九年级数学圆的基本概念和性质教育教学设计
九年级数学上册(人教版)24.1.1圆教学设计

(二)讲授新知
1.圆的定义:讲解圆的基本概念,强调圆是由一条曲线组成,所有点到圆心的距离相等。
2.圆的性质:讲解圆的半径、直径、周长、面积等基本性质,以及圆的对称性、轴对称性等。
3.圆的周长和面积计算:介绍圆周长和面积的公式,并结合实例进行讲解。
九年级数学上册(人教版)24.1.1圆教学设计
一、教学目标
(一)知识与技能
1.理解圆的定义,掌握圆的基本性质,如半径相等、直径是半径的2倍等。
2.学会使用圆规画圆,掌握圆的对称性质,并能运用到实际中。
3.掌握圆的周长和面积的计算公式,并能灵活运用解决相关问题。
4.了解圆的位置关系,如相离、相切、相交等,并能判断圆与圆、圆与直线之间的位置关系。
3.教学评价:
a.采用形成性评价和终结性评价相结合的方式,全面了解学生的学习过程和结果。
b.重视学生在课堂上的表现,如发言、讨论、练习等,及时给予鼓励和指导。
c.定期进行单元测试,检测学生对圆的知识掌握程度,为下一步教学提供依据。
4.教学拓展:
a.介绍圆在生活中的应用,如建筑、艺术、科技等领域,激发学生的学习兴趣。
b.计算给定圆的周长和面积,要求使用两种不同的方法计算,并比较结果。
c.画出两个相交、相切和相离的圆,并简要说明判断依据。
2.实践应用题:
a.利用圆的性质,设计一个圆形花园,要求给出花园的半径和面积。
b.在一张白纸上画出一个圆,然后剪下这个圆,测量并计算它的周长和面积。
c.结合生活实例,说明圆在实际应用中的优势。
c.如果一个圆的半径增加了两倍,那么它的周长和面积会发生怎样的变化?
初中数学《圆的基本概念和性质》教案

初中数学《圆的基本概念和性质》教案§27.1 圆的基本概念和性质一、课题§27.1 圆的基本概念和性质二、教学目标1.在同圆或等圆中,等弧与等弦的关系.2.垂径定理.三、教学重点和难点重点:通过探索掌握垂径定理.难点:垂径定理的应用.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程设计(一)、观察与思考让学生拿出课前准备的两张半透明的纸,在纸上分别画出半径相等的⊙O1 , ⊙O2及相等的两条弦AB,CD,把两张纸叠放在一起,使⊙O1 ,和⊙O2,固定圆心,将一张纸绕圆心旋转适当的角度,使弦AB和CD重合.让学生观察,讨论,得到什么结论在同圆或等圆中,相等的弧所对的弦相等,相等的弦所对的优弧和劣弧相等.一起探究将画有圆(如右图)的纸片对折,探究圆中的相等的线段、弧.学生操作,交流得出:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.通过"大家谈谈"进而得出:平分弦(不是直径)的直径垂直于弦,并且平分这条弦所对的两条弧.垂径定理的应用例:课本第7页以赵州桥背景的题目.(三)、小结在同圆或等圆中,等弦和等弧的关系是将圆中的线段和弧建立了关系;垂径定理的应用非常广泛,要注意它的应用.七、练习设计P6练习和习题八、教学后记后备练习:1. 如图,已知⊙O的半径,弦的弦心距,那么______________.2. 如图,AB是半圆的直径,O是圆心,C是半圆上一点,E是弧AC的中点,OE交弦AC于D.若AC=8cm,DE=2cm,则OD的长为cm.3. ⊙O的半径为5cm,弦,,则和的距离是A.7cm B.8cm C.7cm或1cm D.1cm4. 工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图8-1所示的工件槽,其中工件槽的两个底角均为,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图(1)所示的,,三个接触点,该球的大小就符合要求.图(2)是过球心,,三点的截面示意图.已知⊙O的直径就是铁球的直径,,,,.请你结合图(1)中的数据,计算这种铁球的直径.。
九年级数学大单元教学设计《圆》

文章标题:探究圆的奥秘:九年级数学大单元教学设计第一部分:引言1. 圆在我们日常生活中随处可见,从自然界的圆形物体到人造的轮胎、硬币等,圆形是我们生活中常见的形状之一。
2. 九年级数学大单元教学设计《圆》是一个极具挑战性和重要性的教学内容,通过对圆的深入探究,学生不仅能够理解圆的性质,还能够培养解决问题的能力和逻辑思维能力。
第二部分:认识圆3. 圆是指与圆心距离相等的点的集合,圆心是圆的中心点,半径是连接圆心和圆上任意一点的线段,直径是通过圆心并且两端在圆上的线段。
4. 九年级数学大单元教学设计《圆》的教学目标主要包括:认识圆的基本概念,掌握圆的性质,理解弧长和扇形面积的计算方法,并能够应用所学知识解决相关问题。
第三部分:探索圆的性质5. 圆的性质包括:圆的面积公式S=πr²,圆的周长公式C=2πr,弧长公式L=θ/360°*2πr,扇形面积公式A=1/2r²θ,其中r表示半径,θ为圆心角的大小。
6. 通过对圆的性质进行多角度的探究和分析,让学生能够全面理解圆的相关概念和公式,并且能够熟练运用到解决实际问题中。
第四部分:圆的应用7. 圆在生活中有着广泛的应用,在工程、建筑、地理测量等领域都有着重要作用。
通过圆的面积公式可以计算出园地的面积,通过圆的周长公式可以计算建筑物的周长等。
8. 九年级数学大单元教学设计《圆》应该围绕着实际应用情景展开,让学生通过解决实际问题来加深对圆相关知识的理解和掌握。
第五部分:总结与展望9. 通过本次的九年级数学大单元教学设计《圆》,学生不仅能够掌握圆的基本概念和性质,还能够培养解决实际问题的能力和数学思维能力。
10. 未来,教师可以通过更多生动有趣的教学方法和案例,让学生对圆形的认识更加深入,进一步拓展学生的数学思维,提高他们的数学素养。
个人观点和理解我认为,九年级数学大单元教学设计《圆》是一个承上启下的重要内容,通过系统的教学设计,能够帮助学生打下坚实的数学基础,培养他们的数学兴趣和解决问题的能力。
鲁教版数学九年级下册第五章《圆》教学设计

鲁教版数学九年级下册第五章《圆》教学设计一. 教材分析鲁教版数学九年级下册第五章《圆》是整个初中数学的重要内容,主要介绍了圆的定义、性质、圆的度量、弧度制、圆的方程等基本知识。
本章内容在学生的数学知识体系中占有重要地位,为学生进一步学习高中数学和从事相关领域的工作奠定了基础。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认知和推理能力有一定的提高。
但是,对于圆的相关概念和性质,学生可能还存在一定的困惑,特别是圆的方程和弧度制的理解。
因此,在教学过程中,需要关注学生的认知水平,引导学生逐步理解和掌握圆的相关知识。
三. 教学目标1.了解圆的定义和性质,掌握圆的标准方程和一般方程。
2.理解弧度制的概念,熟练进行角度与弧度的互换。
3.能够运用圆的知识解决实际问题,提高学生的数学应用能力。
4.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.圆的定义和性质2.圆的标准方程和一般方程的推导3.弧度制的理解和应用4.圆的方程在实际问题中的应用五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究和解决问题。
2.利用多媒体和实物模型,直观展示圆的性质和方程。
3.采用合作学习的方式,培养学生的团队协作能力。
4.注重学生的个体差异,给予学生个性化的指导。
六. 教学准备1.多媒体教学设备2.圆的相关模型和教具3.教学课件和教案4.练习题和测试题七. 教学过程1.导入(5分钟)利用多媒体展示生活中的圆形物体,引导学生关注圆的形状和特点。
提问:你们对这些圆形物体有什么认识?什么是圆?2.呈现(10分钟)介绍圆的定义和性质,引导学生通过观察和思考,总结圆的特点。
展示圆的标准方程和一般方程,解释弧度制的概念。
3.操练(10分钟)让学生分组讨论,运用圆的知识解决实际问题。
例如,计算圆的周长和面积,将角度转换为弧度等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)呈现一些有关圆的练习题,让学生独立完成。
《24.1.1 圆》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《圆》教学设计方案(第一课时)一、教学目标1. 掌握圆的定义、性质及相关概念;2. 能够运用圆的性质解决相关问题;3. 培养学生的观察、思考和解决问题的能力。
二、教学重难点1. 教学重点:圆的定义和性质的应用;2. 教学难点:理解并掌握圆心角、弦、弧之间的关系以及圆中的有关计算问题。
三、教学准备1. 准备教学用具:圆规、圆板、绳子、剪刀等;2. 准备教学材料:相关例题和练习题;3. 安排教学时间:本课时为单课时,约45分钟。
四、教学过程:(一)引入1. 复习引入:请学生回忆小学学习过的平面图形有哪些?2. 设问引入:在初中,我们将学习一种特殊的几何图形——圆。
那么,圆在生活中有哪些应用呢?我们如何来研究圆呢?(二)新课活动一:感知圆的形状1. 请学生利用手中的圆规和圆规画圆,并观察圆的形成过程。
2. 讨论:圆的形成与什么有关?圆的大小与什么有关?圆的位置与什么有关?3. 汇报交流:圆的位置用定点、定长来描述;圆的半径、直径的变化规律;圆的形状特征。
活动二:画圆工具介绍介绍圆的各部分名称,重点讲解圆心和半径。
并介绍画圆的工具——圆规。
活动三:探究圆的特征请学生尝试用量角器、圆规等工具对以下问题进行探究:(1)任意两个半径分别相等吗?(2)任意两个直径分别相等吗?(3)所有半径的长度都相等吗?(4)所有直径的长度都相等吗?通过探究引导学生归纳总结出圆的特征。
活动四:生活中的圆请学生列举生活中的圆形物体,并思考为什么我们经常使用圆形?生活中哪些地方用到了圆的知识?目的是激发学生学习兴趣,体会数学在生活中的应用。
(三)小结(学生回答教师补充)通过本节课的学习,你有什么收获?特别要注意哪些概念和特征?哪些内容需要我们牢记的?本节课与小学的数学知识有什么联系与区别?还有什么疑问?(鼓励求异思维)(四)作业布置(必做题、选做题)必做题:教材66-67页练习题。
选做题:思考题。
思考题为:有三个完全一样的等腰直角三角形ABC,∠ACB=90°,AC=BC=a,试着用这些三角形拼成各种形状的圆,并求出每个圆的面积。
苏科版数学九年级上册第2章《圆》教学设计1

苏科版数学九年级上册第2章《圆》教学设计1一. 教材分析《苏科版数学九年级上册第2章《圆》》是学生在学习了平面几何基本概念和性质的基础上,进一步研究圆的相关知识。
本章内容包括圆的定义、性质、圆的方程、圆与直线的关系等。
通过本章的学习,使学生了解圆的基本概念和性质,掌握圆的方程的求法,培养学生解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。
但部分学生对圆的概念和性质理解不深,对于圆的方程的求法和解题方法还不够熟练。
因此,在教学过程中,要注重引导学生深入理解圆的概念和性质,并通过大量的练习,提高学生解决实际问题的能力。
三. 教学目标1.理解圆的定义和性质,掌握圆的方程的求法。
2.培养学生解决实际问题的能力,提高学生的逻辑思维能力和空间想象能力。
3.培养学生合作学习的意识,提高学生的沟通能力和团队协作能力。
四. 教学重难点1.圆的定义和性质的理解。
2.圆的方程的求法和解题方法的掌握。
五. 教学方法1.采用问题驱动法,引导学生主动探究圆的定义和性质。
2.采用案例分析法,分析实际问题,培养学生解决实际问题的能力。
3.采用小组合作学习法,培养学生合作学习的意识,提高学生的沟通能力和团队协作能力。
六. 教学准备1.准备相关的教学案例和实际问题,用于课堂分析和讨论。
2.准备教学PPT,用于辅助教学。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些与圆相关的实际问题,引导学生思考圆的定义和性质,激发学生的学习兴趣。
2.呈现(10分钟)讲解圆的定义和性质,引导学生通过PPT了解圆的相关知识。
在此过程中,注重引导学生主动参与,提问学生对圆的定义和性质的理解。
3.操练(10分钟)通过PPT展示一些例题,讲解圆的方程的求法。
在此过程中,引导学生主动思考,解答问题。
同时,提醒学生注意解题方法的总结。
4.巩固(10分钟)布置练习题,让学生独立完成。
九年级数学上册《确定圆的条件》教案、教学设计

(1)已知圆心坐标为(3,-4),半径为5cm,求圆的方程。
(2)已知圆上三个点A(1,2)、B(3,-2)、C(-1,6),求圆的方程。
3.思考题:
(1)为什么确定圆需要三个条件?两个条件或四个条件可以吗?
(2)在实际生活中,你能举出圆的三个确定条件的应用实例吗?
4.小组合作任务:
4.小组合作任务要求组内成员积极参与,共同完成任务,并在课堂上进行分享。
(三)学生小组讨论,500字
1.教师将学生分成小组,每组讨论以下问题:
(1)如何通过三个点确定一个圆?
(2)如何通过两个点和一条直线确定一个圆?
(3)如何通过一个点和一条直线确定一个圆?
2.学生在小组内进行讨论,教师巡回指导,解答学生的疑问。
3.每个小组派代表分享讨论成果,教师点评并总结。
(四)课堂练习,500字
2.教学过程:
(1)导入:通过展示生活中的圆形物体,引导学生回顾圆的基本概念,为新课的学习做好铺垫。
(2)新知探究:引导学生通过观察、实践、思考,发现确定圆的条件,并学会推导圆的方程。
(3)例题讲解:精选典型例题,讲解解题思路,强调数形结合的方法,帮助学生掌握解题技巧。
(4)巩固练习:设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题能力。
1.教师通过几何画板或实物展示,引导学生发现确定圆的三个条件:圆心、半径、直径。
2.教师详细讲解圆心、半径、直径的定义,以及它们之间的关系,如半径是直径的一半,圆心在圆上等。
3.教师引导学生通过画图、计算、推理等方法,推导出圆的标准方程和一般方程。
4.教师强调数形结合的思想,让学生明白方程与图形之间的联系。
(一)导入新课,500字
人教版数学九年级上册24.1.1《圆》教学设计

人教版数学九年级上册24.1.1《圆》教学设计一. 教材分析人教版数学九年级上册第24.1.1节《圆》是本册教材中的重要内容,主要介绍了圆的概念、特征以及圆的直径、半径等基本概念。
本节内容为学生提供了丰富的探究活动,让学生在探究圆的性质过程中,进一步理解圆的相关概念,提高空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的认识和理解有一定的深度。
但圆作为一个特殊的几何图形,其性质和特点与其他图形有很大的不同,学生需要通过实例和探究活动,来理解和掌握圆的相关概念。
三. 教学目标1.知识与技能:使学生了解圆的概念,掌握圆的特征,理解圆的直径、半径等基本概念。
2.过程与方法:培养学生通过实例探究圆的性质,提高空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 教学重难点1.重点:圆的概念、特征,圆的直径、半径等基本概念。
2.难点:圆的性质的探究和理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实例和探究活动,理解和掌握圆的相关概念。
2.利用多媒体课件,直观展示圆的性质和特点,提高学生的空间想象能力。
3.分组讨论,培养学生的团队协作能力和自主学习能力。
六. 教学准备1.多媒体课件2.圆的相关实例和图片3.分组讨论的素材七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的圆形物体,如硬币、地球等,引导学生关注圆形的特征,激发学生对圆的学习兴趣。
2.呈现(10分钟)介绍圆的概念和特征,讲解圆的直径、半径等基本概念,让学生初步理解圆的相关知识。
3.操练(10分钟)学生分组讨论,每组选取一个圆形物体,观察和测量其直径、半径等,总结圆的性质。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)学生独立完成教材中的相关练习题,教师及时批改和反馈,巩固学生对圆的概念和性质的理解。
5.拓展(10分钟)引导学生思考:圆还有哪些其他的性质和特点?如何应用圆的性质解决实际问题?教师与学生互动,共同探讨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.直径是弦,弦是直径.这句话正确吗?(学生口答并说明理由)
教师强调:直径是弦,但在一般情况下弦不是直径,只有在弦经过圆心时,这弦才叫做直径.
2.半圆是弧吗?弧是不是半圆?(学生口答,并说明理由)
教师强调:半圆是弧,但在一般情况下弧不是半圆,只有直径的两个端点分圆成的两条弧才是半圆.
3.长度相等的两条弧是等弧吗?为什么?(学生口答)
另外还要注意,等圆和等弧的概念,是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据.
第二课时
一、引入新课
上节课我们一起认识了圆及圆的有关概念,我们做如下练习。
指出图中所有的弦和弧:
这节课我们继续认识圆中的弦与弧,探究它们之间的关系。
二、观察与思考
让学生做如下操作:
在两张半透明的纸上,分别画出半径相等的⊙O1,⊙O2及相等的两条弦AB,CD,,把两张纸叠放在一起,使⊙O1与⊙O2重合,固定圆心,将一张纸绕圆心旋转适当角度,使弦AB和弦CD重合。
教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧.(教师用两根长度相等的铁丝,变成弧度不同的两条弧加以比较,此难点很容易被突破)
三、一起探究
1.让学生在一张半透明的纸上以O为圆心画一个圆,将这张纸片沿过点O的直线对折,你发现了什么?
2.将一个圆绕圆心旋转180°后,是否与原图形重合?这能说明什么事实?
回答: 与 是什么关系?
思考:(1)在等圆中,如果两条弧相等,那么它们所对的弦相等吗?
(2)在同圆中,相等的弦所对的弧相等吗?等弧所对的弦呢?
由此你能得出什么结论?
学生通过动手发现弦、弧之间的关系:
在同圆或等圆中,相等的弧所对的弦相等;相等的弦所对的优弧和劣弧分别相等。
三、一起探究
(1)在纸上画出一个圆,并画出任意一条直径及与该直径垂直的一条弦;
生:“不能!”“它们无法滚动!”
出示小人骑不同轮子小车的课件
师:那我们这样吧,把轮子作成椭圆的,可不可以,同时在黑板上画一椭圆。
生:不行,这样一来,车子前进时,就会一忽儿高,一忽儿低。
教师再进一步启发:为什么做成圆形就不会一下高,一下低呢?
学生思考,同桌讨论,并回答:
因为车轮上的任何一点到轴心的距离都相等的。
继续引导学生观察会进一步发现,圆的任意一条直径的两个端点分圆成两条弧,每一条弧我们把它叫做半圆;大于半圆的弧叫做优弧,如图中的弧 , 等,小于半圆的弧叫做劣弧。如图中的 , 等。
3.等圆.
能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆.(用投影或电脑演示圆重合的过程,图3)
4.等弧.
电脑或投影演示两段弧重合的过程,指出:在同圆或等圆中,能够互相重合的弧叫做等弧.
(2)将⊙O沿CD所在的直线对折,哪些线段重合?哪些弧重合?由此你得出什么结论?
学生活动:分成小组动手操作,总结得出的结论,并尽力证明
垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
三、教学重难点
重点:(1)揭示与圆有关的本质属性;(2)垂径定理探索及其应用。
难点:垂径定理探索及其应用。
教学过程设计
第一课时
一、观察与思考
观察汽车和皮带转动轮的视频或图片
提问:车轮是什么形状的?
生:圆形(问题简单,一起回答)
教师又问:“为什么车轮要做成圆形呢?难道不可以做成别的形状,比方说三角、四边形等?”
过程与方法:
1.经历抽象和建立圆的概念、探究圆的对称性及相关性质的过程,熟记圆及有关概念;
2.通过折叠、旋转的动手实验,多观察、探索、发现圆中圆心、弧、弦之间的关系体会研究几何图形的各种方法;
3.利用圆的对称性通过折叠来发现垂径定理,充分体验探索的过程。
情感态度价值观:
体会“从一般到特殊”的数学思想方法及在解决问题的过程中与他人合作的重要性。
学生活动:动手操作,探索圆的对称性。
结论:圆是轴对称图形,过圆心的每一条直线都是它的对称轴。
圆也是中心对称图形,圆心是它的对称中心。
四、练习
教材P3—P4练习1,2
五、小结
这节课我们学习了哪些主要概念?知道了圆的什么性质?
在学生回答的基础上,教师强调:
本节课学习了圆的有关概念.在这些概念中,要特别注意“直径和弦”、“弧和半圆”,以及“同圆、等圆和同心圆”这些概念的区别和联系.
进一步指出:图中弦AB经过圆心O,我们把经过圆心的弦叫做直径.最后让学生观察,得出:直径等于半径的2倍.
2.弧.
继续观察图2,发现,连结圆上任意两个点可以得到一条弦。同时,这两个点还将圆分成两部分,我们把每一部分叫做圆弧,即:圆上任意两点间的部分叫做圆弧,简称弧。用符号“⌒”表示,如以C、D为端点的弧,记做 。
数学源于生活,又服务于生活,最终要解决生活中的问题。利用现代多媒体帮助学生理解和学习数学,探索与分析,讨论与归纳等数学活动是学习的主要方式。
二、教学目标
知识与技能:
1.能在图形中准确识别圆、圆心、半径、直径、圆弧、半圆、等圆、等弧等;
2.认识圆的对称性,知道圆既是轴对称图形,又是中心对称图形;
3.能说出等弦、等弧之间的关系,能灵活运用垂径定理及逆定理进行有关计算和证明。
二、大家谈谈
同学们知道怎样画出一个圆么?你都有哪些方法
学生畅所欲言,然后老师动画演示画圆的过程,总结圆定义并板书。
平面上到定点O的距离等于定长的所有点组成的图形叫做圆,定点O叫做圆心,线段OA叫做圆的半径。
以O为圆心的圆,记做⊙O,读作:圆O。
几个概念:
1.弦和直径.
利用上述图形,让学生任意连结圆上两点,就得到一条线段.指出:连结圆上任意两点的线段叫做弦.如线段CD,AB,EF,DF都叫做⊙O的弦.(如图2)
九年级数学圆的基本概念和性质-教学设计
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
第二十八章圆
§28.1圆的概念及性质
一、教学设计思想
圆是初中几何中重要的内容之一。本节通过第一课时建立圆的概念,认识圆的轴对称性与中心对称性。讲解时将观察与思考、操作与实践等活动贯穿于教学全过程,使学生积累一定的数学活动经验。第二课时加深学生对弦、弧之间关系的认识,掌握垂径定理及其逆定理。教学时先让学生动手操作来发现结论,再通过推理的方式说明结论的正确性。