遥感原理与应用
简述遥感的基本原理及应用

简述遥感的基本原理及应用遥感是利用人造卫星、飞机、无人机或地面观测站等平台对地球表面进行观测和测量的技术。
遥感的基本原理是通过接收和记录地球表面反射和辐射的能量,并将其转化为电信号,进而提供地面信息和数据。
遥感技术主要应用于地质勘探、农业、气象、环境保护、城市规划等领域。
遥感的基本原理包括电磁波与物体相互作用、反射与辐射、传感器及数据的获取与处理等。
遥感利用电磁波来获取地面信息,电磁波通过空气、云、尘埃等自然界中的物质传播,当它与地球表面上的物体相互作用时,会发生反射、散射、吸收等过程。
利用这些过程,遥感技术可以测量并分析地球表面上的对象的光谱、热力学特性和形状等重要信息。
遥感的应用广泛,涵盖了很多领域。
在地质勘探方面,遥感可以帮助寻找地下资源,如石油、天然气和矿藏。
通过分析地质特征、土壤类型和植被覆盖等信息,可以确定矿区位置和资源储量。
在农业领域,遥感可以监测作物的生长状况、土壤湿度和病虫害等问题,提供精确的农作物管理和灾害预警信息。
在气象领域,遥感可以监测大气成分、云层和降水等,为气象预报和天气监测提供重要数据。
在环境保护方面,遥感可以检测森林覆盖变化、土地利用变化和水资源管理等问题,促进可持续发展和生态保护。
在城市规划方面,遥感可以提供城市发展和用地规划所需的数据,帮助城市规划师做出更科学的决策,在城市建设过程中提高效率和减少资源浪费。
遥感还有其他一些应用领域。
例如,遥感可以监测自然灾害,如洪水、地震、火灾等,及时提供救援和应急响应。
遥感还可以监测海洋和水质,了解海洋生态系统的变化和海洋资源的利用情况。
另外,遥感还可以用于考古学领域,帮助寻找古代文明的遗址和文化遗产等。
此外,遥感技术还可以用于导航和测绘等领域,提供高精度的地理数据。
总之,遥感技术的基本原理和应用十分重要和广泛。
通过利用遥感技术,可以获取地球表面的重要信息,提供决策支持和数据支持,促进各个领域的发展和进步。
同时,随着遥感技术的不断发展和创新,未来遥感技术的应用领域还将继续扩大,为人类社会的可持续发展做出更大的贡献。
遥感原理与应用

通过长时间序列的卫星 遥感影像,分析城市建 成区的变化。
技术特点
动态监测,时间跨度长, 可分析城市扩张的规模 和速度。
应用效果
为城市规划、土地管理、 环境保护等提供决策依 据。
THANKS FOR WATCHING
感谢您的观看
04 遥感应用案例
森林火灾监测
监测原理
利用卫星或飞机搭载的遥感设备,通过热红外波段探测地表温度 异常,及时发受地面条件限制,可迅速定位火灾位 置。
应用效果
为灭火救援提供宝贵时间,减少火灾损失,评估火灾影响。
土地利用变化监测
监测原理
01
通过比较不同时期的卫星遥感影像,分析土地利用类型的差异。
利用遥感技术监测城市扩张情况,为城市规划和土地管理提供数 据支持。
城市绿地监测
遥感技术能够监测城市绿地分布和面积,为城市绿化建设和生态保 护提供依据。
城市交通状况监测
通过遥感影像分析城市交通状况,为城市交通管理和规划提供数据 支持。
灾害监测遥感
地震灾害监测
利用遥感技术监测地震灾害造成的破 坏,为灾后救援和重建提供数据支持 。
洪涝灾害监测
遥感技术能够实时监测洪涝灾害发生 区域,为灾害救援和灾后评估提供依 据。
03 遥感技术发展
高光谱遥感
高光谱遥感是一种利用光谱信息进行地物识别和分类的技术,通过获取地物在不 同光谱波段的反射和辐射信息,实现对地物的精细分类和特征提取。
高光谱遥感技术能够提供更丰富、更准确的地物光谱信息,广泛应用于环境监测 、资源调查、城市规划等领域。
农业灾害监测
遥感技术能够快速发现病虫害、旱 涝等灾害,为农业减灾提供预警和 决策支持。
林业遥感
遥感的工作原理和应用

遥感的工作原理和应用工作原理遥感是利用传感器对地球表面物体的电磁辐射进行探测和测量的技术。
它基于物体对不同波段的辐射具有不同的反射、散射、吸收特性这一原理。
遥感技术主要包括被动遥感和主动遥感两种形式。
被动遥感被动遥感是指传感器接收地球表面反射和发射的自然辐射。
传感器通过不同波段(如可见光、红外线、微波等)接收地表反射出的辐射,然后进行记录和分析。
被动遥感可用于获取地表反射率、植被覆盖度、气温变化等信息。
主动遥感主动遥感是指传感器通过发射电磁波并接收其返回信号来获取地表信息。
常见的主动遥感技术包括雷达和激光雷达。
雷达利用电磁波在地表和大气中的传播特性来探测地表目标,可用于获取地表高程、地表形状等信息。
激光雷达则利用激光束对地表进行扫描,并通过接收返回的激光信号来获取地表的距离和形状等信息。
应用领域遥感技术在地球科学、农业、环境保护、城市规划等领域有着广泛的应用。
地球科学遥感技术在地球科学领域扮演着重要的角色。
通过遥感技术,科学家可以获得大范围的地表地貌、地质构造、水文等信息,从而深入研究地球的演化历史、自然灾害等。
遥感技术还可用于监测地壳的运动、火山活动、地震预警等。
农业遥感技术在农业领域的应用主要体现在农作物管理和精准农业方面。
通过遥感图像,农民和农业专家可以获得农田植被的生长状态、病虫害的发生情况,从而及时采取措施进行管理。
遥感技术还可以用于农田的土壤质量评估、水分监测等,实现农业生产的精准化管理。
环境保护遥感技术在环境保护领域的应用广泛而深入。
通过遥感技术,可以监测大气污染、水体污染、森林砍伐等环境问题。
遥感技术还可以用于监测和预测自然灾害,如洪水、干旱和森林火灾等,从而提前做出应对措施。
城市规划遥感技术在城市规划中有着重要的应用价值。
通过遥感技术,可以获取城市的土地利用情况、道路网络、建筑物分布等信息,为城市规划和管理部门提供决策支持。
遥感技术还可以用于监测城市的扩张和发展,预测城市的未来发展趋势,从而帮助规划师做出科学合理的城市规划方案。
遥感的原理与应用

遥感的原理与应用1. 遥感的定义遥感是通过对地球表面进行远距离观测与感知的技术,利用传感器获取地球表面物体的信息并进行分析和解释。
遥感技术利用电磁波辐射与物体相互作用的特性,通过记录、测量和解释该辐射,可以获取地表和大气的信息。
2. 遥感原理遥感的基本原理是通过感知和测量地球表面物体物理特性与光辐射之间的相互关系。
当遥感器传播出电磁波辐射时,其与物体相互作用后会发生散射、吸收或反射。
这些辐射回到传感器被接收和记录,并通过数据处理进行解释和分析。
3. 遥感的应用领域3.1 地球科学遥感技术在地球科学领域有着广泛的应用。
通过遥感技术,可以监测地球表面的变化,如环境变化、土地覆盖变化、通量变化等。
通过长期的遥感监测,可以对地球环境进行评估和预测。
3.2 城市规划和土地利用遥感技术在城市规划和土地利用方面的应用也十分重要。
通过遥感技术可以获取到城市的地形、道路、建筑、绿化等信息,进而为城市规划和土地利用提供数据支持。
3.3 农业和林业遥感技术在农业和林业领域也有着广泛的应用。
通过遥感技术可以对农作物的生长状况、土壤质量、水资源利用等进行监测和评估,能够为农业生产提供技术支持。
同时,遥感技术也可以用于林业资源的监测和保护。
3.4 海洋科学遥感技术在海洋科学研究中也发挥着重要作用。
通过遥感技术可以获取海洋的温度、盐度、色素含量等信息,能够对海洋生态环境进行监测和评估,为海洋研究提供数据支持。
3.5 灾害监测与防范遥感技术在灾害监测和防范方面也有着重要的应用。
通过遥感技术可以对洪水、干旱、地震、火灾等自然灾害进行实时监测和预警,提供及时的灾害信息,帮助相关部门进行灾害应对和救援工作。
3.6 环境监测与保护遥感技术在环境监测和保护方面扮演着重要的角色。
通过遥感技术可以监测大气污染、水体污染、土壤污染等环境问题,为环境保护提供数据支持。
4. 遥感的发展趋势随着科技的不断发展,遥感技术也在不断创新和进步。
以下是遥感技术的一些发展趋势:•高分辨率遥感技术的发展,可以获取更精准的地表信息。
遥感技术的原理优势应用

遥感技术的原理优势应用一、遥感技术的原理•遥感技术是通过卫星、无人机等载荷设备获取地球表面信息的一种技术。
其原理主要基于电磁波的辐射、反射和传播规律。
•遥感技术利用传感器捕捉地表反射、发射或辐射的电磁能量,将其转化为数字图像或其他形式的信息。
•遥感技术利用卫星和无人机等载荷设备对地面进行全方位、多角度观测,可以获取地球上的各种信息,包括地形、植被、水文、气候、土壤等。
二、遥感技术的优势遥感技术具有以下优势:1.获取大范围、无偏差的数据:遥感技术可以覆盖广阔的地理范围,获取大量数据,而且不受人为主观因素的限制,数据具有客观性和无偏差性。
2.周期性观测和重复性观测:遥感技术可以进行周期性的观测,从而获取同一地区不同时期的数据,并可以对数据进行比较分析,研究地表变化情况。
3.高时空分辨率的数据:遥感技术可以获取高分辨率的数据,即可以观测到较小的地物和地表细节,也可以观测到瞬时的地表变化。
4.多源数据融合:遥感技术可以融合多个传感器的数据,同时获取多种地球表面信息,提高信息提取的准确性和精度。
5.非接触式观测:遥感技术不需要直接接触地面,可以在较远的距离进行观测,减少了人为干扰和对环境的破坏。
三、遥感技术的应用领域遥感技术在许多领域中都得到了广泛应用,主要包括以下几个方面:1.农业:遥感技术可以用于农作物生长监测、土壤质量评估、农作物面积统计等。
通过遥感数据,可以提前预测农作物的生长状态和产量,为农业生产提供科学依据。
2.城市规划:遥感技术可以用于城市土地利用调查、建筑物高度测量、城市扩张监测等。
通过遥感数据,可以对城市的发展进行评估和规划,提高城市规划的科学性和可行性。
3.环境保护:遥感技术可以用于环境污染监测、水体质量评估、森林覆盖监测等。
通过遥感数据,可以及时监测环境变化,评估环境质量,提供科学依据和决策支持。
4.资源调查:遥感技术可以用于矿产资源调查、能源资源勘探、水资源管理等。
通过遥感数据,可以快速获取资源信息,为资源开发和管理提供科学依据。
遥感的原理与应用教学

遥感的原理与应用教学一、遥感的概述•什么是遥感?•遥感的历史发展•遥感的分类二、遥感的原理1.主动遥感和被动遥感2.遥感的基本原理–辐射传输理论–电磁谱和能谱特征–感知和信号处理三、遥感的应用领域•农业•林业•水资源•城市规划•环境监测•灾害管理四、遥感的教学方法与资源1.教学方法–理论讲解–案例分析–实地实习2.教学资源–数据下载–软件工具五、遥感教学的挑战与发展•技术更新迭代快•增加实际案例分析•合理利用互联网资源六、结语•教学总结•遥感的未来发展趋势以上是对《遥感的原理与应用教学》的简要概述,下面将分别对每个部分进行详细说明。
一、遥感的概述遥感是通过感知传感器获取地球表面信息的科学技术。
它可以获取地表、大气和海洋的光谱、空间和时域信息,为人们研究地球系统、资源环境和自然灾害提供了有效手段。
遥感的发展可以追溯到十九世纪末,经历了从航空摄影到卫星遥感再到无人机遥感的演变。
根据获取数据的方式,遥感可以分为主动遥感和被动遥感两种方式。
二、遥感的原理遥感的基本原理是通过感知器感知地球表面发射、反射或散射的电磁信号,并将其转化为可以解读的图像或数据。
遥感的主要原理包括辐射传输理论、电磁谱和能谱特征以及感知和信号处理等方面。
辐射传输理论主要研究电磁辐射在大气、地表和地物之间的传播和相互作用;电磁谱和能谱特征研究地物及其背景在不同波段下的光谱特征;感知和信号处理则是将获取的遥感数据进行处理和分析。
三、遥感的应用领域遥感技术广泛应用于农业、林业、水资源、城市规划、环境监测和灾害管理等领域。
在农业中,可以利用遥感监测作物的生长状况、灾害风险等,提供农田管理和粮食安全的决策支持。
在林业领域,遥感可以用于森林资源调查、林火监测等。
在水资源管理中,可以利用遥感技术监测水质、水量和水土流失等情况。
在城市规划中,可以利用遥感技术进行城市更新和土地利用分析。
在环境监测中,遥感可以提供空气质量、土壤污染等方面的监测数据。
在灾害管理中,可以利用遥感监测自然灾害的发生与扩散,及时采取相应的防控措施。
遥感原理与应用

一.绪论1.遥感的定义:遥感即遥远感知,是在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。
2.遥感的过程:地物发射或反射电磁波通过介质(大气)被传感器接受,通过传感器获取数据,再经计算机对数据处理后,我们提取有用的信息,最后应用于实践。
(地物发射或反射电磁波→介质(大气)→传感器数据获取→计算机数据处理→信息提取→应用)二.电磁波及物理遥感基础1.电磁波的定义:变化的电场和磁场交替产生,以有限的速度由近及远在空间内传播的过程称为电磁波。
2.电磁波的特性:波动性(干涉、衍射、偏振)粒子性(光电转换)3.电磁波谱的定义:按电磁波在真空中传播的波长或频率递增或递减顺序排列,就能得到电磁波谱。
4.(1)地物发射电磁波:①绝对黑体的定义:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。
黑体辐射1.绝对黑体:吸收率α(λ,T)≡1 反射率ρ(λ,T)≡02.绝对白体:吸收率α(λ,T)≡0 反射率ρ(λ,T)≡1 绝对黑体与绝对白体与温度和波长无关。
②遥感的两种形式:被动遥感,主动遥感。
其中太阳是被动遥感最主要的辐射源。
⒈太阳辐射的特点:与黑体特性一致;能量集中在可见光和红外波段。
⒉一般物体的发射辐射:自然界中实际物体的发射和吸收的辐射量都比相同条件下绝对黑体的低。
发射率ε:实际物体与同温度的黑体在相同条件下辐射功率之比。
ε= W′/ W(ε是一个介于0和1的数)►绝对黑体ελ=ε=1►灰体ελ=ε但0<ε<1►选择性辐射体ε=f(λ)►理想反射体(绝对白体)ελ=ε=0大多数物体可以视为灰体:W'=εW=εσT4(2)地物反射电磁波:①光谱反射率:物体的反射辐射通量与入射辐射通量之比。
②反射波谱特征曲线:反射波谱是某物体的反射率(或反射辐射能)随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线即为该物体的反射波谱特性曲线。
同一地物时间效应:地物的光谱特性一般随时间季节变化。
遥感原理与应用

遥感原理与应用红绿蓝1. 遥感:遥远感知,是在不接触的情况下,对目标或自然现象远距离探测和感知的一种技术。
空间中的电磁场。
声场、势场等由于物体的存在而发生变化,测量这些场的变化就可以获取物体的信息,因而电磁波、机械波、重力场、地磁场等都可以用作遥感。
2. 光的波动性形成了光的干涉,衍射,偏振等现象。
干涉是波的叠加原理,衍射,光线偏离直线路径的现象。
【偏振,如果光矢量E在一个固定平面内只沿一个固定方向作振动。
3. 重采样:就是根据一类象元的信息内插出另一类象元信息的过程。
4. 在遥感中,重采样是从高分辨率遥感影像中提取出低分辨率影像的过程。
5. 绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,6. 太阳辐射,包括了整个电磁波波谱范围。
7. 大气窗口:有些波段的电磁辐射通过大气后衰减较小,透过率较高,对遥感十分有利的电磁波波段。
8. 物体对电磁波的反射形式:镜面反射指(物体的反射满足反射定律)、漫反射(入射的电磁波波长a 不变,表面粗糙程度h 逐渐增加,知道h 与a 同数量级,整个表面均匀反射入射电磁波入射到此表面的电磁辐射按照朗伯余弦定律反射)、方向反射(实际地物表面由于地形起伏,在某个方向上反射最强烈。
分类的依据:粗糙程度。
9. 反射率是物体的反射辐射通量与入射辐射通量之比, 这个反射率是在理想漫反射体的情况下,整个电磁波长的反射率。
10. 反射波谱是某物体的反射率(或反射辐射能)随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线即称为该物体的反射波谱特性曲线。
11. 植被的反射波谱特性曲线,由于植被的光合作用相似的反射波谱特性,叶绿素对蓝光和红光吸收作用很强,对绿色反射作用很强。
蓝、红波段为吸收带,绿波段为弱反射带,近红外波段有强反射带,但含水量造成反射吸收12. 测量地物的反射波谱特性曲线主要作用:它是选择遥感波谱段、设计遥感仪器的依据;在外业测量中,它是选择合适的飞行时间的基础资料;它是有效地进行遥感图像数字处理的前提之一,是用户判读、识别、分析遥感影像的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京信息工程大学硕士研究生招生入学考试
《814遥感原理与应用》考试大纲
第一部分课程目标与基本要求
一、课程目标
《遥感原理与应用》课程内容包括遥感的物理基础与成像机理、遥感图像处理与分析和遥感应用三大部分。
通过学习,学生应能掌握遥感技术的基本理论,掌握遥感图像处理的基本原理和方法,掌握遥感图像的地物影像特征、遥感图像解译及遥感制图的基本技能,了解遥感研究现状、遥感技术发展趋势与应用领域,并具备灵活应用各部分知识综合分析问题和解决问题的能力。
二、基本要求
要求学生能够掌握电磁辐射的基本理论和地物的光谱特征,掌握遥感信息的来源与特征,理解遥感图像的成像原理,掌握遥感图像处理与解译的基本原理和方法,了解遥感主要应用领域及发展趋势。
第二部分课程内容与考核目标
第一章遥感的基本概念
1.理解并掌握遥感的基本概念、类型、特点及优势。
2.理解遥感系统的构成。
3.了解遥感发展简史及发展趋势。
第二章电磁辐射与地物光谱特征
1.理解和掌握电磁波谱,辐照度,辐射出射度,辐射亮度,朗伯源,绝对黑体,太阳常数,大气窗口、反射率及反射波谱等基本概念。
2.熟悉遥感常用的电磁波段,理解和掌握普朗克定律,斯蒂芬-波尔兹曼定律,维恩位移定律,基尔霍夫定律。
3.了解大气的成份和结构。
理解大气对太阳辐射的影响,掌握大气散射的类型及其特点,大气窗口的光谱段。
4.了解太阳辐射与地球辐射的特点,了解地球辐射的分段特征。
5.熟悉并掌握植被、水体、岩石和土壤反射波谱的特征。
理解环境对地物光谱特性的影响。
6.理解地物波谱的概念及其对遥感发展的重要意义。
第三章遥感成像原理与遥感图像特征
1.了解世界范围内主要的陆地卫星、气象卫星、对地观测系统(EOS)卫星和海洋遥感卫星平台的特点。
2.掌握目前常用的遥感图像(AVHRR、TM、ETM+、SPOT、IKONOS、QUICKBIRD、MODIS等)的基本技术参数(波谱段范围、分辨率等)。
了解高光谱分辨率、高空间分辨率传感器的最新进展。
3.掌握垂直摄影像片中垂直投影与中心投影的区别。
4.掌握光机扫描及固体自扫描(推帚扫描),瞬时视场角,高光谱遥感的概念。
5.理解摄影成像原理与影像特点。
6.理解扫描成像原理与影像特点。
7.掌握微波遥感、主动遥感与被动遥感概念,了解微波遥感特点,类型及主要传感器工作原理。
了解微波传感器的最新进展。
8.掌握遥感图像空间分辨率、波谱分辨率、辐射分辨率、时间分辨率的概念及意义。
第四章遥感图像处理
1.理解颜色视觉的相关概念、颜色的表示方法。
2.熟练掌握加色法和减色法的彩色合成原理。
3.掌握辐射校正,几何校正等基本概念,理解数字图像与模拟图像的主要区别。
4.理解引起辐射畸变与几何畸变的主要原因,熟悉遥感图像辐射校正和几何校正的基本方法和步骤。
5.理解遥感数字图像对比度增强、空间滤波、彩色变换,图像运算、多光谱变换和多源信息复合的基本方法、原理、步聚和特点。
第五章遥感图像目视解译与制图
1.了解遥感图像目视解译的概念与作用。
2.掌握遥感图像目视解译的直接解译标志、间接解译标志和解译方法,掌握目视解译的基本步聚。
3.掌握遥感摄影像片的特点与解译标志、遥感扫描影像特征与解译方法,了解微波影像的解译标志与地物影像特征。
4.理解遥感影像地图的概念与主要特征,掌握常规制作遥感影像地图和计算机辅助遥感制图的方法与步骤。
第六章遥感数字图像计算机解译
1.掌握遥感数字图像、图像数字化、象元、灰度值等基本概念,理解遥感数字图像的特点及表示方法。
2.掌握遥感数字图像计算机分类的一般原理,理解其分类的基本过程。
3.掌握遥感图像监督分类与非监督分类的概念,熟悉遥感图像监督分类与非监督分类的方法及其原理。
4.了解遥感图像计算机解译技术主要发展趋势。
第七章遥感应用
1.了解遥感技术在地质和土壤方面的应用,掌握植被遥感原理,了解遥感植被解译的应用。
了解农作物遥感估产的基本原理与方法。
2.熟悉水体光谱特征,了解水体要素识别的基本内容。
3.掌握高光谱遥感概念,熟悉高光谱遥感的应用。
第八章遥感、地理信息系统与全球定位系统综合应用
1.熟悉地理信息系统、遥感和全球定位系统在3S技术中的作用。
2.了解3S技术在车辆导航与车辆监控系统、海洋渔业资源开发、精细农业、土地研究和全球变化等方面的综合应用。
第三部分有关说明与实施要求
1. 考试目标的能力层次表述
本课程对各考点的能力要求,一般分为三个层次,用相关的词语描述:
较低要求——了解;
一般要求——理解、熟悉、会;
较高要求——掌握、应用。
2. 命题考试的若干规定
(1)本课程的命题考试是根据本大纲规定的考试内容来确定。
试卷组配兼顾覆盖面、能力层次、内容、难易程度。
(2)其难易程度分为易、较易、较难、难四级,试题分数比例一般为:2:3:3:2。
(3)试卷中对不同能力层次要求的试题所占的比例大致是:
“了解”占15%
“理解(熟悉、能、会)”占40%
“掌握”占45%
(4)试题形式有:名词解译、简答题、问答题等多种题型。
(5)考试方式为闭卷笔试。
考试时间为180分钟。
(6)试题主要测试考生对遥感的基础理论、基本知识和技能的掌握程度,以及运用所学理论与方法进行分析问题、解决问题的能力。
试题要有一定的区分度,难易程度要适当。