碰撞(1)碰撞分为弹性碰撞和非弹性碰撞两种.①弹性碰撞:若两个物体的碰撞发生在水平面上,碰撞后形变能完全恢复,则没有动能损失,碰撞前后两个物体构成的系统动能相等.②非弹性碰撞:若两个物体的碰撞发生在水平面上,碰撞后形变不能完全恢复或完全不能恢复(黏合),则有动能损失(或损失最大),损失的动能转变为热能,碰撞前后两个物体构成的系统动能不再相等,碰撞后的总动能小于碰撞前的总动能.(2)两种碰撞的区别:弹性碰撞没有能量损失,非弹性碰撞有能量损失.当两个小球的碰撞发生在水平面上时,两小球碰撞前后的重力势能不变,变化的是动能,根据动能是否守恒,把小球的碰撞分为弹性碰撞和非弹性碰撞,如下所示:(3)注意.①非弹性碰撞一定有机械能损失,损失的机械能一般转化为内能.碰撞后的总机械能不可能增加,这一点尤为重要.②系统发生爆炸时,内力对系统内的每一个物体都做正功,故爆炸时,系统的机械能是增加的,这一增加的机械能来源于炸药贮存的化学能.知识点2 动量、冲量和动量定理一、动量1、动量:运动物体的质量和速度的乘积叫做动量.是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量,计算物体此时的动量应取这一时刻的瞬时速度。

是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。

单位是kg·m/s;2、动量和动能的区别和联系①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。

即动量相同而质量不同的物体,其动能不同;动能相同而质量不同的物体其动量不同。

专题06 碰撞与动量守恒 高考物理经典问题妙解通解(解析版)

考点分类:考点分类见下表考点一应用动量定理求解连续作用问题机枪连续发射子弹、水柱持续冲击煤层等都属于连续作用问题.这类问题的特点是:研究对象不是质点(也不是能看成质点的物体),动量定理应用的对象是质点或可以看做质点的物体,所以应设法把子弹、水柱质点化,通常选取一小段时间内射出的子弹或喷出的水柱作为研究对象,对它们进行受力分析,应用动量定理,或者综合牛顿运动定律综合求解.考点二“人船模型”问题的特点和分析1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.人船模型的特点(1)两物体满足动量守恒定律:m1v1-m2v2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x1x2=v1v2=m2m1.(3)应用此关系时要注意一个问题:公式v1、v2和x 一般都是相对地面而言的.考点三 动量守恒中的临界问题1.滑块不滑出小车的临界问题如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.#网2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v 甲大于乙物体的速度v 乙,即v 甲>v 乙,而甲物体与乙物体不相碰的临界条件是v 甲=v 乙. 3.涉及物体与弹簧相互作用的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面体(斜面体放在光滑水平面上)的过程中,由于弹力的作用,斜面体在水平方向将做加速运动.物体滑到斜面体上最高点的临界条件是物体与斜面体沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.考点四 弹簧类的慢碰撞问题慢碰撞问题指的是物体在相互作用的过程中,有弹簧、光滑斜面或光滑曲面等,使得作用不像碰撞那样瞬间完成,并存在明显的中间状态,在研究此类问题时,可以将作用过程分段研究,也可以全过程研究.典例精析★考点一:应用动量定理求解连续作用问题◆典例一:正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】f =13nmv2 【解析】◆典例二:一股水流以10 m/s 的速度从喷嘴竖直向上喷出,喷嘴截面积为0.5 cm2,有一质量为0.32 kg 的球,因受水对其下侧的冲击而停在空中,若水冲击球后速度变为0,则小球停在离喷嘴多高处?【答案】1.8 m【解析】小球能停在空中,说明小球受到的冲力等于重力F =mg ①小球受到的冲力大小等于小球对水的力.取很小一段长为Δl 的小水柱Δm ,其受到重力Δmg 和球对水的力F ,取向下为正方向.学*(F +Δmg)t =0-(-Δmv)②其中小段水柱的重力Δm·g 忽略不计,Δm =ρS·Δl★考点二:“人船模型”问题的特点和分析◆典例一:如图所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人相对地面的位移各为多少?【答案】m m +M L Mm +M L【解析】设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止.因整个过程中动量守恒,所以有mv 1=Mv 2.而整个过程中的平均速度大小为v 1、v 2,则有m v 1=M v 2.两边乘以时间t 有m v 1t =M v 2t ,即mx 1=Mx 2.且x 1+x 2=L ,可求出x 1=M m +M L ,x 2=mm +M L . ◆典例二:如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )A.mh M +mB.Mh M +mC.mh +D.Mh +【答案】C★考点三:动量守恒中的临界问题◆典例一:两质量分别为M1和M2的劈A 和B,高度相同,放在光滑水平面上,A 和B 的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示.一质量为m 的物块位于劈A 的倾斜面上,距水平面的高度为h.物块从静止滑下,然后滑上劈B.求物块在B 上能够达到的最大高度.【答案】h′=1212()()M M M m M m ++h.◆典例二 甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车的质量共为M=30 kg,乙和他的冰车的质量也是30 kg.游戏时,甲推着一个质量为m=15 kg 的箱子和他一起以大小为v0=2.0 m/s 的速度滑行,乙以同样大小的速度迎面滑来,如图所示.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞.【答案】5.2 m/s【解析】法一 取甲开始运动的方向为正方向,设甲推出箱子后的速度为v1,箱子的速度为v,以甲和箱子为系统,则由动量守恒定律得(m+M)v0=Mv1+mv.设乙抓住箱子后其速度为v2,以箱子和乙为系统,则由动量守恒定律得mv-Mv0=(m+M)v2.而甲、乙不相撞的条件是v2≥v1,当甲和乙的速度相等时,甲推箱子的速度最小,此时v1=v2.联立上述三式可得v=222222m mM M m mM+++v0=5.2 m/s.即甲至少要以对地5.2 m/s 的速度将箱子推出,才能避免与乙相撞.法二 若以甲、乙和箱子三者组成的整体为一系统,由于不相撞的条件是甲、乙速度相等,设为v1,则由动量守恒定律得(m+M)v0-Mv0=(m+2M)v1,代入具体数据可得v1=0.4 m/s.再以甲和箱子为一系统,设推出箱子的速度为v,推出箱子前、后系统的动量守恒(m+M)v0=Mv1+mv,代入具体数据得v=5.2 m/s.考点四 弹簧类的慢碰撞问题◆典例一:(2018·四川南充模拟)如图所示,质量为M 的滑块静止在光滑的水平桌面上,滑块的光滑弧面底部与桌面相切,一质量为m 的小球以速度v0向滑块滚来,设小球不能越过滑块,求:(1)小球到达最高点时小球和滑块的速度分别为多少? (2)小球上升的最大高度.【答案】v=0mv M m+,h=202()Mv M m g +1.【2016·全国新课标Ⅰ卷】(10分)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中。

碰撞和动量守恒知识点总结

碰撞和动量守恒知识点总结(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章碰撞和动量守恒知识点总结知识点1 物体的碰撞1.生活中的各种碰撞现象碰撞的种类有正碰和斜碰两种.(1)正碰:像台球的碰撞中若两个小球碰撞时的速度沿着连心线方向,则称为正碰.(2)斜碰:像台球的碰撞中若两个小球碰撞前的相对速度不在连心线上,则称为斜碰.2.弹性碰撞和非弹性碰撞(1)碰撞分为弹性碰撞和非弹性碰撞两种.①弹性碰撞:若两个物体的碰撞发生在水平面上,碰撞后形变能完全恢复,则没有动能损失,碰撞前后两个物体构成的系统动能相等.②非弹性碰撞:若两个物体的碰撞发生在水平面上,碰撞后形变不能完全恢复或完全不能恢复(黏合),则有动能损失(或损失最大),损失的动能转变为热能,碰撞前后两个物体构成的系统动能不再相等,碰撞后的总动能小于碰撞前的总动能.(2)两种碰撞的区别:弹性碰撞没有能量损失,非弹性碰撞有能量损失.当两个小球的碰撞发生在水平面上时,两小球碰撞前后的重力势能不变,变化的是动能,根据动能是否守恒,把小球的碰撞分为弹性碰撞和非弹性碰撞,如下所示:(3)注意.①非弹性碰撞一定有机械能损失,损失的机械能一般转化为内能.碰撞后的总机械能不可能增加,这一点尤为重要.②系统发生爆炸时,内力对系统内的每一个物体都做正功,故爆炸时,系统的机械能是增加的,这一增加的机械能来源于炸药贮存的化学能.知识点2 动量、冲量和动量定理一、动量1、动量:运动物体的质量和速度的乘积叫做动量.是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量,计算物体此时的动量应取这一时刻的瞬时速度。

是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。

单位是kg·m/s;2、动量和动能的区别和联系①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量全章复习资料(专题)一、冲量与动量、动量与动能概念专题●1.冲量I :I =Ft ,有大小有方向(恒力的冲量沿F 的方向),是矢量.两个冲量相同必定是大小相等方向相同,讲冲量必须明确是哪个力的冲量,单位是N ·s .●2.动量p :p =mv ,有大小有方向(沿v 的方向)是矢量,两个动量相同必定是大小相等方向相同,单位是kg ·m/s . ●3.动量与动能(E k =12mv 2)的关系是: p 2=2m E k .动量与动能的最大区别是动量是矢量,动能是标量.【例题】A 、B 两车与水平地面的动摩擦因数相同,则下列哪些说法正确?A .若两车动量相同,质量大的滑行时间长;B .若两车动能相同,质量大的滑行时间长;C .若两车质量相同,动能大的滑行时间长;D .若两车质量相同,动量大的滑行距离长.【分析】根据动量定理F ·t =mv t -mv 0得mg ·t =p ∴t =P mg μ∝1m ——A 不正确;根据 t =221==k k mE E p mg mg g m μμμ∝1m——B 不正确;根据 t =2=k mE p mg mg μμ∝k E ——C 正确;根据动能定理F 合·s cos =2201122-t mv mv 得 mgs =E k =22p m , ∴s =222p m gμ∝p 2——D 正确. 训练题(1)如图5—1所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止自由滑下,到达斜面底端的过程中,两个物体具有的物理量相同的是:A .重力的冲量;B .弹力的冲量;C .合力的冲量;D .刚到达底端时的动量;E .刚到达底端时动量的水平分量;F .以上几个量都不同.θsin h =21g sin ·t 2 t 2∝θ2sin 1 1.F 分析:物体沿斜面作匀加速直线运动,由位移公式,得不同,则t 不同.又I G =mgt I N =N t 所以I G 、I N 方向相同,大小不同,选项A 、B 错误;根据机械能守恒定律,物体到达底端的速度大小相等,但方向不同;所以刚到达底端时的动量大小相等但方向不同,其水平分量方向相同但大小不等,选项D 、E 错误;又根据动量定理I 合=ΔP =mv -0可知合力的冲量大小相等,但方向不同,选项C 错误. (2)对于任何一个固定质量的物体,下面几句陈述中正确的是:A .物体的动量发生变化,其动能必变化;B .物体的动量发生变化,其动能不一定变化;C .物体的动能发生变化,其动量不一定变化;D .物体的动能变化,其动量必有变化.2.BD 分析:动量和动能的关系是P 2=2mE k ,两者最大区别是动量是矢量,动能是标量.质量一定的物体,其动量变化可能速度大小、方向都变化或速度大小不变方向变化或速度大小变化方向不变.只要速度大小不变,动能就不变.反之,动能变化则意味着速度大小变化,意味着动量变化.(8)A 车质量是B 车质量的2倍,两车以相同的初动量在水平面上开始滑行,如果动摩擦因数相同,并以S A 、S B 和t A 、t B 分别表示滑行的最远距离和所用的时间,则A .S A =SB ,t A =t B ; B .S A >S B ,t A >t B ;C .S A <S B ,t A <t B ;D .S A >S B ,t A <t B .8.C 分析:由mv =mgt 知t A =t B /2, 由Fs =21mv 2=m p 22知s A /s B =1/2 二、动量定理专题●1.动量定理表示式:F Δt =Δp .式中:(1)F Δt 指的是合外力的冲量;(2)Δp 指的是动量的增量,不要理解为是动量,它的方向可以跟动量方向相同(同一直线动量增大)也可以跟动量方向相反(同一直线动量减小)甚至可以跟动量成任何角度,但Δp 一定跟合外力冲量I 方向相同;(3)冲量大小描述的是动量变化的多少,不是动量多少,冲量方向描述的是动量变化的方向,不一定与动量的方向相同或相反.●2.牛顿第二定律的另一种表达形式:据F =ma 得F =m 0'-=ΔΔΔv v p t t,即是作用力F 等于物体动量的变化率Δp /Δt ,两者大小相等,方向相同.●3.变力的冲量:不能用Ft 直接求解,如果用动量定理Ft =Δp 来求解,只要知道物体的始末状态,就能求出I ,简捷多了.注意:若F 是变量时,它的冲量不能写成Ft ,而只能用I 表示.●4.曲线运动中物体动量的变化:曲线运动中速度方向往往都不在同一直线上,如用Δp =mv ′-mv 0来求动量的变化量,是矢量运算,比较麻烦,而用动量定理I =Δp 来解,只要知道I ,便可求出Δp ,简捷多了.*【例题1】质量为0.4kg 的小球沿光滑水平面以5m/s 的速度冲向墙壁,又以4m/s 的速度被反向弹回(如图5—2),球跟墙的作用时间为0.05s ,求:(1)小球动量的增量;(2)球受到的平均冲力.【分析】根据动量定理Ft =mv 2-mv 1,由于式中F 、v 1、v 2都是矢量,而现在v 2与v 1反向,如规定v 1的方向为正方向,那么v 1=5m/s ,v 2=-4m/s ,所以:(1)动量的增量 Δp =mv 2-mv 1=0.4×(-4-5)kg ·m/s =-3.6kg ·m/s . 负号表示动量增量与初动量方向相反.(2)F =21 3.60.05--=mv mv t N =-72N .冲力大小为72N ,冲力的方向与初速反向. 【例题2】以速度v 0平抛出一个质量为1lg 的物体,若在抛出3s 后它未与地面及其它物体相碰,求它在3s 内动量的变化.【分析】不要因为求动量的变化,就急于求初、未动量而求其差值,这样不但求动量比较麻烦,而且动量是矢量,求矢量的差也是麻烦的.但平抛出去的物体只受重力,所求动量的变化应等于重力的冲量,重力是恒量,其冲量容易求出.即:Δp =Ft =1×10×3kg ·m/s =30kg ·m/s .总结与提高 若速度方向变而求动量的变化量,则用ΔP =Ft 求;若力是变力而求冲量,则用I =mv t -mv 0求.训练题(2)某质点受外力作用,若作用前后的动量分别为p 、p ′,动量变化为Δp ,速度变化为Δv ,动能变化量为ΔE k ,则:A .p =-p ′是不可能的;B .Δp 垂直于p 是可能的;C .Δp 垂直于Δv 是可能的;D .Δp ≠0,ΔE k =0是可能的.2.BD 提示:对B 选项,ΔP 方向即为合力F 合的方向,P 的方向即为速度v 的方向,在匀速圆周运动中,F 合⊥v (即ΔP ⊥P );对C 选项,ΔP 的方向就是Δv 的方向,∵ ΔP =m Δv ,故C 选项错.(4)在空间某一点以大小相同的速度分别竖直上抛,竖直下抛,水平抛出质量相等的小球,若空气阻力不计,经过t 秒:(设小球均未落地)A .作上抛运动小球动量变化最小;B .作下抛运动小球动量变化最大;C .三小球动量变化大小相等;D .作平抛运动小球动量变化最小.4.C 提示:由动量定理得:mgt =Δp ,当t 相同时,Δp 相等,选项C 对.(8)若风速加倍,作用在建筑物上的风力大约是原来的:A .2倍;B .4倍;C .6倍;D .8倍.8.B 提示:设风以速度v 碰到建筑物,后以速度v 反弹,在t 时间内到达墙的风的质量为m ,由动量定理得: Ft =mv -m (-v )=2m v , 当v 变为2v 时,在相同时间t 内到达墙上的风的质量为2m ,有: F ′t =2m ·2v -2m(-2v )=8m v , ∴ F ′=4F ,故选项B 对.(9)质量为0.5kg 的小球从1.25m 高处自由下落,打到水泥地上又反弹竖直向上升到0.8m 高处时速度减为零.若球与水泥地面接触时间为0.2s ,求小球对水泥地面的平均冲击力.(g 取10m/s ,不计空气阻力)9.解:小球碰地前的速度 v 1=12gh =251102.⨯⨯=5m/s 小球反弹的速度 v 2=22gh =80102.⨯⨯=4m/s 以向上为正方向,由动量定理: (F -mg )t =mv 2-mv 1 ∴ F =0.5×(4+5)/0.2+0.5×10=27.5N 方向向上.四、动量守恒条件专题●1.外力:所研究系统之外的物体对研究系统内物体的作用力.●2.内力:所研究系统内物体间的相互作用力.●3.系统动量守恒条件:系统不受外力或所受外力合力为零(不管物体是否相互作用).系统不受外力或所受外力合力为零,说明合外力的冲量为零,故系统总动量守恒.当系统存在相互作用的内力时,由牛顿第三定律得知相互作用的内力产生的冲量,大小相等方向相反,使得系统内相互作用的物体的动量改变量大小相等方向相反,系统总动量保持不变.也就是说内力只能改变系统内各物体的动量而不能改变整个系统的总动量.训练题(2)如图5—7所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中A.动量守恒、机械能守恒;B.动量不守恒,机械能不守恒;C.动量守恒、机械能不守恒;D.动量不守恒,机械能守恒.2.B 解:过程一:子弹打入木板过程(Δt很小),子弹与木板组成的系统动量守恒,但机械能不守恒(∵子弹在打入木块过程有热能产生);过程二:木块(含子弹)压缩弹簧,对三者组成的系统机械能守恒,但动量不守恒(∵对系统:F合≠0),所以全程动量、机械能均不守恒.(3)光滑水平面上A、B两小车中有一弹簧(如图5—8),用手抓住小车并将弹簧压缩后使小车处于静止状态,将两小车及弹簧看作系统,下面的说法正确的是:A.先放B车后放A车,(手保持不动),则系统的动量不守恒而机械能守恒;B,先放A车,后放B车,则系统的动量守恒而机械能不守恒;C.先放A车,后用手推动B车,则系统的动量不守恒,机械能也不守恒;D.若同时放开两手,则A、B两车的总动量为零.3.ACD 提示:对A选项:先放B车时,A、B车及弹簧三者组成的系统合外力F合≠0,∴动量不守恒,但由于按A车的手不动,故手不做功,此系统机械能守恒.对C选项:F合≠0,且F合又对系统做功(机械能增加),∴动量及机械能均不守恒.五、动量守恒定律各种不同表达式的含义及其应用专题●1.p=p′(系统相互作用前总动量p等于相互作用后总动量p′)●2.Δp=0(系统总动量增量为零).●3.Δp1=-Δp2(相互作用两个物体组成的系统,两物体动量增量大小相等方向相反).●4.m1v1+m2v2=m1v1′+m2v2′(相互作用两个物体组成系统,前动量和等于后动量和)●5.以上各式的运算都属矢量运算,高中阶段只限于讨论一维情况(物体相互作用前、后的速度方向都在同一直线上),可用正、负表示方向.处理时首先规定一个正方向,和规定正方向相同的为正,反之为负,这样就转化为代数运算式,但所有的动量都必须相对于同一参照系.【例题】质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰遇上质量m2=50g的小球以v2=10cm/s的速率向左运动,碰撞后,小球m2恰好停止,那么碰撞后小球m1的速度是多大?方向如何?【分析与解答】设v1的方向即向右为正方向,则各速度的正负号为:v1=30cm/s,v2=-10cm/s,v2′=0,据m1v1′+m2v2′=m1v1+m2v2有10v1′=10×30+50×(-10).解得v1′=-20(cm/s),负号表示碰撞后,m1的方向与v1的方向相反,即向左.总结提高解此类题一定要规定正方向.正确找出初末态动量.训练题(3)一只小船静止在湖面上,一个人从小船的一端走到另一端(不计水的阻力),以下说法中正确的是:A.人在小船上行走,人对船作用的冲量比船对人作用的冲量小,所以人向前运动得快,船后退得慢;B.人在船上行走时,人的质量比船小,它们所受冲量的大小是相等的,所以人向前运动得快,船后退得慢;C .当人停止走动时,因船的惯性大,所以船将会继续后退;D .当人停止走动时,因总动量任何时刻都守恒,所以船也停止后退.3.BD 分析:对A :人对船的作用力和船对人的作用力等大反向,作用时间相等,所以两冲量大小相等;选项A 错.对C :人在船上走的过程,对人和船构成的系统,总动量守恒,所以人停则船停;选项C 错.(6)一辆总质量为M 的列车,在平直轨道上以速度v 匀速行驶,突然后一节质量为m 的车厢脱钩,假设列车受到的阻力与质量成正比,牵引力不变,则当后一节车厢刚好静止的瞬间,前面列车的速度为多大?6.解:列车在平直轨道匀速行驶,说明列车受到合外力为零.后一节车厢脱钩后,系统所受合外力仍然为零,系统动量守恒.根据动量守恒定律有:Mv =(M -m )v ′ v ′=Mv /(M -m )六、平均动量守恒专题若系统在全过程中动量守恒(包括单方向动量守恒),则这一系统在全过程中的平均动量也必定守恒.如果系统是由两个物体组成,且相互作用前均静止、相互作用后均发生运动,则由0=m 11v -m 22v 得推论:m 1s 1=m 2s 2,使用时应明确s 1、s 2必须是相对同一参照物位移的大小.【例题】一个质量为M ,底面长为b 的三角形劈静止于光滑的水平桌面上,(如图5—16所示)有一质量为m 的小球由斜面顶部无初速滑到底部时,劈移动的距离为多少?【分析和解答】劈和小球组成的系统在整个运动过程中都不受水平方向外力.所以系统在水平方向平均动量守恒.劈和小球在整个过程中发生的水平位移如图5—15所示,由图见劈的位移为s ,小球的水平位移为(b -s ).则由m 1s 1=m 2s 2得:Ms =m (b -s ),∴s =mb /(M +m )总结提高 用m 1s 1=m 2s 2来解题,关键是判明动量是否守恒、初速是否为零(若初速不为零,则此式不成立),其次是画出各物体的对地位移草图,找出各长度间的关系式.训练题(2)静止在水面的船长为l ,质量为M ,一个质量为m 的人站在船头,当此人由船头走到船尾时,不计水的阻力,船移动的距离为多少?2.解:如图,设船移动的距离为s 船,人移动的距离为s 人. Ms 船=ms 人 s 人+s 船=l 解得s 船=ml /(M +m )(4)气球质量为200kg ,载有质量为50kg 的人,静止在空中距地面20m 的地方,气球下悬一根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至安全到达地面,则这根绳长至少为多长?4、解:如图,设气球产生的位移为s 球,气球产生的位移为s 人,m 人s 人=m 球s 球50×20=200×s 球s 球=5m所以绳长至少为:l =s 人+s 球=20+5=25m七、多个物体组成的系统动量守恒专题有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量守恒即可,要善于选择系统、善于选择过程来研究.【例题】两只小船平行逆向航行,航线邻近,当它们头尾相齐时,由每一只船上各投质量m =50kg 的麻袋到对面一只船上去,结果载重较小的一只船停了下来,另一只船则以v =8.5m/s 的速度向原方向航行,设两只船及船上的载重量各为m 1=500kg 及m 2=1000kg ,问在交换麻袋前两只船的速率为多少?(水的阻力不计).【分析】选取小船和从大船投过的麻袋为系统,如图5—18,并以小船的速度为正方向,根据动量守恒定律有:(m1-m)v1-mv2=0,即450v1-50v2=0……(1).选取大船和从小船投过的麻袋为系统有:-(-m2-m)v2+mv1=-m2v,即-950v2+50v1=-1000×8.5……(2).选取四个物体为系统有:m1v1-m2v2=-m2v,即500v1-1000v2=-1000×8.5……(3).联立(1)(2)(3)式中的任意两式解得:v1=1(m/s),v2=9(m/s).训练题(1)质量m=100kg的小船静止在静水面上,船两端载着m甲=40kg,m乙=60kg的游泳者,在同一水平线上甲朝左乙朝右同时以相对于岸3m/s的速度跃入水中,如图5—19所示,则小船的运动方向和速率为:A.向左,小于1m/s;B.向左,大于1m/s;C.向右,大于1m/s;D.向右,小于1m/s.1.A 解:对甲、乙两人及船构成的系统总动量守恒,取向右为正方向,则根据动量守恒定律得0=m甲v甲+m乙v乙+mv,0=40×(-3)+60×3+100×v, v=-0.6m/s 负号表示方向向左(3)A、B两船的质量均为M,都静止在平静的湖面上,现A船中质量为M/2的人,以对地的水平速率v从A船跳到B船,再从B船跳到A船……经n次跳跃后,人停在B船上;不计水的阻力,则:A.A、B两船速度大小之比为2∶3;B.A、B(包括人)两动量大小之比1∶1;C.A、B(包括人)两船的动能之比3∶2;D.以上答案都不对.3.BC 分析:不管人跳几次,只关心初状态:人在A船上,系统(包括A、B船和人)总动量为零;末状态人在B船上.整过程动量守恒,根据动量守恒定律得 0=Mv1+(M+M/2)v B v A/v B=3/2(4)小车放在光滑地面上,A、B两人站在车的两头,A在车的左端,B在车的右端,这两人同时开始相向行走,发现小车向左运动,分析小车运动的原因,可能是:(如图5—20所示)A.A、B质量相等,A比B的速率大;B.A、B质量相等,A比B的速率小;C.A、B速率相等,A比B的质量大;D.A、B速率相等,A比B的质量小.4.AC 分析:对A、B两人及车构成的系统动量守恒,取向左为正方向.m B v B-m A v A+m车v车=0,m A v A=m B v B+m车v车 ,所以m A v A>m B v B(7)如图5—21,在光滑水平面上有两个并排放置的木块A和B,已知m A=500g,m B=300g,一质量为80g的小铜块C以25m/s的水平初速开始,在A表面滑动,由于C与A、B间有摩擦,铜块C最后停在B上,B和C一起以2.5m/s的速度共同前进,求:①木块A的最后速度v A′;②C在离开A时速度v′c.7.解:①因为水平面光滑、C在A、B面上滑动的整个过程,A、B、C系统总动量守恒.木块C离开A滑上B时,木块A的速度为最后速度,则m C v C=M A v A+(m B+m C)v′BC, 代入数据可得v′A=2.1m/s, ②对C在A上滑动的过程,A、B、C系统总动量守恒,A、B 速度相等.则m C v C=(m A+m B)v′A+m C v′C 代入数据可得v′C=4m/s九、用动量守恒定律进行动态分析专题【例题】甲、乙两个小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg,游戏时,甲推着一质量为m=15kg的箱子,和他一起以大小为v0=2m/s的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求:甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞.【分析和解答】甲把箱子推出后,甲的运动有三种可能,一是继续向前,方向不变;一是静止;一是倒退,方向改变.按题意,要求甲推箱子给乙避免与乙相撞的最起码速度,是上述的第一种情况,即要求推箱子后,动量的变化不是很大,达到避免相撞的条件便可以,所以对甲和箱的系统由动量守恒定律可得:(取v 0方向为正方向) (M +m )v 0=mv +Mv 1即(30+15)×2=15v +30v 1……(1) v 为箱子相对地速度,v 1为甲相对地速度. 乙抓住箱子后,避免与甲相遇,则乙必须倒退,与甲运动方向相同,对乙和箱的系统得: mv -Mv 0=(M +m )v 2即15v -30×2=(30+15)v 2……(2) v 2为乙抓住箱子后,一起相对地的后退速度. 甲、乙两冰车避免相撞的条件是:v 2≥v 1;当甲、乙同步前进时,甲推箱子的速度为最小. v 2=v 1……(3) 联立(1)(2)(3)式代入数据解得:v =5.2m/s训练题(1)如图5—26所示,水平面上A 、B 两物体间用线系住,将一根弹簧挤紧,A 、B 两物体质量之比为2∶1,它们与水平面间的动摩擦因数之比为1∶2.现将线烧断,A 、B 物体从静止被弹开,则:A .弹簧在弹开过程中(到停止之前),A 、B 两物体速度大小之比总是1∶2;B .弹簧刚恢复原长时,两物体速度达最大;C .两物体速度同时达到最大;D .两物体同时停止运动.分析:由于A 、B 受水平地面的摩擦力等大反向,整个过程系统动量守恒,则 0=m A v A -m B v B v A /v B =m B /m A =1/2选项A 、C 、D 正确.当A 或B 受合外力等于零,加速度为零时,速度达到最大,此时弹簧尚未恢复原长,选项B 错误.(2)如图5—27所示,光滑水平面有质量相等的A 、B 两物体,B 上装有一轻质弹簧,B 原来处于静止状态,A 以速度v 正对B 滑行,当弹簧压缩到最短时:A .A 的速度减小到零;B .是A 和B 以相同的速度运动时刻;C .是B 开始运动时;D .是B 达到最大速度时.2.B 分析:当A 碰上弹簧后,A 受弹簧推力作用而减速,B 受弹簧推力作用而加速;当两者速度相等时,A 、B 之间无相对运动,弹簧被压缩到最短.然后A 受弹簧推力作用继续减速,B 受弹簧推力作用继续加速,当弹簧恢复原长时,A 减速至零,B 加速至最大.或用动量守恒定律分析,m A v +0=m A v ′A +m B v ′B v ′A 减小,v ′B 增大;当v ′A 减至零时,v ′B 增加至最大为v .(5)如图5—29所示,甲车质量m 1=20kg ,车上有质量M =50kg 的人.甲车(连人)从足够长的光滑斜坡上高h =0.45m 由静止开始向下运动,到达光滑水平面上,恰遇m 2=50kg 的乙车以速度v 0=1.8m/s 迎面驶来.为避免两车相撞,甲车上的人以水平速度v ′(相对于地面)跳到乙车上,求v ′的可取值的范围.(g 取10m/s 2)5.解:甲车滑到水平面时速度为 v 甲=gh 2=450102.⨯⨯=3(m/s)向右;取向右为正方向,设人从甲车跳到乙车后,甲、乙的速度为v ′甲,v ′乙(均向右), 当v ′甲=v ′乙时,两车不相碰,由动量守恒定律, 对人和甲车有:(20+50)v 甲=20v ′甲+50v ′,对人和乙车有:50v ′-50v 0=(50+50)v ′乙 解得 v ′=3.8m/s当v ″甲=-v ″乙 时两车不相碰,同理有: (20+50)v 甲=50v ″+20v ″甲 50v ″-50v 0=(50+50)v ″乙 解得v ″=4.8m/s , 故v ′的范围:3.8m/s ≤v ′≤4.8m/s(6)如图5—30所示,一个质量为m 的玩具蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上,若车长为l ,细杆高为h ,且位于小车的中点,试求:当玩具蛙最小以多大的水平速度v 跳出时,才能落到桌面上?(要求写出必要文字,方程式及结果)6.解:取向右为正方向,系统m ,M 动量守恒:0=mv -MV ,蛙在空中运动时间:t =h g /2蛙在t 内相对车的水平距离:l /2=(v +V )t , 解得:v =hg m M Ml 2)(2+. 十、爆炸、碰撞和反冲专题●1.碰撞过程是指:作用时间很短,作用力大.碰撞过程两物体产生的位移可忽略.●2.爆炸、碰撞和反冲动量近似守恒:有时尽管合外力不为零,但是内力都远大于外力,且作用时间又非常短,所以合外力产生的冲量跟内力产生冲量比较都可忽略,总动量近似守恒.●3.三种碰撞的特点:(1)弹性碰撞——碰撞结束后,形变全部消失,末态动能没有损失.所以,不仅动量守恒,而且初、末动能相等,即 m 1v 1+m 2v 2=m 1v '1+m 2v '2 22221122112211112222''+=+m v m v m v m v (2)一般碰撞——碰撞结束后,形变部分消失,动能有部分损失.所以,动量守恒,而初、末动能不相等,即 m 1v 1+m 2v 2=m 1v '1+m 2v '222221122112211112222''+=+m v m v m v m v +ΔE K 减 (3)完全非弹性碰撞——碰撞结束后,两物体合二为一,以同一速度运动;形变完全保留,动能损失最大.所以,动量守恒,而初、末动能不相等,即m 1v 1+m 2v 2=(m 1+m 2)v 222112212111()222+=m v m v m +m v +ΔE k max ●4.“一动一静”弹性正碰的基本规律如图5—32所示,一个动量为m 1v 1的小球,与一个静止的质量为m 2的小球发生弹性正碰,这种最典型的碰撞,具有一系列应用广泛的重要规律(1)动量守恒,初、末动能相等,即(2)根据①②式,碰撞结束时,主动球(m 1)与被动球(m 2)的速度分别为(3)判定碰撞后的速度方向当m 1>m 2时;v ′1>0,v ′2>0——两球均沿初速v 1方向运动.当m 1=m 2时;v ′1=0,v ′2=v 1——两球交换速度,主动球停下,被动球以v 1开始运动.当m 1<m 2时;v ′1<0,v ′2>0——主动球反弹,被动球沿v 1方向运动.●5.“一动一静”完全非弹性碰撞的基本计算关系如图5—33所示,在光滑水平面上,有一块静止的质量为M 的木块,一颗初动量为mv 0的子弹,水平射入木块,并深入木块d ,且冲击过程中阻力f 恒定.(1)碰撞后共同速度(v )根据动量守恒,共同速度为v =0mv m+M ……① (2)木块的冲击位移(s) 设平均阻力为f ,分别以子弹,木块为研究对象,根据动能定理,有 fs =12Mv 2………②,f (s +d )=12m 20v -12mv 2……③ 由①、②和③式可得 s =+m m M d <d 在物体可视为质点时:d =0,s =0——这就是两质点碰撞瞬时,它们的位置变化不计的原因 (3)冲击时间(t )以子弹为研究对象,根据子弹相对木块作末速为零的匀减速直线运动,相对位移d =12v 0t ,所以冲击时间为 t =02d v (4)产生的热能Q在认为损失的动能全部转化为热能的条件下 Q =ΔE K =f ·s 相=fd =12m 20v ()+M M m 【例题1】质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7kg ·m/s ,B 球的动量是5kg ·m/s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量可能值是:A .p A =6kg ·m/s ,pB =6kg ·m/s ; B .p A =3kg ·m/s ,p B =9kg ·m/s ;C .p A =-2kg ·m/s ,p B =14kg ·m/s ;D .p A =-4kg ·m/s ,p B =17kg ·m/s .【分析】从碰撞前后动量守恒p 1+p 2=p 1′+p 2′验证,A 、B 、C 三种情况皆有可能,从总动能只有守恒或减少:221222+p p m m ≥221222''+p p m m来看,答案只有A 可能. 【例题2】锤的质量是m 1,桩的质量为m 2,锤打桩的速率为一定值.为了使锤每一次打击后桩更多地进入土地,我们要求m 1m 2.假设锤打到桩上后,锤不反弹,试用力学规律分析说明为什么打桩时要求m 1m 2.【分析】两个阶段,第一阶段锤与桩发生完全非弹性碰撞,即碰后二者具有相同的速度,第二阶段二者一起克服泥土的阻力而做功,桩向下前进一段.我们希望第一阶段中的机械能损失尽可能小,以便使锤的动能中的绝大部分都用来克服阻力做功,从而提高打桩的效率.设锤每次打桩时的速度都是v ,发生完全非弹性碰撞后的共同速度是v ′. 则 m 1v =(m 1+m 2)v ′.非弹性碰撞后二者的动能为 E k =12(m 1+m 2)v ′2=211212+m m m v 2.当m 1m 2时,E K ≈12m 1v 2,即当m 1m 2时碰撞过程中系统的机械能损失很小.训练题(1)甲、乙两个小球在同一光滑水平轨道上,质量分别是m 甲和m 乙.甲球以一定的初动能E k 0向右运动,乙球原来静止.某时刻两个球发生完全非弹性碰撞(即碰撞后两球粘合在一定),下面说法中正确的是:A .m 甲与m 乙的比值越大,甲球和乙球组成的系统机械能的减少量就越小;B .m 甲与m 乙的比值越小,甲球和乙球组成的系统机械能的减少量就越小;C .m 甲与m 乙的值相等,甲球和乙球组成的系统机械能的减少量最小;D .m 甲与m 乙的值相等,甲球和乙球组成的系统机械能的减少量最大.1.A 提示:由动量守恒有:mv 0=(M +m )v ,由能量守恒有:ΔE =21mv 02-21(M +m )v 2,,ΔE =21mv 02m M M +=21mv 02·M m +11,∴ 越大,ΔE 越小,故选项A 对.(2)半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动.若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是:A .甲球的速度为零而乙球的速度不为零;B .乙球的速度为零而甲球的速度不为零;C .两球的速度均不为零;D .两球的速度方向均与原方向相反,两球的动能不变.2.提示:不知道是哪一种碰撞. ∵ m 甲>m 乙,E k 相同,∴ 由P 2=2mE k 知P 甲>P 乙,故系统总动量的方向与甲的初速相同. 对A 选项,当球反弹时可保证P 总与A 球的初速相同,∴ 可能出现; 对B 选项,∵ P 甲>P 乙,∴ 碰后乙球不可能静止;对C 选项,可保证动量守恒和能量守恒成立; 对D 选项,碰后系统总动量的方向与碰前总动量方向相反,违反了动量守恒定律.(3)质量为1kg 的小球以4m/s 的速度与质量为2kg 的静止小球正碰.关于碰后的速度v 1′与v 2′,下面哪些是可能的:A .v 1′=v 2′=4/3m/s ;B .v 1′=-1m/s ,v 2′=2.5m/s ;C .v 1′=1m/s ,v 2′=3m/s ;D .v 1′=-4m/s ,v 2′=4m/s .3.提示:必须同时满足:m 1v 1=m 1v ′+m 2v ′2和21m 1v 12≥21m 1v ′21+21m 2v ′22这两个条件.∴ 选项A 、B 正确. (5)在质量为M 的小车中挂有一单摆,摆球的质量为m 0.小车(和单摆)以恒定的速度v 沿光滑水平地面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的?A .小车、木块、摆球的速度都发生变化,分别变为v 1、v 2、v 3,满足(M +m 0)v =Mv 1+mv 2+mv 3;B .摆球的速度不变,小车和木块的速度变为v 1和v 2,满足Mv =Mv 1+mv 2;C .摆球的速度不变,小车和木块的速度都变为v ′,满足 Mv =(M +m )v ′;D .小车和摆球的速度都变为v 1,木块的速度变为v 2,满足(M +m 0)v =(M +m 0)v 1+mv 2.5.BC 提示:摆球并不参预小车碰木块的过程,因此小车和木块组成的系统动量守恒,摆球速度不变.(9)如图5—38所示,质量为m 的子弹以速度v 从正下方向上击穿一个质量为M 的木球,击穿后木球上升高度为H ,求击穿木球后子弹能上升多高?9.解:子弹击穿木块的过程系统动量守恒,设子弹击穿木块后速度为v 1,则。

相关文档
最新文档