湿陷性黄土地基处理技术

合集下载

湿陷性黄土处理施工方案

湿陷性黄土处理施工方案

湿陷性黄土处理施工方案湿陷性黄土是一种在水分作用下容易发生变形和沉降的黄土。

在工程建设中,湿陷性黄土的处理是一个非常重要的问题,如果不进行有效的处理,会对工程的稳定性和安全性产生极大的影响。

本文将介绍湿陷性黄土的处理施工方案。

一、室内试验分析在进行湿陷性黄土的处理前,首先需要进行室内试验分析,确定湿陷性黄土的物理力学性质和工程特性。

通过室内试验,可以确定湿陷性黄土的承载力、压缩性特征、含水量控制范围等参数,为后续处理施工提供参考依据。

二、基础加固处理对于湿陷性黄土的处理,首先要进行基础加固处理。

可以采用浇注混凝土加固基础的方法,增加基础的承载力和稳定性。

同时,也可以采用灌注桩或钢板桩等技术,通过加固桩与黄土之间的相互作用,来增加地基的稳定性。

三、改良处理在基础加固处理完成后,可以进行湿陷性黄土的改良处理。

改良处理的主要目的是通过改变土壤的物理性质和结构,提高其抗湿陷性和承载力。

常用的湿陷性黄土改良技术包括固化、掺充和排水等。

1.固化技术:采用固化剂对湿陷性黄土进行处理,使其固化成坚硬结构,提高其抗湿陷性和承载力。

常用的固化剂有水泥、石灰、石膏等。

固化技术需要根据湿陷性黄土的物理特性和改良目标进行合理配比和施工,以达到理想的固化效果。

2.掺充技术:在湿陷性黄土中掺入适量的掺和材料,如砂、砾石、粉煤灰等,改变土壤的颗粒组成和结构特征,提高其抗湿陷性和承载力。

掺充技术需要掌握适量的掺和比例和掺充方式,以确保土壤的改良效果并提高工程的稳定性。

3.排水技术:通过设置排水系统,及时将土壤中的水分排出,减少土壤的含水量,从而降低土壤的可压缩性和变形性。

排水技术包括地下排水系统和表面排水系统,需要根据实际情况进行合理选择和布置,以保证土壤的排水效果和工程的稳定性。

四、监测与维护在湿陷性黄土的处理施工过程中,需要进行监测和维护工作,及时掌握处理效果和土壤的变化情况。

可以通过安装监测点、进行现场监测和定期检查等方式,对工程进行监测,及时发现和处理问题。

湿陷性黄土地基处理方案

湿陷性黄土地基处理方案

湿陷性黄土地基处理方案湿陷性黄土是一种具有较高含水量时容易发生沉降或收缩的土壤类型。

其主要特点是含水量较高,导致土壤颗粒之间的粘结力降低,土壤结构不稳定,容易发生沉降和收缩现象。

因此,在湿陷性黄土地基处理中,需要采取一系列的措施来改善土壤性质,提高地基的稳定性。

1.土壤加固和改良湿陷性黄土地基中,水含量较高,使得土壤的稳定性较差。

因此,需要采取一定的土壤加固和改良措施来提高土壤的强度和稳定性。

常用的方法包括土壤改良剂的添加和土壤固化。

可以选择适合湿陷性黄土地基的添加剂,如石灰、水泥等,通过与土壤混合,提高土壤的强度和耐水性。

2.水分控制湿陷性黄土对水分非常敏感,过高的含水量会导致土壤发生沉降和收缩现象。

因此,在处理湿陷性黄土地基时,需要采取措施控制水分含量。

可以通过排水系统的设计和建设,将地基中的水分排除,减小土壤的含水量,提高土壤的稳定性。

3.排水系统的设计与建设4.加固地基结构湿陷性黄土地基的基础结构容易受到水分影响,所以需要加固地基结构,以增加地基的稳定性和承载能力。

可以选择适合湿陷性黄土地基的基础类型,如扩大基础、桩基础等,通过增加基础的面积和深度,分散地基荷载,提高地基的稳定性。

5.合理施工工艺在湿陷性黄土地基处理中,施工工艺对于地基的稳定性和强度起着至关重要的作用。

需要严格控制工程的施工质量和施工工艺,避免水分过程过快或不均匀,导致土壤发生不稳定现象。

同时,还需要进行地基的监测和检测,及时发现问题并采取措施加以解决。

综上所述,湿陷性黄土地基处理方案需要综合考虑土壤特性和工程需求,采用土壤加固和改良、水分控制、排水系统的设计与建设、加固地基结构、合理施工工艺等一系列措施,以提高地基的稳定性和承载能力,确保工程的安全性和可靠性。

湿陷性黄土地基湿陷的原理和处理方法分析

湿陷性黄土地基湿陷的原理和处理方法分析

湿陷性黄土地基湿陷的原理和处理方法分析湿陷性黄土是一种具有湿陷性质的特殊土壤类型,其在遇到水分的作用下会发生体积变化,导致建筑物的沉降和破坏。

湿陷性黄土地基的湿陷原理是由于土壤中的黏性颗粒之间的吸附力和吸水力导致土壤颗粒聚结和体积收缩。

处理湿陷性黄土地基的方法有多种,包括排水处理、改良处理和断层处理等。

1. 吸水性:湿陷性黄土由于土壤的颗粒间隙较大,含有大量的毛细孔,能够很好地吸收和储存水分。

当土壤吸水后,土壤中的黏性颗粒之间的吸水力增强,导致土壤体积发生变化。

2. 颗粒聚结:湿陷性黄土中含有一定量的黏土颗粒,这些颗粒具有黏性和胶结性质。

当水分分子进入黏土颗粒间隙时,颗粒表面的电荷变化,引起吸引力增强,颗粒之间结合力增大,产生颗粒聚结现象。

3. 含水率变化:湿陷性黄土在不同含水率下具有不同的物理特性。

当土壤的含水率增加时,土壤体积会相应增大;而当含水率减小时,土壤体积会相应减小。

湿陷性黄土在遇到水分作用下会发生体积的收缩和膨胀,从而引起地基的沉降和破坏。

对于湿陷性黄土地基的处理方法,常用的有以下几种:1. 排水处理:通过提高地下水位附近的排泄能力,将地下水排出,以降低土壤的含水率,从而减小土壤体积的变化。

这可以通过排水沟、排水管等设施进行实现。

2. 改良处理:通过添加改良材料,改变土壤的物理和力学性质,以改善土壤的稳定性和抗湿陷性能。

常见的改良材料包括石灰、水泥、石粉等,它们的添加可以改变土壤的结构和黏粒的性质,减小土壤的吸水能力和颗粒聚结现象。

3. 断层处理:对于已经严重受损的地基,可以通过开挖和重新填充的方式来重新构筑地基。

这种方法需要专业的工程师进行设计和施工,以确保地基的稳定性和可靠性。

湿陷性黄土地基处理方案

湿陷性黄土地基处理方案

1、概述湿陷性黄土地基解决重要取决于湿陷性黄土的特殊性质,湿陷性黄土地基的变形涉及压缩和湿陷性两种,当基底压力不超过地基土的允许承载力时,地基的压缩变形很小,大都在其上部结构的允许变形值范围以内,不会影响建筑物的安全和正常使用。

湿陷变形是由于地基被水浸湿引起的一种附加变形,往往是局部和忽然发生,且不均匀,对建筑物破坏性大,危害严重,因此对湿陷性黄土地区的建筑物不管地基承载力是否达成允许承载力,都应对地基进行解决,前者以消除湿陷为目的,后者以提高承载力为主,同时应消除黄土的湿陷性。

我国湿陷性黄土分布很广,各地区黄土的差别很大,地基解决时应区别对待,并结合以下特点:1)湿陷性黄土的地区差别,如湿陷性和湿陷敏感性的强弱,承载能力及压缩性的大小和不均匀性的限度等;2)建筑物的使用特点,如用水量大小,地基浸水的也许性;3)建筑物的重要性和其使用上对限制不均匀下沉的严格限度,结构对不均匀下沉的适应性;4)材料及施工条件,以及本地的施工经验。

湿陷性黄土的地基解决措施是采用机械手段对基础的湿陷性黄土进行加固解决,或更换另一种材料改变其物理性质,达成消除湿陷性、减少压缩和提高承载能力的目的,其中大多以第一个目的即消除湿陷为主。

湿陷性黄土的地基解决,在解决深度和解决范围上区分:1)浅解决,即消除建筑物地基的部分湿陷量;2)深基础解决,即消除建筑物地基的所有湿陷量,这种方法涉及采用桩基础或深基础穿透所有的湿陷性黄土层。

在湿陷性黄土地区设计措施,重要有地基解决措施、防水措施和结构措施三种。

地基解决的常用方法有垫层、重锤夯实、强夯、土(或灰土)桩挤密和深层孔内夯扩等,可以完全或部分消除地基的湿陷性,或采用桩基础或深基础穿透湿陷性黄土层,使建筑物基础坐落在密实的非湿性土层上,保证建筑物的安全和正常使用。

防水措施使用以防止大气降水、生产和生活用水以及浸入地基,其中涉及场地排水、地面的防水、排水沟和管道的排水、防水等,是湿陷性黄土地区建筑物设计中不可缺少的措施。

湿陷性黄土地基湿陷的原理和处理方法分析

湿陷性黄土地基湿陷的原理和处理方法分析

湿陷性黄土地基湿陷的原理和处理方法分析湿陷性黄土是一种具有特殊工程地质性质的土壤,其湿陷性是指在水分条件改变下,土壤发生体积变化,由于土壤颗粒的再排列和骨架的重组导致地基沉降和变形。

湿陷性黄土的湿陷特性与其黏土矿物组成、含水量、结构特征以及土壤重度有关。

1. 颗粒排列重组:湿陷性黄土的颗粒间存在一定的胶结力,当土壤与水分接触时,胶结力被破坏,原本紧密排列的颗粒开始发生重组与再排列。

这导致土壤体积增大,发生沉降和变形。

2. 含水量变化:湿陷性黄土的含水量对其湿陷性有很大影响。

当含水量增加时,黄土中的颗粒间润滑层厚度增大,土体内的空隙剧增,体积扩大,引起地基沉降和变形。

3. 结构透水性:湿陷性黄土具有较好的透水性,但因其颗粒间胶结作用强,使土壤内部存在密实层。

当水分进入土壤后,密实层难以透水,导致上层的土壤水分无法顺利排出,使得地基部分区域沉降。

1. 湿陷区域的预处理:在规划和设计阶段,应对湿陷性黄土地区进行详细的地质调查和勘察,确定湿陷区域的边界和分布,以及湿陷深度、厚度和变形特征等。

在地基工程施工前,对湿陷区域进行预处理,如加固、排水等,减少地基变形。

2. 预压加固法:通过施加预先施加的压力来改善地基的稳定性,减少沉降和变形。

预压可以采用静载试验、土体填充、钢板水平约束等方法进行。

3. 排水处理:通过提高地基的排水能力,及时将土壤中的过多水分排出,减少土壤饱和和润滑导致的体积扩大和变形。

常用的排水方法包括建设排水沟、埋设排水管道等。

4. 土体改良方法:可以通过土体改良来改善湿陷性黄土地基的工程性质。

如采用土壤加固剂、土壤固化剂等提高土体的结实度和稳定性,减小地基的变形。

湿陷性黄土地基的湿陷原理主要涉及颗粒排列重组、含水量变化和结构透水性等因素。

在处理湿陷性黄土地基时,需要综合考虑预处理、预压加固、排水处理和土体改良等方法,以减小地基的沉降和变形,确保工程的安全和稳定性。

处理湿陷性黄土地基的方法

处理湿陷性黄土地基的方法

处理湿陷性黄土地基的方法
湿陷性黄土地基的处理措施有浸水处理、土垫层法、强夯法、压浆法、素土桩挤密法和复层地基法等,具体措施应根据地基条件和建筑要求选择,以改善地基的性质和结构。

1、换填土:挖出一定深度的湿陷性黄土,用合格的土或灰土分层填筑,分层夯实。

2、强夯法:用数十吨重锤从高处落下,反复夯实,强力夯实基础,使浅层和深层得到不同程度的加固。

强夯法振动大,对附近建筑物有影响。

因此,要注意施工附近建筑物的安全。

强夯法用于湿陷性黄土区路基处理,土壤含水量应比塑限含水量低1%~3%。

3、预浸法:钻孔注水,使其预先湿陷。

可用于湿陷性土层厚度大于10m,自重湿陷性不小于50cm的地段。

4、挤密法:用冲击、振动或爆炸形成孔洞,然后用石灰或石灰土填充,分层捣实。

5、化学加固法:将硅酸钠溶液通过多孔注入管压入土壤中,与土壤中的水溶性盐类相互作用,生成硅胶,使土壤胶结。

湿陷性黄土地基处理技术及案例讲义2022_加水印

湿陷性黄土地基处理技术及案例讲义2022_加水印

湿陷性黄土地基处理技术国标《湿陷性黄土地区建筑标准》(GB50025-2018)主编录湿陷性黄土的特殊工程性质一黄土湿陷性评价二地基处理常用方法四工程案例分析五Contents地基处理的标准三u黄土:黄土是一种第四纪沉积物,具有一系列内部物质成分和外部特征,不同于同时期的其它沉积物。

具有以下全部特征的为黄土:(原生黄土,风成黄土)u 1. 颜色以黄色、褐黄色、黄褐色为主,有时呈灰黄色;u 2. 颗粒组成以粉粒(0.05-0.005mm)为主,含量一般在60%以上,几乎没有粒径大于0.25mm的颗粒;u 3. 孔隙比较大,一般在1.0左右(新、老黄土不同) ;u 4. 富含碳酸盐类;u 5. 垂直节理发育(主要指新黄土);u 6. 一般有肉眼可见的大孔隙。

u当缺少其中一项或几项特征的称黄土状土。

u湿陷性黄土:在岩土分类上归于特殊土的一种,其最特殊的工程性质特点是“湿陷性”:在一定压力下受水浸湿,土的结构迅速破坏,并产生显著附加下沉的黄土。

u湿陷性土:碎石土、沙土、填土等显著附加下沉!湿陷案例一:高层建筑,新建地下车库主楼地基土和筏板脱空湿陷案例二:多层建筑,既有建筑散水严重倒坡湿陷案例二:多层建筑根据勘察报告数据,湿陷量计算结果为702.4mm。

湿陷案例三:单层建筑湿陷案例三:单层建筑湿陷事故发生的特点:沉陷量大、发生速度快、对建筑物危害大。

建筑物建于湿陷性黄土地基上时,除满足一般地基处理要求外,湿陷性的处理是其显著特点。

我国黄土面积约64万平方公里,广泛分布于西北、华北和东北等地区。

主要分布在北纬33-47度,以34-45度之间最为发育,属于干旱、半干旱气候类型区。

湿陷性产生的原因一、内因1、湿陷性黄土以粉粒为主,含量达60%以上。

其中细粉粒(0.005-0.01mm)占7-9%,粗粉粒(0.01-0.05mm)占45-65%。

粘粒含量小于20%。

由西北向东南方向,砂粒减少而粘粒增多,对黄土湿陷性有明显影响;2、不稳定结构:架空结构,土颗粒之间多为点或面接触,宏观表现为孔隙比大,大多在1.0左右。

湿陷性黄土处理措施

湿陷性黄土处理措施

一、湿陷性黄土地基的处理方法湿陷性黄土地基处理的根本原则是:破坏土的大孔结构,改善土的工程性质,消除或减少地基的湿陷变形,防止水浸入建筑物地基,提高建筑结构刚度。

1.1强夯法又叫动力固结法。

是利用起重设备将80~400kg的重锤起吊到10~40m高处,然后使重锤自由落下,对黄土地基进行强力夯击,以消除其湿陷性,降低压缩变形,提高地基强度,但强夯法适用对地下水位以上饱和度Sr≤60%的湿陷性黄土地基进行局部或整片处理,可处理的深度在3~12m。

土的天然含水率对强夯法处理至关重要,天然含水量低于10%的土,颗粒间摩擦力大,细土颗粒很难被填充,且表层坚硬,夯击时表层土容易松动,夯击能量消耗在表层土上,深部土层不易夯实,消除湿陷性黄土的有效深度小,夯填质量达不到设计效果。

当上部荷载通过表层土传递到深部土层时,便会由于深部土层压缩而产生固结沉降,对上部建筑物造成破坏。

1.2垫层法土(或灰土)垫层是一种浅层处理湿陷性黄土地基的传统方法,在湿陷性黄土地区使用较广泛,具有因地制宜,就地取材和施工简便等特点。

实践证明,经过回填压实处理的黄土地基湿陷性速率和湿陷量大大减少,一般表土垫层的湿陷量减少为1~3cm,灰土垫层的湿陷量往往小于1cm,垫层法适用于地下水位以上,对湿陷性黄土地基进行局部或整片处理,可处理的湿陷性黄土层厚度在1~3m,垫层法根据施工方法不同可分为土垫层和灰土垫层,当同时要求提高垫层土的承载力及增强水稳定时,宜采用整片灰土垫层处理。

1.2.1素土垫层法素土垫层法是将基坑挖出的原土经洒水湿润后,采用夯实机械分层回填至设计高度的一种方法,它与压实机械做的功、土的含水率、铺土厚度、及压实遍数存在密切关系。

压实机械做的功与填土的密实度并不成正比,当土质含水量一定时,起初土的密实度随压实机械所做的功的增大而增加,当土的密实度达到极限时,反而随着功的增加而破坏土的整体稳定性,形成剪切破坏。

在大面积的素土夯填施工中时常遇到,运输土料的重型机械容易对已夯筑完毕的坝体表面形成过度碾压,造成剪切破坏,同时对含水率过高的地区形成“橡皮泥”现象,从而出现渗漏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湿陷性黄土地基处理技术摘要:湿陷性黄土广泛分布于我国东北、西北、华中和华东部分地区,在湿陷性黄土地基上进行工程建设时,必须考虑因地基湿陷引起的附加沉降对工程可能造成的危害。

本文分析了湿陷性黄土的特点,并针对湿陷性黄土地基的实际情况提出了一些处理的方法,从而有利于减轻湿陷性黄土地基对工程建设的影响,提高工程质量,获得良好的经济效益和社会效益。

关键词:湿陷性黄土地基处理方法一、引言湿陷性黄土地基处理主要取决于湿陷性黄土的特殊性质,湿陷性黄土地基的变形包括压缩和湿陷性两种,当基底压力不超过地基土的容许承载力时,地基的压缩变形很小,大都在其上部结构的容许变形值范围以内,不会影响建筑物的安全和正常使用。

湿陷变形是由于地基被水浸湿引起的一种附加变形,往往是局部和突然发生,且不均匀,对建筑物破坏性大,危害严重,因此对湿陷性黄土地区的建筑物不论地基承载力是否达到容许承载力,都应对地基进行处理,前者以消除湿陷为目的,后者以提高承载力为主,同时应消除黄土的湿陷性。

二、正文2.1 湿陷性黄土的特点在土的自重压力或土的附加压力与自重压力共同作用下,受水浸湿时将产生大量而急剧的附加下沉,这种现象称为湿陷,它与自重湿陷性黄土一般土受水浸湿时所表现的压缩性稍有增加的现象不同。

由于各地区黄土形成时的自然条件差异较大,因此其湿陷性也有较大差别,有些湿陷性黄土受水浸湿后的土的自重压力下就产生湿陷,而另一些黄土受水浸湿后只有在土的自重压力和附加压力共同作用下产生湿陷。

前者称为自重湿陷性黄土,后者称为非自重湿陷性黄土,一般将黄土开始湿陷时的相应压力称为湿陷起始压力,可看作黄土受水浸湿后的结构强度。

当湿陷性黄土实际所受压力等于或大于土的湿陷起始压力时,土就开始产生湿陷。

反之,如小于这一压力,则黄土只产生压缩变形,而不发生湿陷变形。

湿陷变形不同于压缩变形,通常压缩变形在荷载施加后立即产生,随着时间的增长而逐渐趋向稳定。

对于大多数湿陷性黄土地基来说,(不包括饱和黄土和新近堆积的黄土),压缩变形在施工期间就能完成一大部分,竣工后三个月到半年即基本趋于稳定。

而湿陷变形的特点是:变形量大,常常超过正常压缩变形的几倍甚至几十倍;发生快,一般在浸水1-3小时就开始湿陷。

就一般的湿陷事故而言,往往在1-2天内就可能产生20-30cm 的变形量,这种量大、速率快而又不均匀的变形往往使建筑物发生严重变形甚至破坏。

而湿陷的出现完全取决于受水浸湿的机率,有的建筑物在施工期间即产生湿陷事故,而有的则在几年甚至几十年后才出现湿陷事故。

2.2 湿陷性黄土湿陷变形的主要指标湿陷性黄土湿陷变形的主要指标:湿陷系数,湿陷的起始压力和湿陷的起始含水量,其中以湿陷系数最为重要。

湿陷系数是单位厚度土样在土自重压力或自重压力与附加压力共同作用下浸水所产生的湿陷量。

它的大小反映了黄土对水的敏感程度,湿陷系数越大,表示土受水浸湿后的湿陷量越大,因而对建筑物的危害越大,反之,则小。

湿陷性黄土湿陷系数一般通过室内压缩仪进行测试,并按下式计算湿陷系数的δs :e e e h h h p p p p s 00'='=--δ 式中:h p 为土样在压力p 作用时下沉稳定后的高度;h p '为上述加压稳定后的土样,在浸水作用下,下沉稳定后的高度;h 0为土样的原始高度;e p 为土样在压力p 作用下下沉稳定后的孔隙比;e p '为上述加压稳定后土样在浸水作用下下沉稳定后的孔隙比;e 0为土样的原始孔隙比。

湿陷系数在工程中主要用于:1)判别黄土的湿陷性;2)鉴别湿陷性黄土湿陷性的强弱;3)预估湿陷性黄土地基的湿陷量。

对黄土湿陷性的判别,按现行黄土规范,以0.015作为界限值,大于或等于0.015则定为湿陷性黄土,小于0.015则定为非湿陷性黄土。

利用湿陷系数,可大致判断湿陷性黄土湿陷性的强弱,一般认为,δs ≤0.03为弱湿陷性;0.03<δs≤0.07为中等湿陷性;δs >0.07为强湿陷性。

2.3 湿陷性黄土地基处理方法湿陷性黄土地区地基处理,尽管在地基处理技术的应用上同其他地区相比在施工工艺等方面差别不大,但其加固机理及方法又进一步体现了湿陷性黄土的地区特征,往往在提高承载力的同时,对黄土的湿陷性进行消除。

湿陷性黄土地基处理的根本原则是:破坏土的大孔结构,改善土的工程性质,消除或减少地基的湿陷变形,防止水浸入建筑物地基,提高建筑结构刚度。

2.3.1 强夯法强夯法又叫动力固结法。

是利用起重设备将80~400 kg的重锤起吊到10~40m高处,然后使重锤自由落下,对黄土地基进行强力夯击,以消除其湿陷性,降低压缩变形,提高地基强度,但强夯法适用对地下水位以上饱和度Sr≤60%的湿陷性黄土地基进行局部或整片处理,可处理的深度在3~12m。

土的天然含水率对强夯法处理至关重要,天然含水量低于10%的土,颗粒间摩擦力大,细土颗粒很难被填充,且表层坚硬,夯击时表层土容易松动,夯击能量消耗在表层土上,深部土层不易夯实,消除湿陷性黄土的有效深度小,夯填质量达不到设计效果。

当上部荷载通过表层土传递到深部土层时,便会由于深部土层压缩而产生固结沉降,对上部建筑物造成破坏。

2.3.2 垫层法土(或灰土)垫层是一种浅层处理湿陷性黄土地基的传统方法,我国已有2000多年的应用历史,在湿陷性黄土地区使用较广泛,具有因地制宜,就地取材和施工简便等特点。

实践证明,经过回填压实处理的黄土地基湿陷性速率和湿陷量大大减少,一般表土垫层的湿陷量减少为1~3cm,灰土垫层的湿陷量往往小于1cm,垫层法适用于地下水位以上,对湿陷性黄土地基进行局部或整片处理,可处理的湿陷性黄土层厚度在1~3m,垫层法根据施工方法不同可分为土垫层和灰土垫层,当同时要求提高垫层土的承载力及增强水稳定时,宜采用整片灰土垫层处理。

(1)素土垫层法。

素土垫层法是将基坑挖出的原土经洒水湿润后,采用夯实机械分层回填至设计高度的一种方法,它与压实机械做的功、土的含水率、铺土厚度、及压实遍数存在密切关系。

压实机械做的功与填土的密实度并不成正比,当土质含水量一定时,起初土的密实度随压实机械所做的功的增大而增加,当土的密实度达到极限时,反而随着功的增加而破坏土的整体稳定性,形成剪切破坏。

在大面积的素土夯填施工中时常遇到,运输土料的重型机械容易对已夯筑完毕的坝体表面形成过度碾压,造成剪切破坏,同时对含水率过高的地区形成“橡皮泥”现象,从而出现渗漏。

这些都将是影响夯填质量的主要因素。

(2)灰土垫层法。

灰土垫层法是采用消石灰与土的2∶8或3∶7的体积比配合而成,经过筛分拌合,再分层回填,分层夯实的一种方法,要保证夯实的质量必须要严格控制好灰土的拌制比例,土料的含水率,这对夯填质量起主要的影响因素。

在实际施工过程中,不可能用仪器对每一层土样进行含水率测定,只能通过“握手成团,落地开花”的直观测定法来测定,但这种方法对于湿陷性黄土测定范围过于偏大,经过实验测定大致在14%~19%,存在测定偏差,且土质湿润不够均匀,往往有表层土吸水饱和,下层土干燥的现象,给施工带来很大的难度。

当处理厚度超过3m时,挖填土方量大,施工期长,施工质量也不易保证,严重影响工程质量和工程进度。

所以垫层法同样存在着施工局限。

2.3.3 挤密法挤密法是利用沉管、爆破、冲击、夯扩等方法在湿陷性黄土地基中挤密填料孔再用素土、灰土、必要时采用高强度水泥土、分层回填夯实以加固湿陷性黄土地基,提高其强度,减少其湿陷性和压缩性。

挤密法适用于对地下水位以上,饱和度Sr≤65%的湿陷性黄土地基进行加固处理,可处理的湿陷性黄土厚度一般为5~15m。

但通过实践证明:挤密法对土的含水量要求较高(一般要求略低于最优含水率),含水量过高或过低,挤密效果都达不到设计要求,这在施工中很难控制,因为湿陷性黄土的吸水性极强且易达到饱和状态,在湿陷性黄土进行洒水湿润时,表层土质饱和后容易形成积水,下部土质却很难受水接触而呈干燥状态,对于含水量<10%的地基土,特别是在整个处理深度范围内的含水量普遍偏低的土质中是不易采用的。

2.3.4 桩基础法桩基础既是一种基础形式也可看作是一种地基处理措施,是在地基中有规则的布置灌注桩或钢筋混凝土桩,以提高地基承载能力。

桩根据受力不同可分为端承桩和摩擦桩,这种地基处理方法在工业与民用建筑中使用较多,但桩基础仍然存在浅在的隐患,地基一旦浸水,便会引起湿陷给建筑物带来危害。

在自重湿陷性黄土中浸水后,桩周土发生自重湿陷时,将产生土相对桩的向下位移对桩产生一个向下的作用力即负摩擦力。

而且通过实践证明,预制桩的侧表面虽比灌注桩平滑,但其单位面积上的负摩擦力却比灌注桩大。

这主要是由于预制桩在打桩过程中将桩周土挤密,挤密土在桩周形成一层硬壳,牢固的黏附在桩侧表面上,桩周土体发生自重湿陷时不是沿桩身而是沿硬壳层滑移,硬壳层增加了桩的侧表面面积,负摩擦力也随着增加,正是由于这股强大的负摩擦力至使桩基出现沉降,由于负摩擦力的发挥程度不同,导致建筑物地质基础产生严重的不均匀沉降,构成基础的剪切应力,形成剪应力破坏,这也正是导致众多事故发生的主要因素。

2.3.5 预浸水法湿陷性黄土地基预浸水法是利用黄土浸水后产生自重湿陷的特性,在施工前进行大面积浸水使土体预先产生自重湿陷,以消除黄土土层的自重湿陷性,它只适用于处理土层厚度大于10m,自重湿陷量计算值不大于500mm的黄土地基,经预浸法处理后,浅层黄土可能仍具外荷湿陷性,需做浅层处理。

预浸水法用水量大、工期长,一般应比正式工程至少提前半年到一年进行,浸水前沿场地四周修土埂或向下挖深50cm,并设置标点以观测地面及深层土的湿陷变形,浸水期间要加强观测,浸水初期水位不易过高,待周围地表出现环形裂缝后再提高水位,湿陷性变形的观测应到沉陷基本稳定为止。

预浸水法用水量大,对于缺水少雨、水资源贫乏地区,不易采用,当土层下部存在隔水层时,预浸时间加大,工期延长,都将是影响工程的因素。

2.3.6深层搅拌桩法深层搅拌桩是复合地基的一种,近几年在黄土地区应用比较广泛,可用于处理含水量较高的湿陷性弱的黄土。

它具有施工简便、快捷、无振动,基本不挤土,低噪音等特点。

深层搅拌桩的固化材料有石灰、水泥等,一般都采用后者作固化材料。

其加固机理是将水泥掺入粘土后,与粘土中的水分发生水解和水化反应,进而与具有一定活性的粘土颗粒反应生成不溶于水的稳定的结晶化合物,这些新生成的化合物在水中或空气中发生凝硬反应,使水泥有一定的强度,从而使地基土达到承载的要求。

深层搅拌桩的施工方法有干法施工和湿法施工两种,干法施工就是“粉喷桩”,其工艺是用压缩空气将固化材料通过深层搅拌机械喷入土中并搅拌而成。

因为输入的是水泥干粉,因此必然对土的天然含水量有一定的要求,如果土的含水量较低时,很容易出现桩体中心固化不充分、强度低的现象,严重的甚至根本没有强度。

相关文档
最新文档