过程控制系统建模方法和测试概念

合集下载

过程控制知识点(精编)

过程控制知识点(精编)

(一)概述1.过程控制概念:采用数字或模拟控制方式对生产过程的某一或某些物理参数进行的自动控制。

2.学科定位:过程控制是控制理论、工艺知识、计算机技术和仪器仪表知识相结合而构成的一门应用学科。

3.过程控制的目标:安全性,稳定性,经济性。

4.过程控制主要是指连续过程工业的过程控制。

5.过程控制系统基本框图:6.过程控制系统的特点:1)被控过程的多样性2)控制方案的多样性,包括系统硬件组成和控制算法以及软件设计的多样性。

3)被控过程属慢过程且多属参数控制4)定值控制是过程控制的主要形式5)过程控制有多种分类方法。

过程控制系统阶跃应曲线:7.衰减比η:衡量振荡过程衰减程度的指标,等于两个相邻同向波峰值之比。

即:8.衰减率ϕ:指每经过一个周期以后,波动幅度衰减的百分数,即:衰减比常用表示。

9.最大动态偏差y1:被控参数偏离其最终稳态值的最大值。

衡量过程控制系统动态准确性的指标10.超调量:最大动态偏差占稳态值的百分比。

11.余差:衡量控制系统稳态准确性的性能指标。

12.调节时间:从过渡过程开始到结束的时间。

当被控量进入其稳态值的范围内,过渡过程结束。

调节时间是过程控制系统快速性的指标。

13.振荡频率:振荡周期P的倒数,即:当相同,越大则越短;当相同时,则越高,越短。

因此,振荡频率也可衡量过程控制系统快速性。

被控对象的数学模型(动态特性):过程在各输入量(包括控制量与扰动量)作用下,其相应输出量(被控量)变化函数关系的数学表达式。

14. 被控对象的动态特性的特点:1单调不振荡。

2具有延迟性和大的时间常数。

3具有纯时间滞后。

4具有自平衡和非平衡特性。

5非线性。

(二)过程控制系统建模方法机理法建模:根据生产过程中实际发生的变化机理,写出各种有关方程式,从而得到所需的数学模型。

测试法建模:根据工业过程的输入、输出的实测数据进行某种数学处理后得到的模型。

经典辨识法:测定动态特性的时域方法,测定动态特性的频域方法,测定动态特性的统计相关法。

《过程控制系统建模》课件

《过程控制系统建模》课件

数据获取和处理
大量的数据采集和处理,需要合 理的数据处理技术和数据质量控 制方法,以确保模型的有效性和 准确性。
算法和技术
不同的技术和算法,需要结合实 际问题和应用场景进行选择和优 化,以达到最佳的建模效果和性 能。
过程控制系统建模的未来
1 智能化和自适应性
通过人工智能和自适应技术,将过程控制系统建模与实时控制、决策和优化相结合,实 现更高效和更智能的系统运行。
2 深度学习和预测模型
依靠深度学习和预测模型,实现对大量数据的分析和处理,并将结果应用于控制和优化, 提高系统性能和效率。
3 云计算和协同建模
通过云计算和协同建模平台,实现模型的在线共享和基于协作的模型开发和优化。
仿真模型,实现自动控制和智能决策的
高效性和准确性。
3
水处理系统
建立水厂处理系统的数学模型,实现化 学药品控制和电气控制的联合优化,提 高水质和节约成本。
风力发电系统
建立风力发电系统的动态模型和优化模 型,提高风能利用率和稳定性,减少对 供电系统的影响。
过程控制系统建模的挑战
模型复杂性
数学模型的建立需要深入的领域 知识和技术,对于大型和复杂的 系统,模型的精确性和可靠性需 要长时间的研究。
模型建立
根据系统的特性和建模目标,选择合适的建模技 术和模型,建立数学模型和计算模型。
系统分析
对系统进行观测、数据采集、统计分析和建模假 设验证,确定模型变量和参数。
模型验证和调整
利用数据验证模型的准确性和可靠性,对模型进 行调整和改进。过程控制系统建模实例 Nhomakorabea1
机器人控制系统
2
建立工业机器人控制系统的物理模型和
建模方法和工具

第12章 过程控制系统建模方法

第12章 过程控制系统建模方法

12.1.11
12
二、多容过程的建模
多容过程:由多个容积和阻力件 构成的被控过程 (一)自衡双容过程的建模
1
q
1
h1
C1
自衡双容过程
2
q2
h2
q3
被控量:下水箱的液位h2 输入量:q1
C2
3
13
水箱1:
d h 1 q1 q 2 C1 dt h 1 q 2 R2
12.1.12
12.1.3
q1 q 2 A
d h dt
12.1.2
R2 为阀门2的阻力系数,称为液阻
将式(12.1.3)代入(12.1.2),得
dh 12.1.4 R 2 q1 h AR 2 dt 对(12.1.4)进行拉氏变换后得单容液位控制过程的传递函数为 L
q0
K0 H(S) R2 W0 (S) Q1 (S) 1 R 2CS T0S 1
机理法:又称数学分析法或者理论建模法,根据过程的 内在机理,通过静态与动态物料平衡和能量平衡 等关系用数学推导的方法求取过程的数学模型。
一、单容过程的建模
二、多容过程的建模
单容过程:只有一个储蓄容量的过程。如下页图所示。
5
(一)自衡单容过程的建模
q0
L 1
q1-----流入量,控制过程的输入变量 q2-----流出量,中间变量 h-----液位,控制过程的输出变量 模型:求取输入量q1与液位h之间的
无自衡过程:被控过程在扰动的作用下, 其平衡状态被破坏后,若无人员操作或 者仪表干预,依靠自身的能力不能重新 恢复平衡的过程。(c)
o
t y(t)
o y(t)
t (a)
o y(t) (b)

过程控制系统建模方法

过程控制系统建模方法
过程控制系统建模方法
研究并建立数学模型的目的
• (1)、设计过程控制系统、整定调节器参数。 • (2)、指导生产工艺设备的设计。 • (3)、进行仿真实验研究。 • (4)、培训运行操作人员。
过程控制系统建模方法
建模方法分类
为了成功地设计一个控制系统,需要准确地 建立被控对象的数学模型。建立被控对象的 数学模型,一般可采用多种方法,大致可分 机理法和测试法两大类。
(3) 压力对象
• 气体容器的气容为C,进气管道气阻R,开 始处于平衡状态时pO0=pi0,如果进口压力 突然增加Δpi,容器内压力发生变化Δpo
过程控制系统建模方法
压力对象传递函数
气阻R
气压差变化量 气体质量流量变化量
pi po

气容C
容器内气体质量变化量 容器内气体压力变化量
dG dpo
,
过程控制系统建模方法
单容对象的传递函数
• 设A为液槽横截面积(m2),R为流出侧负 载阀门的阻力即液阻(s/m2).根据物料平衡 关系,在正常工作状态下,初始时刻处于 平衡状态Q0=Qi,h=h0,当进水阀开度发生 阶跃变化△u时,液位发生变化。在流出侧 负载阀开度不变的情况下,液位的变化将 使流出量改 变。
过程控制系统建模方法
2.2.4多容对象的动态特性
• (1) 具有自平衡能力的双容对象 • (2) 具有自平衡能力的多容对象 • (3) 无自平衡能力的双容对象 • (4) 相互作用的双容对象
过程控制系统建模方法
(1) 具有自平衡能力的双容对象
过程控制系统建模方法
双容对象关系式
Q
1
Q
2
C
2
dh dt
过程控制系统建模方法

第2章过程控制系统建模方法

第2章过程控制系统建模方法
❖ 内容
建立被控对象的数学模型, 可分为机理法和测试法两大类。
❖ 建立被控对象的数学模型,可分为机理法 和测试法两类。
❖ 2.1 过程控制系统建模概念 ❖ § 2.1.1 建模概念
❖ 三类主要的信息源: 1、要确定明确的输入量与输出量。
2、要有先验知识
3、试验数据 过程的信息能通过对对象的试验与测量而
❖ 电加热炉
❖ 根据热力学知识,有
MC
d (T T0 ) dt
HA(T
T0 )
Qi

可得炉内温度变化量对控制电压变化量之间 的传递函数为
G(S )
T(S ) u(S )
K
s 1
❖ 3、压力对象 压力对象如图所示.
RC dp0 dt
p0
pi

可得容器压力变化量与进气压力变化量之间 的传递函数如下:
❖ 根据不同的基本原理又可分为 最小二乘法; 梯度校正法; 极大似然法三种类型。
❖ 最小二乘法是利用最小二乘原理,通过极小 化广义误差的平方和函数来确定模型的参数。
❖ 测定动态特性的时域法 在被控对象上,人为地加非周期信号后,测 定被控对象的响应曲线,然后再根据响应曲 线,求出被控对象的传递函数。
获得。
❖ 被控对象数学模型的要求:要求它准确可靠。在线 运用的数学模型要求实时性。
❖ 在建立数学模型时,要抓住主要因素,忽略次要因 素,需要做很多近似处理 。如:线性化、分布参数 系统和模型降阶处理等。
§ 2.1.2 过程控制系统建模的两个基本方法
❖ 1、机理法建模
用机理法建模的首要条件是生产过程的 机理必须为人们充分掌握,可以比较确切 的加以数学描述。
G( s )
(T1s

控制系统中的系统建模与分析

控制系统中的系统建模与分析

控制系统中的系统建模与分析在控制系统中,建模分析是十分重要的一环。

通过对系统进行精细的建模,可以实现对系统的深刻理解,为控制系统的设计提供支持和依据。

本文将介绍控制系统中的系统建模与分析,帮助读者更好地理解和应用控制系统。

一、控制系统简介控制系统是一个涉及工程、数学、物理、计算机等多个学科的复杂系统,它的作用是在符合一定性能指标的前提下,使系统达到一定的预定目标。

常见的控制系统包括飞行器控制系统、汽车自动驾驶系统、机器人控制系统等。

二、系统建模1. 建模方式在控制系统中,系统建模有两种主要方式:基于物理方程(物理建模)和基于实验数据(数据建模)。

物理建模是通过物理学、力学、电学等学科,建立控制对象的系统模型,包括状态空间模型、传递函数模型等。

物理建模效果较好,其模型能够准确地反映控制对象的物理特性。

但是物理建模需要精通相关物理学原理和数学知识,建模难度较大。

数据建模是通过采集已知控制对象的实验数据,利用机器学习等方法,建立控制对象的模型。

数据建模对专业知识的要求相对较低,但是数据采集和处理需要耗费时间和精力,并且在建立模型中可能存在误差。

2. 建模过程系统建模的目的是利用数学模型描述和分析实际系统,从而实现对系统的控制。

建模过程可以分为以下几步:(1)收集系统信息:了解控制对象的系统结构、工作原理、性能指标等相关信息。

(2)选择建模方法:选择合适的建模方法,根据具体情况进行物理建模或数据建模。

(3)建立模型:针对控制对象的工作原理和性能指标,建立相应的数学模型。

(4)验证模型:对建立的模型进行测试和验证,检验其准确性和可靠性。

(5)优化模型:根据验证结果对模型进行调整和优化,实现对模型的完善和精细化。

三、系统分析1. 稳定性分析稳定性是控制系统中最基本的性质之一。

稳定性分析可分为稳定性判据和稳定性分析两方面。

稳定性判据是建立在数学理论基础上,针对控制系统建立一系列的稳定性判定定理,如Routh-Hurwitz准则、Nyquist准则等,根据这些判据来判断控制系统的稳定性。

化工过程控制系统动态模型建立与分析

化工过程控制系统动态模型建立与分析

化工过程控制系统动态模型建立与分析随着科技的进步和工业的飞速发展,化工行业对于过程控制技术的需求越来越高。

化工过程控制系统动态模型的建立与分析是实现优化控制和自动化的关键步骤,它能够帮助工程师们更好地理解和管理化工过程,提高生产效率和安全性。

本文将介绍化工过程控制系统动态模型的建立方法,以及分析该模型的重要性和应用前景。

一、化工过程控制系统动态模型的建立方法化工过程控制系统动态模型的建立是通过对化工过程的各个环节进行建模和参数估计来实现的。

主要的方法包括基于物理原理的建模方法和基于数据挖掘的建模方法。

1. 基于物理原理的建模方法基于物理原理的建模方法是通过对化工过程的质量守恒、能量守恒和动量守恒等基本原理的数学表示,得到控制系统的动态模型。

这种方法需要对化工过程的基本原理有深入的了解,以及对各个环节的参数进行准确的估计。

常见的基于物理原理的建模方法包括质量平衡模型、热力学模型、动力学模型等。

这些模型可以通过微分方程、代数方程或差分方程等形式进行描述,并可以通过数值方法进行求解和仿真。

2. 基于数据挖掘的建模方法基于数据挖掘的建模方法是通过对化工过程的历史运行数据进行分析和处理,建立系统的动态模型。

这种方法不需要对化工过程的基本原理有深入的了解,而是通过对数据的挖掘和分析,找出变量之间的关联性和规律性,并利用这些关联性和规律性建立模型。

常见的基于数据挖掘的建模方法包括回归分析、神经网络、支持向量机等。

这些方法可以对大量的历史数据进行处理和分析,并可以预测未来的过程变量。

二、化工过程控制系统动态模型的分析化工过程控制系统动态模型的分析是通过对模型进行数学和统计方法的应用,得到有关系统行为和性能的信息。

主要的分析方法包括稳定性分析、动态响应分析和灵敏度分析等。

1. 稳定性分析稳定性分析是衡量控制系统是否稳定的重要指标。

通过对控制系统动态模型的特征值进行分析,判断系统的稳定性和稳定裕度。

常见的稳定性分析方法包括根轨迹分析、Nyquist稳定性判据和Bode稳定性判据等。

控制系统中的系统建模与模型验证

控制系统中的系统建模与模型验证

控制系统中的系统建模与模型验证控制系统是将各种物理量转化为电信号,并通过计算机进行处理和控制的系统。

在控制系统的设计和开发中,系统建模和模型验证是至关重要的步骤。

系统建模是指将现实世界的系统抽象为数学模型的过程,而模型验证则是验证所建立的模型是否准确地反映了系统的行为。

一、系统建模在进行系统建模之前,我们需要明确系统的输入、输出和内部结构。

系统的输入是指外部对系统的控制,输出是系统的响应,而内部结构则是系统各个组成部分的联系和相互作用。

1. 功能模型功能模型是系统建模中最常见的一种模型。

它描述了系统的功能和输入输出关系。

对于一个简单的控制系统来说,功能模型可以用框图或者流程图表示。

在框图中,用矩形表示功能模块,用箭头表示输入输出关系。

2. 状态空间模型状态空间模型描述了系统在不同时间点的状态和状态之间的转移关系。

它可以用矩阵和向量表示,其中状态向量包含了系统的所有状态变量,状态转移矩阵描述了状态之间的转移规律。

3. 传递函数模型传递函数模型描述了系统输入和输出之间的关系。

它是一种频域模型,可以用分子多项式和分母多项式表示。

传递函数模型常用于线性系统的建模,可以通过频率分析来研究系统的稳定性和性能。

二、模型验证模型验证是验证所建立的模型是否准确地反映了系统的行为。

在模型验证过程中,我们需要对模型进行仿真和实验验证。

1. 仿真验证仿真验证是通过计算机模拟系统的行为,从而验证模型的准确性和可行性。

在仿真验证过程中,我们可以根据模型的输入,计算系统的输出,并与实际数据进行对比。

如果模型的输出与实际数据吻合较好,说明模型是可靠的。

2. 实验验证实验验证是通过实际搭建系统的物理模型,并进行实验测试来验证模型的准确性。

在实验验证中,我们需要搭建控制系统的硬件平台,并根据模型的输入,测量系统的输出。

将实际数据与模型的输出进行对比,以验证模型的准确性。

三、总结控制系统中的系统建模和模型验证是控制系统设计中不可或缺的一步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


用机理法建模时,出现模型中某些参数难以确定的
情况或用机理法建模太烦琐,可以用测试的方法来建模

2、测试法建模 ❖ 根据工业过程的输入和输出的实测数据进行数学处
理后得到的模型。 ❖ 特点是把被研究的工业过程视为一个黑匣子,完全
从外特性上测试和描述它的动态性质,不需要深入 掌握其内部机理。
• 为了获得动态特性,必须使被研究的过程处于被激 励的状态,施加一个阶跃扰动或脉冲扰动等。
过程控制系统建模 方法和测试概念
2.1 过程控制系统建模概念 2.2 机理建模方法 2.3 测试建模方法
2.1 过程控制系统建模概念
2.1.1 建模概念
• 控制系统的设计任务: 依据被控对象的数学模型,按照控制要求来设计控制器。
• 三类主要的信息源: 1、要确定明确的输入量与输出量。 • 通常选一个可控性良好,对输出量影响最大的一个输入信号
二、测试建模的几种方法
(1)测定动态特性的时域方法 ❖ 对被控对象施加阶跃输入,测绘出对象输出量
随时间变化的响应曲线,或施加脉冲输入测绘 出输出的脉冲响应曲线。 ❖ 由响应曲线的结果分析,确定出被控对象的传 递函数。 ❖ 该方法测试设备简单,测试工作量小、应用广 泛,缺点是测试精度不高。
(2)测定动态特性的频域方法
❖ 建立数学模型时常用的近似处理:线性化、分布参 数系统和模型降阶处理等。
2.1.2 过程控制系统建模的两个基本方法
1、机理法建模 ❖ 根据生产过程中实际发生的变化机理,写出各种有
关的平衡方程,物质平衡方程;能量平衡方程;动量平 衡方程以及反映流体流动、传热、传质、化学反应等基 本规律的运动方程,物性参数方程和某些设备的特性方 程等,从中获得所需的数学模型。
❖ 对于无自平衡能力的 单容对象其动态方程 为
A
dh dt=Δ
Q=i
K u u
A-液槽截面积。
多容对象的动态特性
1、具有自平衡能力的双容对象
❖ 其传递函数为
❖ G(s) =
H U
2 (s) (s)
=
K T1T2s2 (T1T2)s1
❖ 若双容对象调节阀1开度变化所引起的流入量 还存在纯延迟,则其传递函数可推导为
❖ 若有纯延迟,则
K

G(s)= (Ts 1) n e 0s
3.无自平衡能力的双容对象
❖ 无自平衡能力的双容 对象是一个有自平衡 能力的单容对象和一 个无自平衡能力的单 容对象的串联。
其对应的传递函数为
G(s)=
1 1 Ts 1 Ta s
• 有纯延迟的情况则
e1
Ts 1
0T1sa s
G(s)=
❖ 对被控对象施加不同频率的正弦波,测出输入 量与输出量的幅值比和相位差,获得对象的频 率特性,来确定被控对象的传递函数。
(3)测定动态特性的统计相关法
❖ 对被控对象施加某种随机信号或直接利用对象 输入端本身存在的随机噪音进行观察和记录,
❖ 可以在生产过程正常运行状态下进行,在线辨 识,精度也较高。
• 若以Δh2为被控参数,则
H 2 (s )
R 2
Q i(s ) R 1 C 1 R 2 C 2 s2 (R 1 C 1 R 2 C 2 R 2 C 1 )s 1
测试建模方法
一、什么情况下使用测试建模法? 1、对于某些生产过程的机理,还未充分掌握; 2、模型中有些参数难以确定; 3、工业对象通常是由高阶非线性微分方程描述 的复杂对象,对这些方程式较难求解。
❖ 具有自平衡特性的被控对象称为自平衡过程, 这是一种稳定的过程。
❖ 有一些被控对象,当 被调量的平衡关系破 坏后,被调量而以固 定的速度一直变化下 去而不会自动地在新 的水平上恢复平衡。 这种现象不具有自平 衡特性,称为无自平 衡过程。这种过程是 临界稳定的,它需要 很长时间,被调量才 会有很大的变化。
dh
❖ T +dt Δh = KΔμ
❖ 有纯延迟的单容对象的微分方程为
dh
❖T
dt +Δh = KΔu(t -
) 0
❖ (2-17)
❖ 对应的传递函数为
G(s)=
H (s)
=
U (s)
K e(02s-18) Ts 1
与式(2-7)相比多了延迟因子
e。 0 s
无自平衡能力的单容对象特性
❖ 用惯性环节描述的单容对象,在被控量受到扰 动后,原来的平衡关系遭到破坏,但随着被调量的 变化不平衡越来越小,被调量能够自动地稳定在新 的平衡点上,这种特性称为自平衡。
具有纯延迟的单容对象特性
• 1、什么是纯延迟? • 2、纯延迟现象产生的原因:是由于扰动发生的地
点与测定被控参数位置有一定距离。
• 有一储水槽调节阀1距水槽有 一段较长的距离。调节阀1开 度变化所引起的流入量变化 ΔQi,需要经过一段传输时间 T0,才能对水槽液位产生影 响, T0 是纯延迟时间。
作为输入量,其余的输入信号则为干扰量。 2、要有先验知识 • 在建模中,被控对象内部所进行的物理、化学过程符合已经 • 发在现建的模许中多必定须理掌握、4 建原模理对及象模所型要。用到的先验知识。
3、试验数据 • 过程的信息能通过对对象的试验与测量而获得。
❖ 被控对象数学模型的要求:准确可靠。
在线运用的数学模型要求实时性。
❖ 无自平衡能力双容对象的阶跃响应曲线
4、相互作用的双容对象
h1 h2 R1
Q1
Qi Q1C1d dht1
Q2
h2 R2
Q1Q0 C2d dht2
❖ 可得对应的传递函数为
Q 0(s)
1
Q i(s) R 1 C 1 R 2 C 2 s2 (R 1 C 1 R 2 C 2 R 2 C 1 )s 1
❖ 测试法建模又可分为经典辨识法和现代 辨识法两大类。
❖ 经典辨识法只需对少量的测试数据进行 简单的数学处理;现代辨识法可以消除 测试数据中的偶然性误差即噪声的影响, 需要处理大量的测试数据。
机理建模方法
例1、单容水槽对象的建模(图2.2) (课后请同学们自己分析后面两个例题!) 结论:单容被控对象动态特性都是一阶惯性环节。
❖ G(s)=
H 2(s) = U (s)
T1T2s2
K e
(T1 T2)s1
0s
2、具有自平衡能力的多容对象
❖ 有n个相互独立的多容对象的时间常数为T1、 T2….Tn,总放大系数为K,则传递函数为
K
G(s)=
(T1s1)T (2s1)(Tns1)
❖ 若T1=T n
相关文档
最新文档