(完整)高性能混凝土的研究与发展现状
超高性能混凝土的研究与应用前景

超高性能混凝土的研究与应用前景超高性能混凝土(UHPC)是一种新型的混凝土,相较于普通混凝土具有更高的强度、更优异的耐久性和更佳的施工性能。
在建筑结构、桥梁、道路、隧道等领域,UHPC已经得到广泛的应用。
UHPC的研究始于上世纪80年代,最初由法国CBR公司研究开发,后逐渐发展壮大。
UHPC的主要成分由水泥、矿物质粉末、硅烷、钢纤维等组成,其中硅烷是该材料的关键成分之一,能够提高混凝土的强度和耐久性。
UHPC研究的目的是通过材料的优化设计,提高混凝土的性能,增强其抗压、抗弯、抗拉的能力,减少开裂等缺陷,从而满足人们对建筑材料的高强性能、高耐久性、高节能性、高可靠性、高安全性的需求。
在建筑结构领域,UHPC已经实现了全新的创新应用,例如:一下深入探讨UHPC的研究和应用前景。
一、UHPC在建筑结构中的应用前景1.预制混凝土构件:UHPC可以制作出各种形状、细腻质地的混凝土构件,使用UHPC制作的预制构件具有高强度、高密度、高耐久性和高加工性能,能够提高建筑的整体稳定、耐久性和安全性。
2.结构加强和加固:在建筑结构加固和加强领域,UHPC可增强构件的承载能力并修补损伤,提高结构的安全性和耐久性,尤其适合在较大跨度、高桥墩及独特造型的工程中大量使用。
3.地下隧道和地铁站:UHPC具有防水、防火、抗震、耐磨和高温等优秀特性,因此在地下挖掘隧道和地铁站中 UHPC应用广泛。
4.防爆墙体:UHPC用于制作防爆墙体时,可以有效地吸能分散冲击力,而且混凝土防爆墙体中添加钢纤维等材料时,可以有效地防止墙体裂缝,从而提高防护能力。
5.桥梁结构:由于UHPC具有极高的强度和耐久性,因此在桥梁结构领域中的应用也越来越普遍。
被广泛应用于制作桥墩、桥台、梁等建筑物结构。
6.大型商业建筑: UHPC在建筑领域已经可以完全替代传统的预制板、钢铁等材料,可以制作出更具有魅力和可持续性的文化城市建筑,例如:楼宇外墙、雕塑、纪念碑等。
高性能混凝土发展现状

高性能混凝土发展现状高性能混凝土是指在常规混凝土的基础上通过添加适量的掺合料和特殊的调整剂等措施,使其具有更好的力学性能和耐久性能的一种建筑材料。
在建筑领域广泛应用,以满足各种特殊工程的需求。
高性能混凝土的发展可以追溯到20世纪80年代。
当时,世界各地的研究人员开始不断探索改善混凝土的性能,以解决常规混凝土在一些特殊工程中存在的问题。
高力高性能混凝土出现后,为工程质量提供了一种全新的解决方案。
目前,高性能混凝土在世界范围内得到了广泛应用,并取得了显著的成果。
以下是高性能混凝土发展现状的几个方面:首先,高性能混凝土在力学性能上具有显著优势。
相比常规混凝土,其抗压强度、抗折强度和抗冲击性能都具有较高的数值。
这使得高性能混凝土在高层建筑、大跨度结构和重要设施等工程中得到广泛应用。
其次,高性能混凝土在耐久性能方面有显著的提升。
通过选择合适的掺合料和调整剂,并通过适当的配合比设计,可以有效地提高混凝土的耐久性。
高性能混凝土在抗氯离子渗透、抗硫酸盐侵蚀和抗碱骨料反应等方面表现出色。
此外,高性能混凝土在施工性能上也有所突破。
采用高性能混凝土可以大大减少施工工序,提高施工速度,减少人工成本。
同时,高性能混凝土还具有较好的自流性,可减少气孔和缺陷,提高工程质量。
最后,高性能混凝土还在不断的创新发展中。
研究人员正在致力于进一步提高高性能混凝土的力学性能、耐久性能和施工性能。
例如,一些研究机构正在探索使用纳米材料和高性能钢纤维等技术来增强混凝土的性能。
同时,随着绿色建筑理念的兴起,研究人员也在研究如何减少高性能混凝土的环境影响。
总之,高性能混凝土在建筑领域的发展前景广阔。
随着科技的不断进步和各种新材料的不断涌现,相信高性能混凝土将会在未来得到更广泛的应用。
新型混凝土现状及发展趋势研究综述

新型混凝土现状及发展趋势研究综述新型混凝土是指在传统混凝土中添加新材料、新技术、新工艺等,以提高其性能、功能和可持续发展性的一种材料。
近年来,随着基础设施建设的不断推进和人们对建筑材料性能要求的提高,新型混凝土的研究和应用逐渐受到了广泛关注。
一、新型混凝土的现状1.高性能混凝土(High Performance Concrete,HPC):高性能混凝土是指具有较高强度、较好的耐久性和良好的加工性能的混凝土。
它能够满足对抗渗、抗裂、抗冻融和耐久性等方面的要求。
2.自密实混凝土(Self-compacting Concrete,SCC):自密实混凝土是一种可以在没有外力作用下自行实现较好流动性和自密实的混凝土。
它具有较高的流动性和自行整平能力,适合于复杂形状结构的施工。
3.绿色混凝土(Green Concrete):绿色混凝土是指在生产、使用和回收过程中对环境和人体健康无害的混凝土。
它通过减少水泥含量、使用回收材料等方式降低对环境的影响。
4.超高性能混凝土(Ultra-High Performance Concrete,UHPC):超高性能混凝土是一种通过添加高性能粉状材料、纤维增强材料和化学掺合料等,提高混凝土的抗压强度、抗裂性能和耐久性的一种新材料。
二、新型混凝土的发展趋势1.多功能性:随着社会的发展和人们对建筑材料的要求越来越高,新型混凝土的发展趋势是将多种功能融合到混凝土中,如自愈合、自清洁、调控温度等。
2.轻质化:为了降低建筑物的自重、提高抗震性能,新型混凝土的发展趋势是向轻质化方向发展,例如轻质骨料混凝土。
3.高性能:随着建筑结构的复杂化和对建筑材料性能要求的提高,新型混凝土的发展趋势是朝着高性能、高强度、高耐久性和高抗震性等方向发展。
4.可持续发展:新型混凝土的发展趋势是朝着环境友好、资源节约和可持续发展的方向发展。
例如通过使用可再生材料、减少水泥使用量和二氧化碳排放等方式,减少对环境的影响。
超高性能混凝土的研究

超高性能混凝土的研究超高性能混凝土(UHPC)是一种新型的混凝土材料,具有卓越的力学性能和耐久性,被广泛应用于桥梁、隧道、建筑和水利工程等领域。
本文将就UHPC的特点、研究现状和未来发展进行详细的介绍。
一、UHPC的特点超高性能混凝土是一种以超细粉料、高性能水泥和高强度骨料为主要原料,通过特殊配比和特殊工艺制成的混凝土。
与传统混凝土相比,UHPC的主要特点如下:1. 高强度:UHPC的抗压强度通常在150MPa以上,是普通混凝土的5倍以上。
抗拉强度为10-20MPa,是普通混凝土的10倍以上。
2. 优异的耐久性:UHPC具有极佳的耐久性,能够在恶劣环境下长期保持较高的力学性能。
具有极佳的抗渗、抗冻融、耐久性和耐化学侵蚀性。
3. 易成型和高粘结性:UHPC的粘结性能非常好,能够与钢筋、预应力钢束等有效结合,加工成各种形状、尺寸的构件。
4. 优异的变形能力:UHPC在受力情况下呈现出极强的变形能力,具有优异的抗裂性和抗震性。
5. 体积稠密:UHPC经过特殊配比和特殊工艺制作,具有极高的致密性和微观结构的精细性,体积密度大于2.4g/cm3。
二、UHPC的研究现状目前,国内外对UHPC的研究已经取得了显著的进展,主要集中在材料成分、配合比设计、制备工艺、力学性能和结构应用等方面。
1. 材料成分:UHPC的基本原料包括水泥、硅粉、矿物掺合料、超细矿物颗粒、粘结剂、外加剂和水,其中水泥和超细矿物颗粒是UHPC的主要材料。
2. 配合比设计:UHPC的配合比设计是关键的技术之一,需要考虑到各种原材料的物理化学性质,以及混凝土的性能要求,通过科学合理的方法确定各种原料的配合比例。
3. 制备工艺:UHPC的制备工艺包括原料的预处理、混合、浇筑、养护等步骤,其中混合工艺是制备UHPC的关键环节。
4. 力学性能:UHPC的力学性能是评价其优劣的重要指标,包括抗压强度、抗拉强度、抗弯强度、抗冻融性等方面的性能。
5. 结构应用:UHPC在桥梁、隧道、建筑和水利工程中得到了广泛应用,主要包括梁、柱、板、墙、连接节点等构件的应用。
高性能混凝土的研究与发展现状

职称论文课题名称高性能混凝土的研究与发展现状专业姓名完成时间摘要高性能混凝土(High Performance Concrete,HPC) 由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程。
本文主要介绍了高性能混凝土发展的历史背景及目前国内外的研究现状,阐明了高性能混凝土的特性,列举了高性能混凝土在国内外研究应用中的重要成果,并对其发展趋势作出展望。
关键词:高性能混凝土;耐久性;体积稳定性目录引言 (1)一、高性能混凝土产生的背景和研究现状 (1)(一)背景 (1)(二)研究现状及发展方向 (1)二、高性能混凝土的性能研究和应用分析 (2)(一)高性能混凝土的概念 (2)(二)高性能混凝土的性能 (2)三、高性能混凝土质量与施工控制 (3)(一)高性能混凝土原材料及其选用 (3)(二)高性能混凝土的施工控制 (4)四、高性能混凝土的特点 (5)(一)高耐久性能 (5)(二)高工作性能 (5)五、研发绿色高性能混凝土的必要性 (5)六、高性能混凝土的发展前景 (6)七、结论 (6)参考文献 (8)高性能混凝土的研究与发展现状引言高性能混凝土(High Performance Concrete,HPC)是20世纪80年代末90年代初,一些发达国家基于混凝土结构耐久性设计提出的一种全新概念的混凝土,它以耐久性为首要设计指标。
高性能混凝土由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,被各国学者所接受,被认为是今后混凝土技术的发展方向。
一、高性能混凝土产生的背景和研究现状(一)背景传统混凝土的原材料都来自天然资源。
每用1t水泥,大概需要0.6t以上的洁净水,2t砂、3t以上的石子;每生产1t硅酸盐水泥约需1.5t石灰石和大量燃煤与电能,并排放1tCO2。
高性能混凝土的应用研究与未来发展现状 毕业论文

毕业论文课题名称高性能混凝土的应用研究与未来发展现状专业建筑施工与管理姓名学号摘要随着我国改革开放和现代化进程的加快,我国的建设规模正日益增大,如何保证建筑工程质量的同时也能使工程能长久的安全使用下去,日益受到各级政府和社会各界的广泛关注。
在众多的土木工程建设中,混凝土的应用面之广,使用次数之多是很少见的。
尤其中近年来,一种较新的混凝土技术正在快速发展并且运用到许多实际工程项目中,那就是高性能混凝土。
高性能混凝土(High Performance Concrete,HPC) 由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程。
本文主要介绍了高性能混凝土发展的历史背景及目前国内外的研究现状,阐明了高性能混凝土的特性,列举了高性能混凝土在国内外研究应用中的重要成果,并对其发展趋势作出展望。
随着我国建筑向高层化、大型化、现代化的发展,HPC必将成为新世纪的重要建筑工程材料。
关键词:高性能混凝土;耐久性;体积稳定性目录引言 (1)一、高性能混凝土产生的背景和研究现状 (2)(一)背景 (2)(二)研究现状及发展方向 (2)二、高性能混凝土的特点 (3)(一)高耐久性能 (3)(二)高工作性能 (3)(三)其它 (3)三、高性能混凝土的性能研究和应用分析 (4)(一)高性能混凝土的概念 (4)(二)高性能混凝土的质量及性能 (4)(三)高性能混凝土发展和应用中所面临的问题 (8)四、关于绿色高性能混凝土 (9)(一)研发绿色高性能混凝土的必要性 (9)(二)绿色高性能混凝土的可行性 (10)(三)绿色高性能混凝土的发展 (10)五、高性能混凝土的发展前景 (11)六、结论 (11)参考文献 (12)高性能混凝土的应用未来研究与发展前景从1824年波特兰水泥发明开始,混凝土材料至今已有100多年的历史,以水泥为胶结材的混凝土也取得了具大的发展,由普通混凝土向高性能混凝土发展。
高性能混凝土产生的背景和研究现状

高性能混凝土产生的背景和研究现状高性能混凝土(High Performance Concrete,HPC)是20世纪80年代后期开始发展的一种新型材料,主要是为了解决传统混凝土的弱点和不足。
20世纪60年代,日本开始使用强度高、耐久性好的新型混凝土来进行修建,这就激发了世界各地在混凝土技术上的创新与发展。
随着科技不断进步,HPC的研究和应用也逐渐成熟起来。
HPC是指强度等级大于C60、耐久性好、抗渗抗裂性能优良、具有良好的可加工性、抗震性能等一系列优良性质的混凝土。
HPC的研究方向主要包括材料、配合比设计、加工技术、破坏模型和评估方法等方面。
HPC的应用范围非常广泛,可以用于各种建筑物、桥梁、隧道、地下工程、海洋工程等领域。
目前,国内外HPC研究的重点主要集中在以下几个方向:1.材料研究。
HPC的优良性能主要源于材料,因此材料研究是HPC研究的重要方向。
材料研究包括水泥、粉煤灰、矿渣粉、矿物掺合料等原材料的性能研究和改性研究。
同时也需要研究材料的颗粒形状、大小、密度等对混凝土性能的影响。
2.配合比设计。
HPC的配合比设计是十分关键的环节,合理的配合比才能保证HPC的性能优良。
目前,国内外研究者在HPC配合比设计上采用了多种方法,例如多元最优、响应面、遗传算法等。
3.加工技术。
HPC的加工技术包括了成型、养护、抗渗、抗裂等多个方面。
在成型中,为了减少混凝土表面的凸凹不平,采用了抹灰、打磨等多种方法;在养护中,需要对温度、湿度、养护时间等进行控制,以保证HPC的强度和耐久性;在抗渗、抗裂方面,也需要采取措施进行改善。
4.破坏模型和评估方法。
HPC的破坏模型研究和评估方法研究都是为了提高HPC的使用可靠性和安全性。
目前,国内外研究者在HPC破坏模型和评估方法上采用了多种数学模型和试验方法。
总之,HPC在工程领域的应用越来越广泛,其优越的性能已经得到了广泛的认可和应用。
随着科技的不断发展,HPC技术还将不断更新与改进,为工程建设提供更加优质高效的新型材料。
高性能混凝土的研究与发展

1高 性 能 混凝 土 的研 究现 状 与 热 点
久 性 ,配制 H C 方面作 了大 量 的研 究工作 。 实验 P
中 , 遍采 用 盐 冻剥 落 量 、 F值 、 普 D 氯离 子 扩散 深 度
长 期 以来 , 凝 土 一 直 被 认 为 是 坚 固 耐 久 的 材 混
和 钢 筋锈 蚀 率 4个耐 久 性参 数 进 行耐 久 性设 计 优
高性 能 混凝 土 的研 究 与发展
Th e e r h a d d v lp e t f h ih p r r n e c n r t e rs a c n e eo m n e hg e f ma c o c e e o t o
高 柯 孟云芳 ( 宁夏大 学土木 与水 利工 程学 院 , 宁夏 银 川 7 0 2 ) 5 0 1
摘 要 : 文 介 绍 了高性 能 混凝 土的 发 展 及 目前 国 内外 研 究 热 点 , 明 了 高性 能 混 凝 土 的 特征 与性 能 . 及 高 性 能 混 凝 土 本 阐 以 未来 的发 展 趋 势 关键词: 高性 能 混凝 土 : 征 : 特 发展
Ab ta t e a t l n r d c st e d v l p n f h ih p r r n e c n rt n h o s o ih i r sa c e n o s r c : r ce i to u e h e eo me to e h g e o ma c o c ee a d t e h t twh c s e e r h d i d — Th i t f p
化。 比较 优化后 混凝 土与 按传统 设计 混凝 土 的性能 的优 劣 , 而确 定 出耐 久 性最 为பைடு நூலகம் 良的高性 能 混凝 从
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高性能混凝土的研究与发展现状学生姓名:指导教师:专业年级:完稿时间:高性能混凝土的研究与发展现状XX大学摘要随着科学技术的进步,现代建筑不断向高层、大跨、地下、海洋方向发展。
高强混凝土由于具有耐久性好、强度高、变形小等优点,能适应现代工程结构向大跨、重载、高耸发展和承受恶劣环境条件的需要,同时还能减小构件截面、增大使用面积、降低工程造价,因此得到了越来越广泛的应用,并取得了明显的技术经济效益。
关键词:高性能混凝土性能发展应用前景一高性能混凝土的发展方向 ............................ (1)1.1 轻混凝土 (1)1.2 绿色高性能混凝土 (1)1.3 超高性能混凝土 (1)1. 4智能混凝土...................................... (1)二高性能混凝土的性能 ................................ ....... (1)2.1 耐久性 (1)2. 2工作性..................................... .......... (1)2.3 力学性能 (1)2.4 体积稳定性 (1)2.5 经济性...................................... (2)三高性能混凝土质量与施工控制 (2)3.1 高性能混凝土原材料及其选用 (2)3.2 配合比设计控制要点 (3)四高强高性能混凝土的应用与施工控制 (3)4.1高强高性能混凝土的应用 (3)4.2 高性能混凝土的施工控制 (4)五高性能混凝土的特点 (4)5.1 高耐久性能 (4)5.2 高工作性能 (5)5.3 高稳定性能 (5)六高性能混凝土的发展前景 (5)参考文献 (6)一高性能混凝土的发展方向31.1轻混凝土是指表观密度小于1950kg/m的混凝土。
可分为轻集料混凝土、多孔混凝土和无砂大孔混凝土三类。
1.2绿色高性能混凝土水泥混凝土是当代最大宗的人造材料,对资源、能源的消耗和对环境的破坏十分巨大,与可持续发展的要求背道而驰。
绿色高性能混凝土研究和应用较多的是粉煤灰混凝土,粉煤灰混凝土与基准混凝土相比,大大提高了新拌混凝土的工作性能,明显降低混凝土硬化阶段的水化热,提高混凝土强度特别是后期强度而且,节约水泥,减少环境污染,成为绿色高性能混凝土的代表性材料。
1.3超高性能混凝土如活性粉末混凝土,其特点是高强度,抗压强度高达300MPa 且具有高密实性,已在军事、核电站等特殊工程中成功应用。
1.4智能混凝土是在混凝土原有的组分基础上复合智能型组分,使混凝土材料具有自感知、自适应、自修复特性的多功能材料,对环境变化具有感知和控制的功能。
随着损伤自诊断混凝土、温度自调节混凝土、仿生自愈合混凝土等一系列机敏混凝土的出现,为智能混凝土的研究、发展和智能混凝土结构的研究应用奠定了基础。
二高性能混凝土的性能2.1耐久性。
高效减水剂和矿物质超细粉的配合使用,能够有效的减少用水量,减少混凝土内部的空隙,能够使混凝土结构安全可靠地工作50〜100年以上,是高性能混凝土应用的主要目的。
2.2工作性。
坍落度是评价混凝土工作性的主要指标,HPCI勺坍落度控制功能好,在振捣的过程中,高性能混凝土粘性大,粗骨料的下沉速度慢,在相同振动时间内,下沉距离短,稳定性和均匀性好。
同时,由于高性能混凝土的水灰比低,自由水少,且掺入超细粉,基本上无泌水,其水泥浆的粘性大,很少产生离析的现象。
2.3力学性能。
由于混凝土是一种非均质材料,强度受诸多因素的影响,水灰比是影响混凝土强度的主要因素,对于普通混凝土,随着水灰比的降低,混凝土的抗压强度增大,高性能混凝土中的高效减水剂对水泥的分散能力强、减水率高,可大幅度降低混凝土单方用水量。
在高性能混凝土中掺入矿物超细粉可以填充水泥颗粒之间的空隙,改善界面结构,提高混凝土的密实度,提高强度。
2.4体积稳定性。
高性能混凝土具有较高的体积稳定性,即混凝土在硬化早期应具有较低的水化热,硬化后期具有较小的收缩变形。
2.5经济性。
高性能混凝土较高的强度、良好的耐久性和工艺性都能使其具有良好的经济性。
高性能混凝土良好的耐久性可以减少结构的维修费用,延长结构的使用寿命,收到良好的经济效益。
三高性能混凝土质量与施工控制3.1高性能混凝土原材料及其选用3.1.1细集料。
细集料宜选用质地坚硬、洁净、级配良好的天然中、粗河砂,其质量要求应符合普通混凝土用砂石标准中的规定。
砂的粗细程度对混凝土强度有明显的影响,一般情况下,砂子越粗,混凝土的强度越高。
配制C5旷C80的混凝土用砂宜选用细度模数大于2.3的中砂,对于C8旷C100的混凝土用砂宜选用细度模数大于2.6的中砂或粗砂。
3.1.2粗集料。
高性能混凝土必须选用强度高、吸水率低、级配良好的粗集料。
宜选择表面粗糙、外形有棱角、针片状含量低的硬质砂岩、石灰岩、花岗岩、玄武岩碎石,级配符合规范要求。
由于高性能混凝土要求强度较高,就必须使粗集料具有足够高的强度,一般粗集料强度应为混凝土强度的115倍〜210倍或控制压碎指标值〉10%。
最大粒径不应大于25mm以10m〜20mn为佳,这是因为,较小粒径的粗集料,其内部产生缺陷的几率减小,与砂浆的粘结面积增大,且界面受力较均匀。
另外,粗集料还应注意集料的粒型、级配和岩石种类,一般采取连续级配,其中尤以级配良好、表面粗糙的石灰岩碎石为最好。
粗集料的线膨胀系数要尽可能小,这样能大大减小温度应力,从而提高混凝土的体积稳定性。
3.1.3细掺合料。
配制高性能混凝土时,掺入活性细掺合料可以使水泥浆的流动性大为改善,空隙得到充分填充,使硬化后的水泥石强度有所提高。
更重要的是,加入活性细掺合料改善了混凝土中水泥石与骨料的界面结构,使混凝土的强度、抗渗性与耐久性均得到提高。
活性细掺合料是高性能混凝土必用的组成材料。
在高性能混凝土中常用的活性细掺合料有硅粉(SF)、磨细矿渣粉(BFS)、粉煤灰(FA)、天然沸石粉(NZ)等。
3.1.4减水剂及缓凝剂。
由于高性能混凝土具有较高的强度,且一般混凝土拌合物的坍落度较大(15〜20 cm 左右),在低水胶比(一般V 0.35)一般的情况下,要使混凝土具有较大的坍落度,就必须使用高效减水剂,且其减水率宜在20%以上。
有时为减少混凝土坍落度的损失在减水剂内还宜掺有缓凝的成份。
此外,由于高性能混凝土水胶比低,水泥颗粒间距小,能进人溶液的离子数量也少,因此减水剂对水泥的适应性表现更为敏感。
因大部分高性能混凝土施工时采用泵送,故掺减水剂后混凝土拌合物的坍落度损失不能太快太大,否则影响泵送。
3.2配合比设计控制要点高强高性能混凝土配合比设计理论尚不完善,一般可尊循下列原则进行。
3.2.1水灰比W/C普通混凝土配合比设计中的鲍罗米公式对C60以上的混凝土已不尽适用,但水灰比仍是决定混凝土强度的主要因素,目前尚无完善的公式可供选用,故配合比设计时通常根据设计强度等级、原材料和经验选定水灰比。
3.2.2用水量和水泥用量,普通水泥中用水量根据坍落度要求、骨料品种、粒径选择。
高强度高性能混凝土可参考执行,当由此确定的用水量导致水泥或胶凝材料总用量过大时,可通过调整减水剂品种或掺量来降低用水量或胶凝材料用量。
也可以根据强度和耐久性要求,首先确定水泥或胶凝材料用量,再由水灰比计算用水量,当流动性不能满足设计要求时,再通过调整减水剂品种或掺量加以调整。
3.2.3砂率,对泵送高强混凝土,砂率的选用要考虑可泵性要求,一般为34%- 44% 在满足施工工艺和施工和易性要求时,砂率宜尽量选小些,以降低水泥用量。
从原则上来说,砂率宜通过试验确定最优砂率。
3.2.4高效减水剂,高效减水剂的品种选择原则,除了考虑减水率大小外,尚要考虑对混凝土坍落度损失、保水性和粘聚性的影响,更要考虑对强度、耐久性和收缩的影响。
减水剂的掺量可根据减水率的要求,在允许掺量范围内,通过试验确定。
但一般不宜因减水的需要而超量掺用。
3.3高强高性能混凝土的主要技术性质3.3.1高强混凝土的早期强度高,但后期强度增长率一般不及普通混凝土。
故不能用普通混凝土的龄期一强度关系式,由早期强度推算后期强度。
3.3.2高强高性能混凝土由于非常致密,故抗渗、抗冻、抗碳化、抗腐蚀等耐久性指标均十分优异,可极大地提高混凝土结构物的使用年限。
3.3.3高强混凝土的弹性模量高,徐变小,可大大提高构筑物的结构刚度。
特别是对预应力混凝土结构,可大大减小预应力损失。
3.3.4高强混凝土的抗拉强度增长幅度往往小于抗压强度,即拉压比相对较低,且随着强度等级提高,脆性增大,韧性下降。
四高强高性能混凝土的应用与施工控制4.1高强高性能混凝土的应用高强高性能混凝土作为建设部推广应用的十大新技术之一,是建设工程发展的必然趋势。
发达国家早在20世纪50年代即已开始研究应用。
我国约在20世纪80 年代初首先在轨枕和预应力桥梁中得到应用。
随着国民经济的发展,高强高性能混凝土在建筑、道路、桥梁、港口、海洋、大跨度及预应力结构、高耸建筑物等工程中的应用将越来越广泛,强度等级也将不断提高,C5旷C80的混凝土将普遍得到使用,C80以上的混凝土将在一定范围内得到应用。
4.2高性能混凝土的施工控制421搅拌,混凝土原材料应严格按照施工配合比要求进行准确称量,应采用卧轴式、行星式或逆流式强制搅拌机搅拌混凝土,采用电子计量系统计量原材料。
搅拌时间不宜少于2min,也不宜超过3min。
炎热季节或寒冷季节搅拌混凝土时,必须采取有效措施控制原材料温度,以保证混凝土的入模温度满足规定。
4.2.2运输,应采取有效措施,保证混凝土在运输过程中保持均匀性及各项工作性能指标不发生明显波动。
应对运输设备采取保温隔热措施,防止局部混凝土温度升高(夏季)或受冻(冬季)。
应采取适当措施防止水分进入运输容器或蒸发。
4.2.3浇筑,1.混凝土入模前,应采用专用设备测定混凝土的温度、坍落度、含气量、水胶比及泌水率等工作性能;只有拌合物性能符合设计或配合比要求的混凝土方可入模浇筑。
混凝土的入模温度一般宜控制在5〜30C ;2.混凝土浇筑时的自由倾落高度不得大于2m当大于2m时,应采用滑槽、串筒、漏斗等器具辅助输送混凝土,保证混凝土不出现分层离析现象;3.混凝土的浇筑应采用分层连续推移的方式进行,间隙时间不得超过90min,不得随意留置施工缝;4.新浇混凝土与邻接的己硬化混凝土或岩土介质间浇筑时的温差不得大于15C ;5.养护高性能混凝土早期强度增长较快,一般3天达到设计强度的60%,7天达到设计强度的80%因而,混凝土早期养护特别重要。
通常在混凝土浇注完毕后采取以带模养护为主,浇水养护为辅,使混凝土表面保持湿润。
养护时间不少于14天。