自适应控制1-上海交通大学

合集下载

快速路入口匝道自适应控制方法

快速路入口匝道自适应控制方法

快速路入口匝道自适应控制方法摘要:随着城市交通拥堵范围的不断扩大,城市快速路交通控制也将提上议事日程。

入口匝道控制是快速路交通控制系统中应用最广、效果最好的一种控制形式。

本文将容量-需求差额控制法和可接受间隙控制法加以组合,形成能适应交通状况动态变化的入口匝道自适应控制方法,比之传统的单一控制方法能取得更好的控制效果;本文还给出了自适应控制方法所需配置的交通检测、控制设备及其控制逻辑。

关键词:交通控制入口匝道控制自适应控制1 引言要使快速路维持良好的运行状态,除了需要合理配置道路土建设施(如主线车道数、出入口间距、加减速车道长度等)之外,科学有效的交通控制管理也是十分重要的方面,尤其是对于交通流饱和度较高的路段。

美国早在60年代就开始在芝加哥Congress Street (现Eisenhower)快速干道实施入口匝道控制,而国内对高/快速路采取交通控制的例子并不多,所谓的“交通监控系统”大多是“只监(视)不控(制)”。

深圳曾尝试对南环快速路(春风路高架段)某入口匝道实施信号灯控制,但由于种种原因未能取得理想的效果。

事实上,随着我国各大城市机动车交通需求的迅猛增长,快速路系统的交通拥挤现象也日趋严重,对快速路实施交通控制的必要性也正逐步显现出来。

广州已拟在其即将招标的内环快速路监控系统中试点实施入口匝道控制。

快速路交通控制包括入口匝道控制、主线控制和通道控制等内容。

其中,入口匝道控制是应用最广、效果最好的一种控制形式。

入口匝道控制方法有多种,每种控制方法都有其适用的交通条件,在具体运用时,每个匝道一般只根据其交通条件选用其中一种控制方法,而且国际上并无相关的标准。

然而,交通状况是动态变化的,一种控制方法并不能一直适用,而应组合使用不同的控制方式,并随着交通状况的实时变化而灵活地转换控制方式,综合利用各种控制方式的优势,才能达到理想的控制效果。

本文在这方面做些探讨,提出一种快速路入口匝道自适应控制方法。

自适应控制_新版_1

自适应控制_新版_1
授课教师: 授课教师: 王印松 授课学时:32学时 授课学时:32学时
教学要求:
1、了解自适应控制的基本概念,自适应控制系统的构 成原理,实际工程系统中应用自适应控制的现状及 国内外研究动态; 2、掌握两类比较基本和成熟的自适应控制系统:模 型参考自适应控制(基于确定性、连续时间系统的 辨识和控制问题)和自校正控制(基于确定性、离 散时间系统的参数估计和控制问题); 3、应用MATLAB控制系统工具箱作为计算机仿真实 验工具,进行简单自适应控制系统的设计与分析。
非线性系统 采样系统 稳定性理论
控制设计 自适应控制
随机系统
计算机控制 线性系统 最优化
参数估计
第三节 自适应控制的发展概况
对于自适应控制的兴趣,最早是由航空问题引起的。 50年代末,由于飞行的需要,美国麻省理工学院 (MIT)怀 特克(Whiteaker)教授首次提出飞机自动驾驶仪的模型参考自 适应控制方案,称为MIT方案(局部优化理论,但没有得到应 用),需检验稳定性。 1957,1961:Bellman引入了动态规则。 1960,1961,1965:Feldbaum 引入了对偶控制。 1966,(德)帕克斯(P.C. Panks)提出采用A.M.Lyapunov 第二法来推导自适应算法,以保证自适应系统全局渐近稳定。 (在用被控对象的输入输出构成自适应律时,其中包含了
1979,威尔斯特德(P.E.Wellstead)和Astrom提出极点 配置自校正调节器。 80年代,主要增进了人们对于自适应控制的理解,同时, 计算机、微处理器的广泛普及,为自适应后来的实际应用创 造了条件。 目前,自适应已应用到很多领域(提高稳态和跟踪精 度)。 发展到现阶段,无论是从理论研究还是从实际应用的角 度来看,比较成熟的自适应控制系统有下述两大类。

2023年系统科学与工程专业考研方向和院校排名

2023年系统科学与工程专业考研方向和院校排名

2023年系统科学与工程专业考研方向和院校排名系统科学与工程专业是一个综合性的学科,它涉及到多个学科领域,如数学、物理、计算机、管理等。

在考研时,选择该专业需要有较强的数学基础和计算机技能,同时也需要具备较强的分析和解决问题的能力。

选择优秀的院校和方向可以在未来的职业发展中提供更好的机会和平台。

下面是2023年系统科学与工程专业考研方向和院校排名:1. 控制科学与工程该方向主要研究各种控制系统和优化算法,以及它们在工程中的应用。

涉及到的学科范围较广,包括线性系统、非线性系统、最优控制、自适应控制、鲁棒控制、智能控制等。

在工程中,该方向可以应用于机器人控制、自动化生产线等领域。

该方向的排名前三的学校为:北京大学控制科学与工程清华大学自动化科学与技术上海交通大学自动化2. 系统工程该方向主要研究大型复杂系统的设计、开发和管理。

包括系统分析、系统设计、系统建模、系统评估等内容。

在应用领域中,可以应用于信息系统、交通管理系统等。

该方向的排名前三的学校为:中国科学院系统科学研究所北京大学管理科学与工程清华大学系统工程3. 计算机应用技术该方向主要涉及计算机中的相关技术,如数据库、网络、协议、编译、操作系统等。

在应用领域中,可以应用于广泛的信息管理和处理领域。

该方向的排名前三的学校为:北京大学计算机科学与技术清华大学计算机科学与技术上海交通大学计算机科学与技术以上是2023年系统科学与工程专业考研方向和院校排名,希望能帮助有意报考该专业的同学。

当然,在考研之前,我们也需要通过各种途径了解该专业的基础和前沿知识,提前做好准备和规划。

《现代控制理论基础》第2版 现代控制理论基础_上海交通大学_施颂椒等_PPT_绪论

《现代控制理论基础》第2版 现代控制理论基础_上海交通大学_施颂椒等_PPT_绪论
第一章 线性系统的数学描述 第二章 线性系统的响应 第三章 系统的稳定性 第四章 系统的能控性和能观性 第五章 最小实现 第六章 状态反响和状态观测器
(含最优控制)
学科分支:如线性系统理论,最优控制,最优估计, 系统辨识,自适应控制,鲁棒控制等
本课程是以线性系统理论为根底,以自动控制系统 为研究对象。是现代控制理论的根底。
课程取名为“现代控制理论根底〞
一、现代控制理论根底研究对象和内容 1、研究对象 现代控制理论根底以线性控制系统为对象, 主要研究其动态属性
绪论
现代控制理论源于上世纪60年代,以Pontriagin的极大 值原理、Bellman动态规划和Kalman滤波技术为形成 标志 研究对象:多变量系统 研究方法:状态空间方法 最大特点:建立在线性空间理论的根底上
在时域中研究系统 可以定量地进行系统的分析和设计 深刻地揭示了线性系统的许多根本特点 和性质
x(t)A(t)x(t)B(t)u(t) y(t)C(t)x(t)D(t)u(t)
建模方法 数学推导方法:根据系统的物理机理,应用物理
学的定律,用数学推导求取状态 空间描述 求最小实现方法: 从系统的传递函数(阵)求取状态空 间描述
⑵ 系统分析 定量分析 用解析法求解系统的运动方程 定性分析 定性地确定系统的根本性质,以及 它们和系统结构参数之间的关系, 包括:系统的稳定性
系统的能控性和能观性--现代控制理论 最根本的概念
⑶ 系统设计与综合
系统设计:在系统分析的根底上,寻求改善系统 动态性能的方法。 系统综合:对给定设计要求(目标),求取一个适宜 的控制律(主要是反响方式和控制算法),满足 的目标。 (注:设计与综合有不同的定义)
主要方法: 状态反响和状态观测器方法特殊控制律:解耦和无静差跟踪控制

上海交通大学电子信息与电气工学学院研究生课表(全部系所)

上海交通大学电子信息与电气工学学院研究生课表(全部系所)
纳米材料与器件
SOC设计方法
嵌入式系统原理与控制
射频系统设计
集成电路测试方法与实践
射频集成电路设计
神经网络与机器学习
高等数字集成电路设计
微系统建模设计
先进微纳加工技术与应用
模拟射频集成电路高级课题选讲
生物芯片技术
模拟集成电路的版图艺术
集成电路设计前沿技术
高速集成电路设计
博士课程
纳米电子学
微系统技术与应用
微机械传感器
微弱信号检测(英语)
机电控制技术
数据融合技术
智能仪器技术
新型传感器技术
仿生机械学
嵌入式系统设计
精密工程特论
博士课程
现代导航导论
机械系统动力学及其控制
现代检测理论
全球定位系统原理及应用
微纳电子制造科学与技术
纳米化学与分子生物学
精密工程特论
新型传感技术
数据融合技术
信安系
硕士生
通信理论与系统
随机过程与排队论
无线宽带视频传输技术
阵列信号处理与空时信号处理
视觉计算理论与工程实践
现代电子测量技术与实验
半导体物理与器件物理学
微波与高速电路理论
计算电磁学
计算机通信网络设计与分析
自适应信号处理
有机电致发光显示与照明
ATM全光网与个人无线网
导波光学
学术英语
高等电磁场理论
近代微波测量实验
微波与高速集成电路分析与设计
现代通信系统中的电磁兼容
可证明安全理论
生物信息学
自然语言理解
网络安全基础
互联网信息搜索与挖掘
电子系
硕士课程
通信理论与系统
通信理论与系统

上海交通大学岩土工程学科

上海交通大学岩土工程学科

上海交通大学岩土工程学科-上海市重点学科葛修润院士领衔的上海交通大学岩土工程学科,特别注重学科发展对国民经济的贡献,在岩石力学与工程(葛修润院士牵头)、土力学及地基基础(王建华教授牵头)、隧道与地下工程(黄醒春教授牵头)和岩土工程防灾减灾(陈龙珠教授牵头)方面形成了优势,研究团队充满活力,在产学研合作和国家及上海市重大工程建设方面做出突出贡献。

近年来,我校岩土工程学科引进了大量的高水平中青年教师,整体学术水平有大幅度的提高。

在科研方面取得了突破性发展,近五年来共获得各类科研项目140多项,其中国家自然科学基金重点项目1项、面上项目11项,国家“863”项目子项5项,十一五国家科技支撑项目子项1项,博士后基金6项,上海市科委重大攻关项目、登山计划等重大项目10余项,以及上海市浦江学者、上海市曙光计划等人才项目各1项,并从上海建工集团、上海城建集团等企事业单位获得了2000多万元的科研经费。

大量科研成果达到了国际先进水平,近年来共获省部级科技进步奖6项,获上海市育才奖和“曙光学者”称号各1人次。

五年间,在国际岩土工程顶尖杂志“Geotechnique”、“Geotechnical and Envir omental Engineeging-ASCE”、“Canadian Geotechnical Journal”、“Soil Dynamic and Earthquake Engineering”等期刊上发表了50多篇高水平文章,在国内外重要学术期刊和学术会议上累计发表论文超过800篇,学科人均每年发表文章5.7篇,在全国同类学科中处于领先行列。

目前,岩石力学与工程、土力学及地基基础、隧道与地下工程三个研究方向形成了优秀的研究团队,具备了以下特色和优势:(1)岩石力学与工程:本方向在葛修润院士领衔下,具有学科梯队合理、教师学历高、研究内容处于前沿主流领域等特点。

主要研究领域包括:岩石力学与大型岩体工程数值模拟方法研究、岩体工程的现场监测技术、方法及检测设备研制、岩石力学室内试验技术及设备研制、岩体初始应力场的实测与数值模拟分析以及新兴科学技术在岩石力学中的应用。

自适应线性自抗扰控制器的设计

自适应线性自抗扰控制器的设计

自适应线性自抗扰控制器的设计奚静思;刘品宽;丁汉【摘要】自抗扰控制器对于抑制不确定的扰动有良好的效果,但其控制器参数较多且整定困难.为了实现自适应的线性自抗扰控制器,对线性自抗扰控制器的参数整定策略展开了研究.首先,设计了基于观测误差的线性扩张观测器参数自适应整定算法.接着,设计了自抗扰控制器线性反馈环节的参数的自适应整定算法.最后,利用李雅普诺夫方法,证明上述自适应整定算法得到的参数可以保证扩张状态观测器的观测误差和被控系统最终输出误差都收敛至零.实验结果表明:精密气浮运动平台低速工况下,自适应线性自抗扰控制器的参数在0.8s内即可迅速完成整定计算;线性扩张观测器观测误差绝对值小于2 nm;被控精密气浮运动平台的速度波动不大于5%.自适应线性自抗扰控制器实现了控制器参数在线整定,控制器的性能表现满足要求.【期刊名称】《光学精密工程》【年(卷),期】2018(026)007【总页数】9页(P1749-1757)【关键词】自抗扰控制;自适应控制;参数整定;直线电机【作者】奚静思;刘品宽;丁汉【作者单位】上海交通大学机械与动力工程学院 ,上海200240;上海交通大学机械与动力工程学院 ,上海200240;上海交通大学机械与动力工程学院 ,上海200240【正文语种】中文【中图分类】TP394.1;TH691.91 引言针对不确定系统的控制器设计是自动控制研究领域的重要组成部分。

自抗扰控制器(Active Disturbance Rejection Controller, ADRC)抗干扰性能好且控制器结构简单[1-3],近年来已被广泛研究和应用于诸多领域[4-10]。

其特点是通过扩张状态观测器实时、主动地估计和补偿总的不确定性(或总干扰),并利用反馈控制器将所有的不确定干扰在系统中整合补偿[11-12]。

然而,传统的自抗扰控制器中包含了很多非线性元件,其参数整定过程十分复杂,成为自抗扰控制算法被广泛应用的主要障碍。

自适应控制数控系统

自适应控制数控系统

数控系统的发展趋势→自适应控制1952年美国麻省理工学院研究制造出第一台测试性数字控制系统,而后随着电子技能和节制技能的飞速度完成长,现在的数字控制系统发展很壮大。

尤其是最近几年来,国内外数字控制系统在柔性、精确性等方面取得了飞速的成长,许多理论与技能问题获得了较好的解决。

数字控制技能和数字控制设备是打造工业现代化的根蒂根基,是一个国度经济成长和综合国力的体现,而数字控制系统是数字控制技能和数字控制设备的核心。

与此同时加工技能和一些其它相关技能的成长对数字控制系统的成长和进步提出了新的要求。

目前大多数数控机床在加工过程中都维持一个固定不变的进给速率,这个进给量是由加工程序预先设定好的。

为了保证生产的安全,编成人员必须按照负荷最大的工况设定这个进给速率,但实际上这种工况或许只占整个工序的5%。

那么如何提高数控机床的加工效率,优化刀具进给量,同时又能自动保护机床的主轴系统和昂贵的刀具不受损坏已经成为终端用户和机床制造厂家十分关注的问题。

为了解决这个问题以色列OMAT公司将自适应控制技术应用在数控机床上,研发了成熟的产品――OMAT数控机床自适应系统,并已经在全球广泛应用。

所谓“自适应”一般是指系统按照环境的变化调整其自身使得其行为在新的或者已经改变了的环境下达到最好或者至少是容许的特性和功能这种对环境变化具有适应能力的控制系统称为自适应控制系统。

在数控加工上应用自适应控制技术是通过检测机床主轴的负载,运用内部的专家系统对采集的主轴负载信号和相应的刀具及工件材料数据进行分析处理,实时计算出机床最佳的进给速率并应用到数控加工过程中,从而大幅度提高生产效率,并在加工过程中稳定、连续、自动的控制进给速率,同时实现动态的刀具保护功能。

在加工过程中,自适应控制系统可以依据控制对象的输入输出数据,进行学习和再学习,不断地辨识模型参数并进行修正。

随着生产过程的不断继续,模型会变得越来越准确,越来越接近于实际,最终将自身调整到一个最优的工作状态,实现加工过程的优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• Flow and speed variations
– – – – Concentration control Steel rolling mills Paper machines Rotary kilns
• Wide operating range with a nonlinear system
Lecture One Class Introduction
Instructor: Dr. ZHENG Yi(郑毅)
Nov. 9, 2016 E-mail: yizheng@ Webpage:
Today’s Agenda
• • • • What is Adaptive Control? Why Adaptive Control? Class Logistics Questions?
Standard Adaptive Controller
Fixed-Gain Control
• Requires accurate system modelling
– Trade-off performance with uncertainty (May fail under high level of uncertainty) – Tuned to worst case rather than real physical system
• According to the Webster’s dictionary, adaptation means:
– adjustment to environmental conditions – alteration or change in form or structure to better fit the environment
2Байду номын сангаас
What is “adaptive”?
• According to the Webster’s dictionary, to adapt means:
– to adjust oneself to particular conditions – to bring oneself in harmony with a particular environment – to bring one’s acts, behavior in harmony with a particular environment
• Environmental changes • Change in dynamics • Structural damage
Adaptive Control
• Achieves a given system performance asymptotically
– Does not excessively rely on models – Does not trade performance for modeling accuracy – Improves itself under unforeseen, adverse conditions
• Deal with uncertainties
– plant change: component-to-component variation, aging, wearing, etc. – operating environment change: disturbances – unmodeled dynamics: ignored slow dynamics
– Flight control
• Variations in Disturbance Dynamics
– Wave characteristics in ship steering – Raw materials in process industries
A Brief History
• 1950s: Heuristic design of adaptive control for autopilot • 1960s: MIT rules, model reference adaptive control (with stability guarantee) • 1970s: real breakthrough in the development of rigorous theory: Lyapunov design, stability analysis. • 1980s: instability of adaptive systems was brought to focus. Robust adaptive control became a very hot topic. • 1990s: Nonlinear adaptive control design methodology development dominated. • 2000s: Focus on applications
• Effect depends on the desired closed-loop bandwidth • Better to use frequency responses
Effect of Process Variations
Example 1.1: Consider the system given by for a=-0.01, 0, 0.01 Feedback control law u=uc-y
Where is adaptive control used?
• • • • • • Aerospace Automotive Process control Communication Web search ….
Application
• Case study one: Patriot air defense missile & Scud missiles
Effect of Process Variations
• Example 1.2: Consider the system for T=0,0.015,0.03
Feedback control law u=uc-y
Figure: Open-loop responses
Figure: Unit Step closed-loop responses
Adaptive Schemes
• Dual Control
Types of AC systems
• Parametric adaptive control: Controller structure is fixed, the parameters are updated on-line.
And Many others…
Adaptive Schemes
• Gain Scheduling
Adaptive Schemes
• Model Reference Adaptive Systems (MRAS)
Adaptive Schemes
• Self-Tuning Regulators (STR)
What is Adaptive Control?
• Adaptive Control:
– A controller with adjustable parameters and a mechanism for adjusting the parameters (Adaptive Control, Astrom and Wittenmark) – A control system that can modify its behavior in response to changes in the dynamics of the process and the disturbances. – A control method used by a controller which must adapt to a controlled system with parameters which vary, or are initially uncertain. (Wikipedia)
Constraints: min t max Hit accuracy
Application (cont.)
• Case study two: Fighter attack Trajectory unknown Constraints:
• Tracking trajectory • Hit accuracy • Min t
Effect of Process Variations
Figure: Open-loop Bode plots
Figure: Closed-loop Bode plots
Effect of Process Variations
• Nonlinear actuators or sensors
– Nonlinear valves
Judging the severity of process variations
• Difficult to judge impact of process variations on closed-loop behavior from open-loop time responses
– Significant changes in open-loop responses may have little effect on closed-loop response – Small changes in open-loop responses may have significant effect on closed-loop response
• Achieve high performance • Take advantage of available on-line computation resources • …
相关文档
最新文档