高中数学选修1-1测试题与答案

合集下载

人教A版高中数学选修1-1习题精选(含答案)

人教A版高中数学选修1-1习题精选(含答案)

习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则=________.13.过()的焦点的弦为,为坐标原点,则 =________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。

高中数学(人教A版)选修1-1全册综合测试题(含详解)

高中数学(人教A版)选修1-1全册综合测试题(含详解)

综合测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“当a >1时,方程x 2-4x +a =0有实根”不是命题C .命题“矩形的对角线互相垂直且平分”是真命题D .命题“当a >4时,方程x 2-4x +a =0有实根”是假命题 答案 D2.如果命题“綈p 且綈q ”是真命题,那么下列结论中正确的是( )A .“p 或q ”是真命题B .“p 且q ”是真命题C .“綈p ”为真命题D .以上都有可能解析 若“綈p 且綈q ”是真命题,则綈p ,綈q 均为真命题,即命题p 、命题q 都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( )A .椭圆B .双曲线C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图像关于y 轴对称的充分不必要条件B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +ax ,∴由题可知,f ′(1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设P 是椭圆x 29+y 24=1上一点,F 1,F 2是椭圆的两个焦点,则cos ∠F 1PF 2的最小值是( )A .-19B .-1 C.19D.12解析 由椭圆方程a =3,b =2,c =5, ∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 1|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1|·|PF 2| =(2a )2-(2c )2-2|PF 1||PF 2|2|PF 1|·|PF 2| =162|PF 1|·|PF 2|-1.∵|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=9, ∴cos ∠F 1PF 2≥162×9-1=-19,故选A.答案 A9.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q (a ,b )为圆心且半径为1.当(a -x 1)2+(b -y 1)2=2时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个解析 考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y=f(x)的导数图像,则正确的判断是()①f(x)在(-3,1)上是增函数;②x=-1是f(x)的极小值点;③f(x)在(2,4)上是减函数,在(-1,2)上是增函数;④x=2是f(x)的极小值点.A.①②③B.②③C.③④D.①③④解析从图像可知,当x∈(-3,-1),(2,4)时,f(x)为减函数,当x∈(-1,2),(4,+∞)时,f(x)为增函数,∴x=-1是f(x)的极小值点,x=2是f(x)的极大值点,故选B.答案 B11.已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,P是直线l:x=a2c(c2=a2+b2)上一点,且PF1⊥PF2,|PF1|·|PF2|=4ab,则双曲线的离心率是()A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a2c )·(c +a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =c a = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8xx 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8x x 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23),∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图像一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________. 解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图像不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1296a ,令S ′=2a -1296a 2=0,得a 3=648,a =633,∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________.解析 因为函数y =e x +2mx (x ∈R)有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.答案 m <-12三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a ,b ,c 的值.解 本题涉及了3个未知量,由题意可列出三个方程即可求解. ∵y =ax 2+bx +c 过点(1,1), ∴a +b +c =1.①又∵在点(2,-1)处与直线y =x -3相切, ∴4a +2b +c =-1. ②∴y ′=2ax +b ,且k =1. ∴k =y ′| x =2=4a +b =1,③联立方程①②③得⎩⎪⎨⎪⎧a =3,b =-11,c =9.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12. ∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图像上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0),∵a >0,由F ′(x )>0,得x ∈(a ,+∞), ∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减.∴F (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.又易得点R 的坐标为(-2k ,-1).∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1)=(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4 =-4(1+k 2)+4k (2k +2k )+4k 2+4 =4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎪⎨⎪⎧a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是[2,6] (3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5.设直线MA ,MB 的斜率分别为k 1和k 2,A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205.k1+k2=y1-1x1-4+y2-1 x2-4=(y1-1)(x2-4)+(y2-1)(x1-4)(x1-4)(x2-4).上式分子=(x1+m-1)(x2-4)+(x2+m-1)·(x1-4) =2x1x2+(m-5)(x1+x2)-8(m-1)=2(4m2-20)5-8m(m-5)5-8(m-1)=0,即k1+k2=0.所以直线MA,MB与x轴能围成等腰三角形.。

人教版高中数学选修1-1综合测试卷B(含答案).doc

人教版高中数学选修1-1综合测试卷B(含答案).doc

数学选修1-1测试卷一、选择题:1、已知a、b为实数,则2" >2"是的( )A.必要非充分条件B.充分非必要条件C.充要条件D.既不充分也不必要条件2、给出命题:若函数y = .f(x)是幕函数,则函数y = f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.OB.lC.2D.33、已知命题p:H VxG[l,2],x2-a>0,,J^题/?,/+2仮+2-0 = 0”,若命题“0人厂是真命题,则实数。

的取值范围是 ( )A.(-oo,-2]U{l}B.(-汽-2] U [1,2]C.[l,+8)D.[-2,l]4、设函数/(兀)在定义域内可导,y = /(x)的图象如左图所示,则导函数y = /©)可能为( )2 25、设片和坊为双曲线—1(。

>0#>0)的两个焦点,若耳,只,P(0,2b)是正三角形的三个顶点, CT b~则双曲线的离心率为()3,5A.-B.2C.-D.32 26、设斜率为2的直线/过抛物线y2 = ax{a 0)的焦点F,且和y轴交于点九若厶0AF(0为朋标原点)的而积为4,则抛物线方程为( )A. =±4xB. y2=±SxC. y2 = 4xD. y2 = 8x7、如图,曲线y = f(x)上任一点P的切线PQ交x轴于Q,过P作PT垂直于x轴于T,若△P7Q的面积为-,则y与y'的关系满足(・)A. y =)/B. y = -y"C. y - y1D. y2 - y'8^ 己知);=/(x)是奇函数,当XG (0,2) lit, f(x) = Inx-ax{a >—),当xw (-2,0)吋,/(x)的最小值为1,则a的值等于( )1 1 」A.—B.—C.—D..14 3 29、设函数y = /(X)在(。

0)上的导函数为广(x),r(x)在(a,b)上的导函数为f\x),若在(a,b)上,/"(X)<0恒成立,贝I」称函数函数/(兀)在(Q0)上为“凸函数已知当m<2时,/(兀)=-x3-—nu2 +无在6 2 (—1,2)上是“凸函数二则f(x)在(—1,2)上()A.既有极人值,也有极小值B.既有极人值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值己知两条曲线y = x2~l与)vi-F 在点兀。

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)

一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.下列选项中,p 是q 的必要不充分条件的是( )A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数 3.“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1<0 C .∀x ∈R ,e x -x +1≤0 D .∃x ∈R ,e x -x +1≤0 4.命题“a ∀∈R ,20a >或20a =”的否定形式是( )A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <5.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.“x y <”是“1122log log x y >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.命题“,40x x ∀∈>R ”的否定是( ) A .,40x x ∀∉<R B .,40x x ∀∈≤R C .00,40xx ∃∉<RD .00,40x x ∃∈≤R8.若,a b ∈R ,使||||6a b +>成立的一个充分不必要条件是( ) A .6a b +≥B .6a ≥C .6b <-D .||3a ≥且3b ≥9.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( )A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭C .0011,22x x N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭10.命题“21,1x x ∀>>”的否定是( ) A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤11.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .2aB .2aC .2a -D .2a -12.“2x <”是“22320x x --<”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要二、填空题13.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________. 14.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题; 15.命题p :已知0a >,且满足对任意正实数x ,总有1ax x+≥成立.命题q :二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性.若“p 或q ⌝”与“q ”均为真命题,则实数a的取值范围为_________;16.若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则实数a 的取值范围是______.17.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.18.命题“x R ∀∈,使20x a -≥”是真命题,则a 的范围是________. 19.原命题“若1z 与2z 互为共轭复数,则2121z z z =”,则其逆命题,否命题,逆否命题中真命题的个数为___________. 20.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.三、解答题21.已知2:760p x x -+≤,22:230q x ax a -≤-.(1)若1a =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.已知A ={x |112x +-<0},B ={x |x 2-2x+1-m 2<0,m>0}. (1)若m =2,求A ∩B ;(2)若x ∈A 是x ∈B 的充分不必要条件,求实数m 的取值范围. 23.已知集合{}3A x x a =<+,501x B x x ⎧⎫-=>⎨⎬+⎩⎭.(1)若2a =-,求()RAB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 24.命题:p 函数()0,1xy cc c =>≠是R 上的单调减函数;命题:120q c -<.若p q∨是真命题,p q ∧是假命题,求常数c 的取值范围.25.在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. 26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.A解析:A 【分析】一一分析每个选项中,p q 的充分必要性即可. 【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件; 故选:A.3.B解析:B 【分析】由全称命题的否定即可得解. 【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题, 所以该命题的否定为:∃x ∈R ,e x -x +1<0. 故选:B.4.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.5.A解析:A 【分析】根据充分条件和必要条件的定义即可求解. 【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l , 若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件, 故选:A6.B解析:B 【分析】根据充分条件、必要条件的定义判断即可; 【详解】解:若0x y <<,则1122log log x y >不成立,故不具有充分性,因为12log y x =单调递减,若1122log log x y >,所以x y <,故有必要性,故选:B .7.D解析:D 【分析】利用全称命题的否定可得出结论. 【详解】命题“,40x x ∀∈>R ”的否定是“00,40x x ∃∈≤R ”,故选:D.8.C解析:C 【分析】利用不等式的性质以及充分条件、必要条件的定义逐一判断即可. 【详解】A ,3+36≥,不满足6a b +> ;B ,660a b =≥=,,不满足6a b +> ;C ,由6b <-可得6a b +>,反之,6a b +>,得不到6b <-,如2,5a b ==-.D ,33≥,33≥,不满足6a b +>. 故选:C9.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.10.D解析:D 【分析】根据命题的否定的定义写出命题的否定. 【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .11.A解析:A 【分析】转化成两个集合之间的包含关系求解即可. 【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a 故选:A12.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.二、填空题13.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为: 解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围. 【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立,故240a ∆=-<即22a -<<. 故答案为:(2,2)-.14.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①②【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②15.或【分析】依据题意知p 均为真命题再计算p 为真命题时的取值范围求公共解即得结果【详解】若或与均为真命题则p 均为真命题若命题为真命题即且满足对任意正实数总有成立而当且仅当时等号成立故则若命题为真命题即二解析:1143a ≤≤或23a ≥【分析】依据题意知p ,q 均为真命题,再计算p ,q 为真命题时a 的取值范围,求公共解即得结果. 【详解】若“p 或q ⌝”与“q ”均为真命题,则p ,q 均为真命题.若命题p 为真命题,即0a >,且满足对任意正实数x ,总有1ax x+≥成立,而a x x +≥=a x x =时等号成立,故min 1a x x ⎛⎫+= ⎪⎝⎭,则14a ≥. 若命题q 为真命题,即二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性, 由对称轴3x a =,故31a ≤或32a ≥,故13a ≤或23a ≥. 由p ,q 均为真命题,知14a ≥,且13a ≤或23a ≥, 故1143a ≤≤或23a ≥.故答案为:1143a ≤≤或23a ≥.16.【分析】由题意得从而解出实数a 的取值范围【详解】若命题使得成立是真命题则在上有解即解得或故答案为:【点睛】关键点点睛:开口向上的二次函数图象的应用 解析:()(),13,-∞-+∞【分析】由题意得()2140a ∆=-->,从而解出实数a 的取值范围. 【详解】若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则()2110x a x +-+<在R 上有解,即()2140a ∆=-->,解得3a >或1a <-. 故答案为:()(),13,-∞-+∞【点睛】关键点点睛:开口向上的二次函数图象的应用.17.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一) 【分析】由题意举出反例即可得解. 【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+, 所以x ,y ,z 的值依次可以为3,2,1. 故答案为:3,2,1(答案不唯一).18.【分析】等价于在恒成立即得解【详解】命题使是真命题等价于时恒成立所以在恒成立所以故答案为:【点睛】本题主要考查全称命题的真假求参数的问题的求解意在考查学生对该知识的理解掌握水平解析:0a ≤. 【分析】等价于2a x ≤在x ∈R 恒成立,即得解. 【详解】命题“x R ∀∈,使20x a -≥”是真命题等价于x ∈R 时,2x a ≥恒成立. 所以2a x ≤在x ∈R 恒成立, 所以0a ≤. 故答案为:0a ≤ 【点睛】本题主要考查全称命题的真假求参数的问题的求解,意在考查学生对该知识的理解掌握水平.19.1【分析】根据共轭复数的定义判断命题的真假根据逆命题的定义写出逆命题并判断真假再利用四种命题的真假关系判断否命题与逆否命题的真假【详解】解:根据共轭复数的定义原命题若与互为共轭复数则是真命题;其逆命解析:1 【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假. 【详解】解:根据共轭复数的定义,原命题"若1z 与2z 互为共轭复数,则2121z z z =”是真命题;其逆命题是:“若2121z z z =,则1z 与2z 互为共轭复数”,例10z =,23z =,满足条件,但是1z 与2z 不是共轭复数,原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题. 故答案为: 1 【点睛】本题考查原命题, 逆命题,否命题,逆否命题的真假,是基础题.原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.20.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】 解:p 是q 的充分而不必要条件,p q ∴⇒,20x x a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.三、解答题21.(1)(][)1,13,6-;(2)(,6][2,)-∞-⋃+∞.【分析】(1)分别解二次不等式求出命题p 、q 为真命题时x 的范围,由已知条件可得p ,q 一真一假,讨论p 真q 假、p 假q 真即可求解;(2)若p 是q 的充分不必要条件,可得不等式2760x x -+≤的解集是不等式22230x ax a --≤解集的真子集,讨论0a ≥和0a <时22230x ax a --≤的解集,借助数轴即可求解. 【详解】(1)由276(1)(6)0x x x x -+=-≤-,解得16x ≤≤.当1a =时,由223(3)(1)0x x x x --=-≤+,解得13x -≤≤. 因为“p q ∨”为真命题,“p q ∧”为假命题,所以p ,q 一真一假. 当p 真q 假时,[]1,6x ∈且(,1)(3,)x ∈-∞-⋃+∞,所以(]3,6x ∈; 当p 假q 真时,()(,6,1)x ∈-∞+∞且[]13,x ∈-,所以[)1,1x ∈-.故实数x 的取值范围为(][)1,13,6-.(2)根据(1)知,:16p x ≤≤.因为22:23(3)()0q x ax a x a x a -=-+≤-,且p 是q 的充分不必要条件,所以当0a ≥时,:3q a x a -≤≤,则136a a -≤⎧⎨≥⎩,解得2a ≥;当0a <时,:3q a x a ≤≤-, 则31,6a a ≤⎧⎨-≥⎩,解得6a ≤-. 综上,实数a 的取值范围为(,6][2,)-∞-⋃+∞. 【点睛】结论点睛:用集合的观点看充分不必要条件:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.(1){}12x x <<;(2)2m ≥ 【分析】(1)分别求两个集合,再求交集;(2)根据条件转化为A B ,列不等式求解. 【详解】 (1)1110022x x x -+<⇔<--,解得:12x <<, {}12A x x ∴=<<,()()22210110,0x x m x m x m m -+-<⇔-+--<>,解得:11m x m -<<+,{}11B x m x m ∴=-<<+;当2m =时,{}13B x x =-<<,{}12A B x x ∴⋂=<<;(2)若x ∈A 是x ∈B 的充分不必要条件,则A B , 1112m m -≤⎧∴⎨+≥⎩,解得:2m ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1){}11x x -<≤;(2)(],4-∞-.【分析】(1)先求出集合A ,B 和B R ,再利用交集运算即得结果; (2)先根据充分不必要条件得到集合A ,B 的包含关系,再列关系计算即可. 【详解】(1)∵{|1B x x =<-或}5x >,∴{}15R B x x =-≤≤, 当2a =-时,{}1A x x =<,因此,{}11R A B x x =-≤<;(2)∵x A ∈是x B ∈的充分不必要条件,∴A B ⊆,且A B ≠,又{}3A x x a =<+,{|1B x x =<-或}5x >.∴31a +≤-,解得4a ≤-.因此,实数a 的取值范围是(],4-∞-.24.()10,1,2⎛⎤+∞ ⎥⎝⎦.【分析】由p q ∨是真命题,p q ∧是假命题,得到,p q 一真一假,分两种情况,求出c 的范围.【详解】解:∵p q ∨是真命题,p q ∧是假命题,∴p ,q 中一个是真命题,一个是假命题.若p 真q 假,则有01,120,c c <<⎧⎨-≥⎩解得012c <≤; 若p 假q 真,则有1,120,c c >⎧⎨-<⎩解得1c >. 综上可知,满足条件的c 的取值范围是()10,1,2⎛⎤+∞ ⎥⎝⎦.本题考查了命题真假的应用,逻辑连结词的理解与应用,还考查转化与化归思想,分类讨论思想,属于中档题.25.(1)见解析;(2)见解析.【分析】(1)直线方程与抛物线方程联立,消去x 后利用韦达定理判断2121212121()4OA OB x x y y y y y y ⋅=+=+的值是否为3,从而确定此命题是否为真命题; (2)根据四种命题之间的关系写出该命题的逆命题,然后再利用直线与抛物线的位置关系知识来判断其真假.【详解】(1)证明:设过点(,)30T 的直线l 交抛物线22y x =于点1122(,),(,)A x y B x y ,当直线l 的斜率不存在时,直线l 的方程为3x =,此时,直线l 与抛物线相交于(3,A B ,所以963OA OB ⋅=-=,当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,22(3)y x y k x ⎧=⎨=-⎩,得2260ky y k --=, 则126y y =-, 又因为22112211,22x y x y ==, 所以212121212136()6344OA OB x x y y y y y y ⋅=+=+=-=, 综上所述,命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题;(2)逆命题是:“设直线l 与抛物线2y =2x 相交于A 、B 两点,如果OA OB ⋅=3,那么该直线过点2(1)3y x =+”,该命题是假命题, 例如:取抛物线上的点1(2,2),(,1)2A B ,此时OA OB ⋅=3,直线AB 的方程为2(1)3y x =+,而T (3,0)不在直线AB 上. 【点睛】该题考查的是有关判断命题真假的问题,涉及到的知识点有四种命题之间的关系,直线与抛物线的位置关系,向量的数量积,属于简单题目.26.(1)112a >;(2)11124a <<.(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<; 当p 假q 真时,有11214a a ⎧≤⎪⎪⎨⎪>⎪⎩则a 无解. 综上所述11124a <<. 【点睛】 由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p 或q”为真命题转化为并集的运算;把“p 且q”为真命题转化为交集的运算.。

高中数学选修1-1综合测试题及答案

高中数学选修1-1综合测试题及答案

高中数学选修1-1综合测试题及答案选修1-1模拟测试题一、选择题1.若p、q是两个简单命题,“p或q”的否定是真命题,则必有()A。

p真q真B。

p假q假C。

p真q假D。

p假q真2.“cos2α=-35π/21”是“α=kπ+π/2,k∈Z”的()A。

必要不充分条件B。

充分不必要条件C。

充分必要条件D。

既不充分又不必要条件3.设f(x)=sinx+cosx,那么(。

)A。

f'(x)=cosx-sinxB。

f'(x)=cosx+sinxC。

f'(x)=-cosx+sinxD。

f'(x)=-cosx-sinx4.曲线f(x)=x^3+x-2在点P处的切线平行于直线y=4x-1,则点P的坐标为()A。

(1,0)B。

(2,8)C。

(1,0)和(-1,-4)D。

(2,8)和(-1,-4)5.平面内有一长度为2的线段AB和一动点P,若满足|PA|+|PB|=6,则|PA|的取值范围是A。

[1,4]B。

[1,6]C。

[2,6]D。

[2,4]6.已知2x+y=0是双曲线x^2-λy^2=1的一条渐近线,则双曲线的离心率为()A。

2B。

3C。

5D。

无法确定7.抛物线y^2=2px的准线与对称轴相交于点S,PQ为过抛物线的焦点F且垂直于对称轴的弦,则∠PSQ的大小是()A。

π/3B。

2π/3C。

3π/2D。

与p的大小有关8.已知命题p:“|x-2|≥2”,命题“q:x∈Z”,如果“p且q”与“非q”同时为假命题,则满足条件的x为()A。

{x|x≥3或x≤-1,x∈Z}B。

{x|-1≤x≤3,x∈Z}C。

{-1,0,1,2,3}D。

{1,2,3}9.函数f(x)=x^3+ax-2在区间(1,+∞)内是增函数,则实数a的取值范围是()A。

[3,+∞]B。

[-3,+∞]C。

(-3,+∞)D。

(-∞,-3)10.若△ABC中A为动点,B、C为定点,B(-a1,0),C(a2,0),且满足条件sinC-sinB=sinA,则动点A的轨迹方程是()A。

高中数学选修1-1考试题及答案

高中数学选修1-1考试题及答案

高中数学选修1-1考试题一、选择题(本大题有12小题,每小题5分,共60分,请从A ,B ,C ,D 四个选项中,选出一个符合题意的正确选项,填入答题卷,不选,多选,错选均得零分。

)1.抛物线24yx 的焦点坐标是A .(0,1)B .(1,0)C .1(0,)16D .1(,0)162.设,aR 则1a是11a的A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件3.命题“若220ab,则,a b 都为零”的逆否命题是A .若220a b ,则,a b 都不为零B .若220ab,则,a b 不都为零C .若,a b 都不为零,则220abD .若,a b 不都为零,则22a b4.曲线32153yxx在1x 处的切线的倾斜角为A .34B .3C .4D .65.一动圆P 与圆22:(1)1A x y外切,而与圆22:(1)64B x y内切,那么动圆的圆心P 的轨迹是A .椭圆B .双曲线C .抛物线D .双曲线的一支6.函数()ln f x x x 的单调递增区间是A .(,1)B .(0,1)C .(0,)D .(1,)21世纪教育网7.已知1F 、2F 分别是椭圆22143xy的左、右焦点,点M 在椭圆上且2MF x轴,则1||MF 等于21世纪教育网A .12B .32C .52D .38.函数2()xf x x e 在[1,3]上的最大值为A .1B .1eC .24eD .39e9. 设双曲线12222by ax 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为().A.45 B. 5C.25 D.510. 设斜率为2的直线l 过抛物线2(0)yax a的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24yx B.28yx C.24yx D.28y x11. 已知直线1:4360l x y 和直线2:1l x,抛物线24y x 上一动点P 到直线1l 和直线2l 的距离之和的最小值是A.2B.3C. 4D. 112. 已知函数()f x 在R 上可导,且2'()2(2)f x xxf ,则(1)f 与(1)f 的大小(1)(1)(1)(1)(1)(1).Af f Bf f Cf f D不确定二、填空题(本大题有4小题,每小题5分,共20分,请将答案写在答题卷上)13.已知命题:,sin 1p x R x ,则p 为________。

最新人教A版高中数学选修1-1 1.3-1.4试题(含答案)

最新人教A版高中数学选修1-1 1.3-1.4试题(含答案)

高中新课标数学选修(1-1)1.3~1.4测试题一、选择题1.若命题:21()+∈Z是偶数,q n np m m-∈Z是奇数,命题:21()则下列说法正确地是()A.p q∨为真B.p q∧为真C.p⌝为真D.q⌝为假答案:A2.在下列各结论中,正确地是()①“p q∧”为真是“p q∨”为真地充分条件但不是必要条件;②“p q∧”为假是“p q∨”为假地充分条件但不是必要条件;③“p q∨”为真是“p⌝”为假地必要条件但不充分条件;④“p⌝”为真是“p q∧”为假地必要条件但不是充分条件.A.①②B.①③C.②④D.③④答案:B3.由下列命题构成地“p q∨”,“p q∧”均为真命题地是()A.:p菱形是正方形,:q正方形是菱形B.:2p是偶数,:2q不是质数C.:15p是质数,:4q是12地约数D.{}⊆,,:q a a b c:p a a b c∈,,,{}{}答案:D4.命题:p 若a b ∈R ,,则1a b +>是1a b +>地充分条件但不是必要条件,命题:q 函数12y x =--地定义域是(][)13--+U ,,∞∞,则下列命题( )A.p q ∨假 B.p q ∧真 C.p 真,q 假 D.p 假,q 真答案:D5.若命题:p x ∀∈R ,22421ax x a x ++-+≥是真命题,则实数a 地取值范围是( )A.3a -≤或2a ≥ B.2a ≥C.2a >- D.22a -<<答案:B6.若k M ∃∈,对x ∀∈R ,210kx kx --<是真命题,则k 地最大取值范围M 是( )A.40k -≤≤ B.40k -<≤C.40k -<≤ D.40k -<<答案:C二、填空题7.命题“全等三角形一定相似”地否命题是 ,命题地否定是 .答案:两个三角形或不全等,则不一定相似;两个全等三角形不一定相似8.下列三个特称命题:(1)有一个实数x ,使2440x x ++=成立;(2)存在一个平面与不平行地两条直线都垂直;(3)有些函数既是奇函数又是偶函数.其中真命题地个数为.答案:29.命题p q∧是真命题是命题p q∨是真命题地(填“充分”、“必要”或“充要”)条件.答案:充分10.命题:p x∃∈R,2250++<是(填“全称x x命题”或“特称命题”),它是命题(填“真”或“假”),它地否定命题:p⌝,它是命题(填“真”或“假”).;真答案:特称命题;假;x∀∈R,2250++≥x x11.若x∀∈R,11-++>是真命题,则实数a地取值范x x a围是.答案:(2)∞-,12.若x∀∈R,2=-是单调减函数,则a地取值范f x a()(1)x围是 .答案:(21)(12)--U ,,三、解答题13.已知命题2:10p xmx ++=有两个不相等地负根,命题2:44(2)10q x m x +-+=无实根,若p q ∨为真,p q ∧为假,求m 地取值范围.解:210x mx ++=有两个不相等地负根24020m m m ⎧->⇔⇔>⎨-<⎩,. 244(2)10x m +-+=无实根2216(2)160430m m x ⇔--<⇔-+<13m ⇔<<. 由p q ∨为真,即2m >或13m <<得1m >;p q ∧∵为假,()p q p⌝∧⇒⌝∴或q ⌝为真,p ⌝为真时,2m ≤,q ⌝为真时,1m ≤或3m ≥.p ⌝∴或q ⌝为真时,2m ≤或3m ≥.∴所求m 取值范围为{}123m m m <,或|≤≥.14.若x ∀∈R ,函数2()(1)f x m x x a =-+-地图象和x 轴恒有公共点,求实数a 地取值范围.解:(1)当0m =时,()f x x a =-与x 轴恒相交;(2)当0m ≠时,二次函数2()(1)f x m x x a =-+-地图象和x 轴恒有公共点地充要条件是14()0m m a ∆=++≥恒成立,即24410m am ∆=++≥恒成立,又24410m am ++≥是一个关于m 地二次不等式,恒成立地充要条件是2(4)160a '∆=-≤,解得11a -≤≤.综上,当0m =时,a ∈R ;当0m ≠,[]11a ∈-,.15.有甲、乙、丙、丁四位歌手参加比赛,其中有一位获奖,有人走访了四位歌手,甲说:“我获奖了”,乙说:“甲未获奖,乙也未获奖”,丙说:“是甲或乙获匀”,丁说:“是乙获奖”,四位歌手地话中有两句是对地,请问哪位歌手获奖.甲获奖或乙获奖.解:①乙说地与甲、丙、丁说地相矛盾,故乙地话是错误地;②若两句正确地话是甲说地和丙说地,则应是甲获奖,正好对应于丁说地错,故此种情况为甲获奖;③若两句正确地话是甲说地和丁说地,两句话矛盾;④若两句正确地话是丙说地和丁说地,则为乙获奖,对应甲说地错,故此种情况乙获奖.由以上分析知可能是甲获奖或乙获奖.。

高中数学选修1-1试卷(含答案)

高中数学选修1-1试卷(含答案)

绝密★启用前选修1-1试卷考试范围:必修一;考试时间:100分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1( )2.对于R 上可导的任意函数()x f ,若满足()()01/≥-x fx ,则必有( )A .()()()1220f f f <+B .()()()1220f f f >+C .()()()1220f f f ≥+D .()()()1220f f f ≤+3 ) A 且1m ≠ C .1m > D .0m >4( ).A .12x <<B .13x <<C .3x <D .2x <5.“a ≤3” 是“函数f (x )=x 2−4ax+1在区间[4,+∞)上为增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.抛物线24y x =的焦点是(A )(2,0)(B )(0,2)(C )(0,1) (D )(1,0) 7.函数f (x )=x +ln x 在(0,6)上是( ) A .单调增函数 B .单调减函数C .在(0,1e )上是减函数,在(1e ,6)上是增函数 D .在(0,1e )上是增函数,在(1e ,6)上是减函数8.已知12,F F 分别为双曲线C : 右焦点, P 为双曲线C 右支上一点,则12PF F ∆外接圆的面积为( )A B C D 9.“1-=m ”是“直线02)12(=+-+y m mx 与直线033=++my x 垂直”的( )条件 A .充分而不必要 B .必要而不充分 C .充要 D .既不充分也不必要10.已知函数()3f x x =在点P 处的导数值为3,则P 点的坐标为( ) A.()2,8-- B.()1,1-- C.()2,8--或()2,8 D.()1,1--或()1,111.函数32()32f x x x =-+在区间[-1,1]上的极大值是 ( )A 、-2B 、0C 、2D 、4 12.命题“∀x ∈(0,1),x 2−x <0”的否定是( )A .∃x 0∉(0,1),x 02−x 0≥0B .∃x 0∈(0,1),x 02−x 0≥0C .∃x 0∉(0,1),x 02−x 0<0D .∃x 0∈(0,1),x 02−x 0<0第II 卷(非选择题)二、填空题 13”的否定是 .14.椭圆x 25+y 24=1的右焦点为F ,则以F 为焦点的抛物线的标准方程是__________.15.与抛物线x y 82=有一个公共的焦点F ,且两曲线的一个交点为P ,若5||=PF ,则双曲线方程为 .16.特称命题“有些三角形的三条中线相等”的否定为______________________________.三、解答题17.设函数f (x )=lnx +x 2+ax .(1)若x =12时,f (x )取得极值,求a 的值;(2)若f (x )在其定义域内为增函数,求a 的取值范围.○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………18.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,椭圆的短轴端点与双曲线22=12y x -的焦点重合,过点(4,0)P 且不垂直于x 轴直线l 与椭圆C 相交于A 、B 两点. (Ⅰ)求椭圆C 的方程;19.(本小题12分) 一座抛物线形的拱桥的跨度为52米,拱顶离水平面5.6米,水面上有一竹排上放有宽10米、高6米的木箱,问其能否安全通过拱桥?20.已知函数f(x)=13ax 3+(a -2)x +c 的图象如图所示.(1)求函数y =f(x)的解析式;21.已知双曲线的中心在原点,焦点12,F F 在坐标轴上,离心率为2,且过点()4,10-,点()3,M m 在双曲线上.(1)求双曲线方程; (2)求证:12MF MF ⊥; (3)求△12F MF 的面积.6.552参考答案1.C 【解析】考点:双曲线渐近线的求法. 2.C 【解析】试题分析:由已知得'1,()0,()x f x f x >>∴在(1,)+∞单调递增,在(,1)-∞上单调递减,()f x 在1x =取得最小值, (0)(1),f(2)f(1)f(0)f(2)2f(1)f f >>∴+>,选C .考点:导数的性质及函数的单调性. 3.C表示椭圆的充要条件是0{210 21m m m m >->≠-,即且1m ≠,为椭圆方程的一个充分不必要条件是1m >,故选C. 4.A得13,x <<成立的充要条件是13,x <<所以不等式充分不必要条件是12x <<,故选A.【方法点睛】本题通过分式不等式的解集主要考查充分条件与必要条件,属于中档题. 判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理. 5.B 【解析】【分析】函数f(x)=x2﹣4ax+1在区间[4,+∞)上为增函数.可得2a≤4,解得a即可判断出结论.【详解】函数f(x)=x2﹣4ax+1在区间[4,+∞)上为增函数.∴2a≤4,解得a≤2.∴“a≤3”是“函数f(x)=x2﹣4ax+1在区间[4,+∞)上为增函数”的必要不充分条件.故选:B.【点睛】本题考查了二次函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题. 6.D【解析】试题分析:根据抛物线的标准方程可知该抛物线是焦点在x轴上,开口向右的抛物线,所以焦点坐标是(1,0).考点:本小题主要考查抛物线的标准方程.点评:抛物线的标准方程由四种形式,要牢固掌握,灵活应用.7.A【解析】【分析】计算导函数,根据导数的正负,判定原函数单调性,即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试题(选修1-1)一.选择题(本大题共12小题,每小题3分,共36分)1. “21sin =A ”是“︒=30A ”的( ) A .充分而不必要条件 B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件2. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( )A .2B .3 C.5 D.73.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( ) A.116922=+y x B.1162522=+y x C.1162522=+y x 或1251622=+y x D.以上都不对 4.命题“对任意的3210x x x ∈-+R ,≤”的否定是( )A.不存在3210x R x x ∈-+,≤ﻩB .存在3210x R x x ∈-+,≤C .存在3210x R x x ∈-+>, D.对任意的3210x R x x ∈-+>, 5.双曲线121022=-y x 的焦距为( B ) A .22ﻩ B.24 ﻩC.32ﻩ D.346. 设x x x f ln )(=,若2)(0='x f ,则=0x ( )A. 2e ﻩ B. e C . ln 22 D.ln 26. 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A.2- B.2 C .4- D.47.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A ﻩﻩBﻩﻩ C .12 ﻩ D.13 8..函数344+-=x x y 在区间[]2,3-上的最小值为( )A.72 B.36 C.12 D.09.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A . 1ﻩ ﻩB.21 C.ﻩ21- D. 1- 10.抛物线281x y -=的准线方程是( )A . 321=xB .2=y C. 321=y D.2-=y 11.双曲线19422-=-y x 的渐近线方程是( ) A.x y 32±= B .x y 94±= C.x y 23±= D.x y 49±= 12.抛物线x y 102=的焦点到准线的距离是( )A .25B .5C .215 D.10 13.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )。

A.(7, B.(14, C .(7,± D.(7,-±14.函数3y x x 的递增区间是( )A.),0(+∞ B.)1,(-∞ C.),(+∞-∞ D.),1(+∞二.填空题(本大题共4小题,每小题4分,共16分)13.函数1)(23+++=mx x x x f 是R 上的单调函数,则m 的取值范围为 . 14. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB = _____________15.已知双曲线11222-=-+ny n x n = . 16..若双曲线1422=-my x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________. 17.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________;18.函数5523--+=x x x y 的单调递增区间是___________________________。

三.解答题(本大题共5小题,共40分)17(本小题满分8分)已知函数8332)(23+++=bx ax x x f 在1x =及2x =处取得极值.(1) 求a 、b 的值;(2)求()f x 的单调区间.18(本小题满分10分) 求下列各曲线的标准方程(1)实轴长为12,离心率为32,焦点在x 轴上的椭圆; (2)抛物线的焦点是双曲线14491622=-y x 的左顶点.19.设12,F F 是双曲线116922=-y x 的两个焦点,点P 在双曲线上,且01260F PF ∠=, 求△12F PF 的面积。

20.已知函数23bx ax y +=,当1x =时,有极大值3;(1)求,a b 的值;(2)求函数y 的极小值。

21.已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间(2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。

已知椭圆193622=+y x ,求以点)2,4(P 为中点的弦所在的直线方程.20(本小题满分10分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:)1200(880312800013≤<+-=x x x y .已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?21(本小题满分10分)已知双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点为)0,2(1-F 、)0,2(2F 点)7,3(P 在双曲线C 上.(1)求双曲线C 的方程;(2)记O为坐标原点,过点Q (0,2)的直线l 与双曲线C相交于不同的两点E 、F ,若△OEF的面积为求直线l的方程.参考答案一.选择题(本大题共12小题,每小题3分,共36分)1-6 BBCDBD 7-12 ACABC B二.填空题(本大题共4小题,每小题4分,共16分)13. ),31[+∞ 14. 8 15. 12-或24 16. ①、③, ②、④.三.解答题(本大题共5小题,共48分)17(本小题满分8分)解:(1)由已知b ax x x f 366)(2++='因为)(x f 在1=x 及2=x 处取得极值,所以1和2是方程0366)(2=++='b ax x x f 的两根故3-=a 、4=b(2)由(1)可得81292)(23++-=x x x x f )2)(1(612186)(2--=+-='x x x x x f当1<x 或2>x 时,0)(>'x f ,)(x f 是增加的;当21<<x 时,0)(<'x f ,)(x f 是减少的。

所以,)(x f 的单调增区间为)1,(-∞和),2(+∞,)(x f 的单调减区间为)2,1(.18 (本小题满分10分)解:(1)设椭圆的标准方程为)0(12222>>=+b a by a x 由已知,122=a ,32==a c e 20,4,6222=-===∴c a b c a 所以椭圆的标准方程为1203622=+y x . (2)由已知,双曲线的标准方程为116922=-y x ,其左顶点为)0,3(- 设抛物线的标准方程为)0(22>-=p px y , 其焦点坐标为)0,2(p -,则32=p 即6=p 所以抛物线的标准方程为x y 122-=. 19(本题满分10分)解:设以点)2,4(P 为中点的弦的两端点分别为),(11y x A 、),(22y x B ,由点A 、B 在椭圆193622=+y x 上得 19362121=+y x 19362222=+y x 两式相减得:093622212221=-+-y y x x 即)()(422212221x x y y --=- ))(())((421212121x x x x y y y y -+-=-+∴ 显然21x x =不合题意,21x x ≠∴ 由4,82121=+=+y y x x 21448)(421212121-=⨯-=++-=--=∴y y x x x x y y k AB 所以,直线AB 的方程为)4(212--=-x y 即所求的以点)2,4(P 为中点的弦所在的直线方程为082=-+y x .20(本小题满分10分)(I)当40=x 时,汽车从甲地到乙地行驶了5.240100=小时, 耗油5.175.2)840803401280001(3=⨯+⨯-⨯(升) 答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油5.17升. (2)当速度为x 千米/小时时,汽车从甲地到乙地行驶了x 100小时,设耗油量为)(x h 升,依题意得)1200(41580012801100)88031280001()(3≤<-+=⋅+-=x x x x x x h 则 )1200(64080800640)(2332≤<-=-='x x x x x x h 令0)(='x h 得 80=x当)80,0(∈x 时,0)(<'x h ,)(x h 是减函数;当)120,80(∈x 时,0)(>'x h ,)(x h 是增函数.故当80=x 时,)(x h 取到极小值25.11)80(=h因为)(x h 在]120,0(上只有一个极值,所以它是最小值.答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为25.11升.21(本小题满分10分)解:(Ⅰ)由已知2=c 及点)7,3(P 在双曲线C 上得⎪⎩⎪⎨⎧=+=+1)7(34222222b a b a 解得2,222==b a 所以,双曲线C 的方程为12222=-y x . (Ⅱ)由题意直线l 的斜率存在,故设直线l 的方程为2+=kx y 由⎪⎩⎪⎨⎧=-+=122222y x kx y 得 064)1(22=---kx x k 设直线l 与双曲线C 交于),(11y x E 、),(22y x F ,则1x 、2x 是上方程的两不等实根, 012≠-∴k 且0)1(241622>-+=∆k k 即32<k 且12≠k ①这时 22114k k x x -=+,22116k x x --=⋅ 又2222121212121=-=-⨯⨯⨯=-⋅=∆x x x x x OQ S OEF 即 84)(21221=-+x x x x 8124)14(222=-+-∴k k k 所以 222)1(3-=-∴k k 即0224=--k k 0)2)(1(22=-+∴k k又012>+k 022=-∴k 2±=∴k 适合①式所以,直线l 的方程为22+=x y 与22+-=x y .另解:求出EF 及原点O 到直线l 的距离212k d +=,利用2221=⋅=∆d EF S OEF 求解.或求出直线2+=kx y 与x 轴的交点)2,0(kM -,利用 22)(21212121=-=-=-⋅=∆x x kx x k y y OM S OEF 求解。

相关文档
最新文档