不锈钢焊接工艺
不锈钢无缝焊接工艺

不锈钢无缝焊接工艺不锈钢无缝焊接是一种高要求的焊接工艺,其目的是在不锈钢材料上实现无缝隙的连接。
在焊接过程中,需要注意表面处理、定位、打底焊、填充焊、表面焊、焊接完成、热处理和无损检测等环节。
1.表面处理在进行不锈钢无缝焊接前,首先需要对焊接区域进行表面处理。
表面处理主要包括清洗、打磨和干燥三个步骤。
清洗是为了去除表面的油污、锈迹等杂质,以保证焊接质量;打磨则是为了去除不锈钢表面的氧化膜,以提高焊接的牢固度;干燥则是为了确保焊接区域的干燥,以避免气孔、裂纹等缺陷的产生。
2.定位在表面处理完成后,需要进行定位操作。
定位的目的是为了确定焊接位置,以确保焊接过程的位置精度。
首先需要在焊接位置绘制草图,明确各部分的相对位置;然后用记号笔或标签纸对需要焊接的位置进行标记,以便在焊接过程中进行识别。
3.打底焊打底焊是整个焊接过程中关键的一步。
在焊接过程中,需要选择合适的电流、电压和焊接速度,以保证打底焊的质量。
同时,还需要注意焊条的角度和运条方法,以避免气孔、夹渣等缺陷的产生。
打底焊的质量直接影响到整个焊接过程的牢固度和精度,因此需要严格控制。
4.填充焊填充焊是在打底焊完成后进行的焊接工艺。
在填充焊过程中,需要控制好电流、电压和焊接速度,同时注意焊条的角度和运条方法。
填充焊的主要目的是为了填充打底焊留下的空隙,使整个焊接部位更加牢固。
5.表面焊表面焊是在填充焊完成后进行的焊接工艺。
在表面焊过程中,需要控制好电流、电压和焊接速度,同时注意焊条的角度和运条方法。
表面焊的主要目的是为了修整焊接表面的形状和尺寸,使整个焊接部位更加平滑、美观。
6.焊接完成当表面焊完成后,整个焊接过程就结束了。
此时,需要对焊接部位进行外观检查,以确保没有气孔、夹渣、裂纹等缺陷的产生。
同时,还需要进行无损检测,以确保焊接部位的内部质量和精度。
常用的无损检测方法有超声波检测、射线检测和磁粉检测等。
7.热处理在焊接完成后,通常需要对焊接部位进行热处理,以消除焊接应力和提高材料的韧性。
不锈钢管内的焊接工艺

不锈钢管内的焊接工艺
不锈钢管的焊接工艺包括以下几种:
1. TIG(氩弧焊)焊接:TIG焊接是一种常用的不锈钢管焊接工艺。
该工艺适用于焊接不锈钢管的各种材质和厚度,焊接接头质量较高,焊缝较美观。
2. MIG(气体保护焊)焊接:MIG焊接也是常用的不锈钢管焊接工艺,适用于焊接薄壁不锈钢管。
该工艺对操作技术要求较低,焊接速度较快,但焊缝质量较TIG焊接稍差。
3. 手工电弧焊接:手工电弧焊接适用于焊接较大口径的不锈钢管。
焊工通过手持电弧焊接枪进行焊接,操作较为灵活,但焊接质量和焊缝美观度相对较低。
4. 焊接之前的预处理:在进行不锈钢管焊接之前,还需要进行一系列的预处理工作。
包括清洁管道表面,去除氧化层、油污和尘埃等杂质,确保焊接接头的质量。
需要根据具体情况选择合适的焊接工艺,以保证不锈钢管焊接接头的质量和使用性能。
对于特殊工况下的不锈钢管焊接,可能还需要采取其他特殊的焊接工艺和方法。
不锈钢板材焊接工艺

不锈钢板材的焊接工艺可以根据具体应用需求和材料类型选择不同的方法。
以下是几种常见的不锈钢板材焊接工艺:
1. 电弧焊接:电弧焊是最常用的焊接方法之一。
常见的电弧焊方法包括手工电弧焊和氩弧焊。
手工电弧焊适用于简单的焊接任务,而氩弧焊通常用于高质量要求的焊接,其中使用惰性气体(如氩气)来保护熔化金属,防止与大气中的氧气和其他杂质发生反应。
2. 激光焊接:激光焊接是一种高效、精确的焊接方法,适用于较薄的不锈钢板材。
激光焊接使用激光束来加热和融化焊接接头,形成坚固的焊缝。
3. TIG焊接:TIG(Tungsten Inert Gas)焊接也是一种常用的焊接方法,适用于各种不锈钢板材的焊接。
TIG焊接使用非消耗性钨电极和惰性气体(如氩气)提供保护,产生高质量的焊接接头。
4. MIG/MAG焊接:MIG(Metal Inert Gas)和MAG(Metal Active Gas)焊接是在常规气体(MIG)或复合气体(MAG)保护下进行的焊接方法。
这种焊接方法速度快,适合大批量生产和自动化焊接任务。
在选择焊接方法时,需要考虑不锈钢板材的厚度、合金成分、应用环境和质量要求等因素。
此外,操作人员需要具备相关焊接技能和经验,以确保焊接过程的质量和安全。
建议在进行不锈钢板材焊接前,咨询专业的焊接工程师或相关专业机构,以获取更详细和准确的建议。
不锈钢罐体焊接工艺

不锈钢罐体焊接工艺
不锈钢罐体焊接工艺通常包括以下几个步骤:1. 准备工作:清理焊接部位,去除表面的污物和氧化物,以确保焊接质量。
2. 坡口加工:根据不锈钢罐体的结构设计要求,进行坡口加工,通常采用割切、刨削等方法进行。
3. 定位和固定:将不锈钢罐体的各个部件进行定位,并采用夹具或其他固定方式,使其保持稳定。
4. 焊接:实际焊接过程中,根据不锈钢罐体的材质和焊接要求,选择合适的焊接方法,如TIG焊、MIG/MAG焊等,进行焊接作业。
5. 焊缝处理:焊接完成后,对焊缝进行磨削、抛光或其他处理方法,以提高焊接质量和外观。
6. 清洗和涂装:对焊接完成的不锈钢罐体进行清洗,去除焊接过程中产生的氧化物和污物,然后进行表面涂装,增加其防腐性能。
需要注意的是,不锈钢罐体焊接工艺需要根据具体情况进行调整,包括焊接参数、焊接顺序、焊接材料等,以确保焊接质量和结构的稳定性。
同时,焊接过程中还要注意焊接环境的清洁、焊接设备的使用和维护等方面的要求,以确保焊接质量达到预期目标。
不锈钢扩散焊接工艺

不锈钢扩散焊接工艺不锈钢扩散焊接工艺是一种高效的不锈钢连接方法,其利用高温条件下不锈钢表面的氧化反应进行焊接。
该工艺具有低成本、高接头质量、环保等优点,被广泛应用于不锈钢制造行业。
下面将详细介绍不锈钢扩散焊接工艺的原理、工艺流程和实施要点。
1. 原理不锈钢扩散焊接是一种利用高温条件下对不锈钢表面进行反应的焊接方法。
不锈钢扩散焊接的原理是利用氮、氧、碳等元素在高温条件下与不锈钢表面反应,形成一种含氮、含氧、含碳等元素的薄层,使不锈钢材料表面具有良好的焊接性能。
在扩散焊接工艺过程中,可使用特殊的焊接设备,将工件加热到适当的温度,使其表面氧化,然后进行压合,使氧化物被压实形成焊缝。
2. 工艺流程不锈钢扩散焊接的工艺流程主要包括选择材料、准备工件、预热、焊接、热处理、修磨等环节。
具体的工艺流程如下:(1)选择材料:要选择与所要焊接材料相似的、高品质的、具有良好机械性能的初始材料。
初始材料的质量直接关系到焊接后的接头质量和使用寿命。
(2)准备工件:将工件表面清洗干净,排除杂质和粉尘,以免影响焊接效果。
然后将工件按要求放在热交换板上。
(3)预热:将工件放在预热炉里,热处理时间根据不同的材料和焊接要求而定,一般在800-1000℃左右预热。
预热使得工件表面的氧化层软化,并加速氧化反应。
(4)焊接:将加热后的工件取出,然后将待焊接部位压紧,形成合适的接触面积。
然后再找到合适的热交换板,用力按压,使工件表面形成一层薄质的氮氧化物层。
接下来,进行焊接,并在符合要求的时间范围内完成。
(5)热处理:在完成焊接后,需要进行一定时间的热处理,以降低内部应力,并使接头连结更加牢固。
(6)修磨:在热处理结束后,删除焊接部位的氧化层、镀层、氧化产物等,并对接头进行磨削、抛光,使接头表面达到平整、光滑的要求。
3. 实施要点(1)选择合适的材料是扩散焊接的前提,必须对所采用的材料有深入的理解与熟悉。
(2)预热温度要根据材料和复杂工件结构来调整,热处理时间及温度应符合材料的要求,以保证焊接质量。
完整版)史上最全的不锈钢焊接工艺

完整版)史上最全的不锈钢焊接工艺不锈钢焊接工艺是一种重要的金属加工技术,广泛应用于各种工业领域。
本文将介绍一些常见的不锈钢焊接工艺。
TIG焊接是一种常见的不锈钢焊接工艺。
该工艺使用惰性气体保护焊接区域,可保证焊接接头的质量。
此外,TIG焊接还具有焊接速度快、焊缝美观等优点。
MIG焊接是另一种常用的不锈钢焊接工艺。
该工艺使用惰性气体或混合气体保护焊接区域,可保证焊接接头的质量。
此外,MIG焊接还具有焊接速度快、焊缝美观等优点。
钨极氩弧焊是一种高质量的不锈钢焊接工艺。
该工艺使用钨极和惰性气体保护焊接区域,可保证焊接接头的质量。
此外,钨极氩弧焊还具有焊接速度快、焊缝美观等优点。
除了上述常见的不锈钢焊接工艺外,还有一些其他的工艺,如等离子焊接、激光焊接等。
这些工艺也具有各自的优点和适用范围。
总之,不锈钢焊接工艺是一项重要的金属加工技术,应用广泛。
选择合适的焊接工艺可以保证焊接接头的质量,提高生产效率。
不锈钢焊管是通过焊管成型机将不锈钢板经过若干道模具碾压成型并经过焊接而成。
由于不锈钢的强度较高,且其结构为面心立方晶格,易形成加工硬化,使焊管成型时,模具容易磨损,不锈钢板料易与模具表面形成粘结(咬合),使焊管及模具表面形成拉伤。
因此,好的不锈钢成型模具必须具备极高的耐磨和抗粘结(咬合)性能。
进口焊管模具的表面处理采用超硬金属碳化物或氮化物覆层处理。
激光焊接、高频焊接和传统的熔化焊接相比具有焊接速度快、能量密度高、热输入小的特点。
因此,热影响区窄,晶粒长大程度小,焊接变形小,冷加工成形性能好,容易实现自动化焊接、厚板单道一次焊透,其中最重要的特点是Ⅰ形坡口对接焊不需要填充材料。
金属焊接方法有40种以上,主要分为熔焊、压焊和钎焊三大类。
熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。
熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。
在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素,大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。
(完整版)史上最全的不锈钢焊接工艺

史上最全的不锈钢焊接工艺不锈钢焊接工艺技术要点不锈钢焊管是在焊管成型机上,由不锈钢板经若干道模具碾压成型并经焊接而成。
由于不锈钢的强度较高,且其结构为面心立方晶格,易形成加工硬化,使焊管成型时:一方面模具要承受较大的摩擦力,使模具容易磨损;另一方面,不锈钢板料易与模具表面形成粘结(咬合),使焊管及模具表面形成拉伤。
因此,好的不锈钢成型模具必须具备极高的耐磨和抗粘结(咬合)性能。
我们对进口焊管模具的分析表明,该类模具的表面处理都是采用超硬金属碳化物或氮化物覆层处理。
激光焊接、高频焊接与传统的熔化焊接相比具有焊接速度快、能量密度高、热输入小的特点,因此热影响区窄、晶粒长大程度小、焊接变形小、冷加工成形性能好,容易实现自动化焊接、厚板单道一次焊透,其中最重要的特点是Ⅰ形坡口对接焊不需要填充材料。
焊接技术主要应用在金属母材上,常用的有电弧焊,氩弧焊,CO2保护焊,氧气-乙炔焊,激光焊接,电渣压力焊等多种,塑料等非金属材料亦可进行焊接。
金属焊接方法有40种以上,主要分为熔焊、压焊和钎焊三大类。
熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。
熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。
熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。
在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。
大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。
压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。
常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。
各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。
多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。
不锈钢410 焊接工艺

不锈钢410 焊接工艺
不锈钢410的焊接工艺主要包括以下步骤:
1. 预热:在150°C至260°C的温度范围内进行预热,以防止在焊接过程中出现裂纹和变形等问题。
2. 坡口准备:在焊接前,需要将焊接区域两侧各50mm范围内的油污和锈蚀清理干净,并刨成合适的坡口。
3. 装配:以复层SUS410S钢板为基准进行装配,错边量应小于0.5mm。
定位焊应在基层上进行,所用焊接材料应与正式施焊用的焊接材料相同。
4. 焊接:先进行基层的焊接,然后进行盖面焊。
基层焊接完成后,应进行X射线探伤,合格后才能进行过渡层和复层的焊接。
在过渡层和复层的焊接前,应修磨基层焊缝表面,使其与平台基本平齐。
5. 焊接顺序:先进行复层侧的基层焊缝焊接,再进行盖面焊。
基层焊接时,应使用直径3.2mm的J507(E5515型)焊条进行封底焊,然后用直径4mm的焊条进行盖面焊。
盖面焊的表面应略高于坡口平台。
6. 埋弧焊和气体保护焊:在进行过渡层和复层焊接时,应使用直径1.2mm的FCWE309T 药芯焊丝气体保护焊进行施焊。
7. 焊接后处理:焊接完成后,应进行热处理以消除应力,并保证材料具有良好的力学性能和耐腐蚀性能。
需要注意的是,不锈钢410的焊接工艺需要根据具体的工况条件和材料要求进行调整。
同时,为了确保焊接质量和安全性,操作人员应具备相应的技能和经验,并严格遵守工艺要求和安全操作规程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1•目的为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。
2.编制依据2丄设讣图纸2.2.《手工钩极氮弧焊技术及实应用》2.3.《焊工技术考核规程》3・焊接准备3.1.焊接材料焊丝J HlCrl8Ni9Ti <t>l. (1>1・5、<l>2.5. 4>3焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。
焊线在使用前应清除油锈及实他污物,露出金属光泽。
3.2.氮气氮气瓶上应贴有岀厂介格标签,英纯度>99.95%,所用流量6・9升/分钟,气瓶中的氮气不能用尽,瓶内余压不得低于O.SMPa ,以保证充氮纯度033焊接工具3.3.1.采用宜流电焊机,本厂用WSE-315和TIG400两种型号焊机。
3・32 选用的氮气减压流量计应开闭自如,没有漏气现象。
切记不可先开流量讣、后开气瓶,造成高压气流宜冲低压,损坏流量讣:关时先关流量讣而后关氮气瓶。
333.输送氮气的胶皮管,不得与输送集它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。
3A其它工器具焊工应备有:手锤、砂纸、扁铲、钢幺幺•刷、电糖工具等,以备淸渣和消缺。
4.工艺参数不锈钢焊接工艺参数选取表5.工序过程5.1.焊工必须按照“考规‘‘规泄经相应试件考试合格后,方可上岗位焊接。
52 严禁在被焊件表而随意引燃电弧、试验电流或焊接临时支撑物等。
5.3.焊工所用的氮弧焊把、氮气减压流应经常检査,确保在氮弧焊封底时氮气为层流状态。
54 接口前应将坡口表而及母材内、外壁的油、漆、垢锈等淸理干净,直至发出金属光泽,淸理范用为每侧齐为10-15mm,对口间隙为2.5〜3・5mm.5.5•接口间隙要匀直•禁止强力对口,错口值应小于壁厚的10%.且不大于1mm.56 接口局部间隙过大时,应进行修整,严禁在间隙内添加塞物。
5.7.接口合格后,应根据接口长度不同点4-5点,点焊的材料应与正式施焊相同,点焊长度10-15mm> 厚度 3-4mm.z5.8.打底完成后,应认貞•检査打底焊缝质量,确认合搭后再进行氮弧焊盖而焊接。
5.9.引弧、收弧必须在接口内进行,收弧要填满熔池,将电弧引向坡口熄弧。
5.10.点焊、氯弧焊、盖而焊,如产生缺陷,必须用电磨工具氏等除后,再继续施焊,不得用重复熔化方法消除缺陷.5.ir 应注意接头和收弧质量,注意接头熔合应良好,收弧时填满熔池。
为保证焊缝严密性。
5A2.孟面完毕应及时淸理焊缝表而熔渣、飞溅。
6・质量标准:6.1.质量按Q/ZB74-73焊接通用技术条件和机械结构用不锈钢焊接管(GBZn2770—2002) 标准检验。
6.2.缺陷种类、原因分析及改进方法氮弧焊焊接产生缺陷的原因及防止方法7,1.焊工工作时必须穿工作服•戴绝缘手套•穿绝缘鞋。
72焊工必须遵守安全、文明施工的规定073.高空作业必须系安全带,高空搭设的脚手架应安全、可靠、并便于施焊。
74 焊工在使用电磨工具时采取防护措施。
使用前检査电丿磨工具砂轮片是否松动,是否需要更换砂轮片。
76空中作业区下方如有易燃易爆物品时.要做好防止飞溅物落下的措施。
7,7.应避免电焊线•与带有感应线圈的设备相连,电焊线与焊钳连接部分应放置可靠,避免工作时电弧击伤管子或设备。
7・8・焊接时应注意避免飞溅或电弧损伤设备、飞溅或焊渣落入已清洁丁•净的产品表而。
C02焊接1.准备工作1.1熟悉图纸和工艺文件,弄淸焊缝尺寸和技术要求。
1. 2按工艺要求取用焊丝,无要求的则按焊件材质,焊缝质量要求取用焊丝,焊丝•应符合国标,焊丝用前去油去锈。
1. 3焊前对C02气体进行去水处理-1. 3. 1气瓶倒置1一2小时,开阀放水,每隔3分钟放一次,连续2-3次。
1. 3・2经放水的气瓶正立2小时,放出杂气即可使用。
1. 3. 3在输入焊枪的气路中设置I :燥器。
定时检査干燥剂。
1. 4检查坡口及间隙是否符介要求,不符合者予以返修或报废,重要工件要检査引、熄 弧板是否齐全。
1. 1. 1. 1. 焊接1 CO2焊焊接工艺参数按表三选取.二氧化碳焊接工艺参数表表三5淸除工件坡口两侧10mm 内的铁锈、油污。
6准备好焊接用的工具和保护用品。
7C6焊机,检査焊机电源的运转检査CO2焊机头是否正常。
8 CO2焊的气路应保证通畅,瓶压降至1兆帕应更换。
2x2.5010-8010 - 1006040〜1004,5605〜40 V VV HV HVVV250〜45026〜4320 〜25 18 〜350.8〜100〜17〜10 〜151.2 150 211.2〜200〜23〜15 〜25 20 〜421.6 450 43 -0.8〜100〜17〜10 〜151.2 150 211.2〜200〜23〜15 〜251.6 400 40200〜23〜20 〜42450 431.0〜100〜19〜10 〜151.2 150 211.2〜200〜23〜20 〜25 20 〜421.6 450 430.5〜40〜18〜6〜12 18 〜351.2 120 210.5〜35〜16〜0.8 100 190.5〜40〜18〜1.2 120 210.8〜100〜20〜10 〜15 20 〜301.6 230 260.8〜70〜17〜1.0 120 200.8〜100〜20〜1.6 230 261.2〜200〜23〜15 〜25 20 〜421.6 450 430.8〜100〜17〜10 〜151.2 150 211.2〜200〜23〜15 〜251.6 450 43 20 〜421.2〜250〜26〜20 〜25 18 〜351.6 450 430.8〜100〜17〜10 〜151.2 150 211.2〜200〜23〜15 〜251.6 400 40200〜23〜20 〜42I冇入5〜80碌材厚度(mm)2〜4,55〜305〜405〜50K 450 43形V 0.8〜100〜17〜10 〜151.2 150 21H 1.2〜200〜23〜15 〜201.6 400 40坡焊丝焊接电电弧气体流自动焊口接板直径流(A) 电压量(L/min) 焊速形位(mm) (V) (m/h)式置F 0.5〜40〜18〜20 〜351.2 120 21 6〜121 V 0.5〜35 〜80 16〜0.8 18H Ji0.5〜40〜18〜1.2 120 21形 F 0.8〜100〜20〜20 〜301.6 230 26 10 〜15V 0.8〜70〜17〜1.0 120 20H 0.8〜100〜20〜1.6 230 26F 1.2〜200〜23〜20 〜25 20 〜421.6 450 43V 0.8〜100〜17〜10 〜151.2 150 21H 200〜23〜15 〜251.2〜400 40单 F 1.6 200〜23〜20 〜42边V 450 43形有250〜26〜20 〜25 18 〜35450 43V 0.8〜100〜17〜10 〜15Ji1.2 150 21H 200〜23〜15 〜251.2〜400 40V F 1.6 200〜23〜20 〜42形450 43有250〜26〜20 〜25 18 〜35450 43V 无0.8〜100〜17〜10 〜151.2 150 21K F 1.2〜200〜23〜15 〜25 20 〜42 Ji1.6 450 43性2- 2焊前要按确定的规范进行焊机调核,不允许在工件上进行。
2・3引弧前将焊丝端部球状部分剪去,焊丝端部与工件保持2-3mm 的蹈离,引弧用短 路法引弧,引弧位置距焊缝端路2—4 mm,然后移向端部.金属熔化后再正常焊接。
重要件 在引弧板上进行引弧.2- 4对于有预热要求的,要按工艺规泄预热后再进行焊接0 2. 5焊缝位置不同要用不同的操作方法02. 5. 1 平焊时可按焊件结构,用左焊法或右焊法,与不平板的夹角分别为80。
一90。
和60。
一75。
平角焊缝,枪与水平板的夹角为40。
一50。
2. 2. 2. 2- 2- 2. 2.3s 焊缝修整焊后对焊缝进行检査、淸除熔渣、飞溅。
1对缺陷进行分析,找出原因,制订返修描施•对裂纹必须找出首尾。
2重要件返修时同一部位不超过两次,两次不合格者,重订返修措施并报有关部门批 手工电弧焊工艺1 焊条电弧焊的接头主要有对接接头、T 形接头、角接接头和搭接接头四种。
1. 1 对接接头对接接头是最常见的一种接头形式,按照坡口形式的不同,可分为I 形对接接头(不开坡 口)、V 形坡口接头、U 形坡口接头、X 形坡口接头和双U 形坡口接头等。
一般厚度在6m m 以5. 2立焊时可上焊或下焊,焊枪与竖板的夹角为45^-50%5. 3横焊时焊枪应作适当的宜线往返运动,焊枪与水平的夹角为5^-15% 5. 4仰焊应用较小的电流和电圧,焊枪可作小幅度的直线往返运动。
6为获一定的焊缝宽度,焊终可摆动,但摆动时不得破坏CO2气体保护效果。
7收弧时须填满弧坑,熔池凝固前不得停气,平板时一般用熄弧板收弧。
8 CO2焊焊接时应尽可能量避风施焊,且环境温度不得低于-10% 9焊接时要随时检査规范是否稳定,有问题时要做及时调整。
4s 不良品处置•4. 4. 准。
接口下,采用不开坡口而留一定间隙的双而焊:中等厚度及大厚度构件的对接焊,为了保证焊透,必须开坡口。
V形坡口便于加工,但焊后构件容易发生变形;X形坡口由于焊缝截而对称,焊后工件的变形及内应力比V形坡口小,在相同板厚条件下,X形坡口比V形坡口要减少1/2填充金属量。
U形及双U形坡口,焊缝填充金属量更少,焊后变形也很小,但这种坡口加工困难,一般用于重要结构。
1. 2 T形接头根摇焊件厚度和承载情况,T形接头可分为不开坡口,单边V形坡口和K形坡口等几种形式。
T 形接头焊缝大多数情况只能承受较小剪切应力或仅作为非承载焊缝,因此厚度在30 mm以下可以不开坡口。
对于要求载荷的T形接头,为了保证焊透,应根据工件厚度、接头强度及焊后变形的要求来确;1^所开坡口形式》1. 3 角接接头根据坡口形式不同,角接接头分为不开坡口、V形坡口、K形坡口及卷边等几种形式。
通常厚度在2mm以下角接接头,可采用卷边型式:厚度在2-8mm以下角接接头,往往不开坡口;大厚度而又必须焊透的角接接头及重要构件角接头,则应开坡口,坡口形式同样要根据工件耳度、结构形式及承载情况而宦。
1. 4 搭接接头搭接接头对装配要求不高,也易于装配,但接头承载能力低,一般用在不重要的结构中。
搭接接头分为不开坡口搭接和塞焊两种型式。
不开坡口搭接一般用于厚度在12mm以下的钢板.搭接部分长度为3-56 (6为板厚)2 焊条电弧焊工艺参数选择2. 1 焊条直径焊条直径可根据焊件厚度、接头型式、焊缝位置、焊道层次等因素进行选择。