探测器性能比较
关于金属探测器种类分类与性能特点

关于金属探测器种类分类与性能特点首先,就金属探测器来说,可以分成不同种类,因此我们探究其金属探测器的性能也就分类测验,以下是美创达诚关于金属探测器的按照不同标准来分类1、按功能来划分:1)全金属探测器:可以检测到铁、不锈钢、铜、铝等所有金属。
检测精度和灵敏度都比较高。
这种金属探测器通常用于食品日化等工业探测金属异物,食品等行业对金属异物的限制是很严格的。
因此,对这种金属探测器的灵敏度要求极高。
2)铁金属探测器:是一种磁感应式金属探测器,顾名思义,这种金属探测器只能检测到铁、钴、镍等可上磁性的金属,俗称检针机。
检测铁精度和灵敏度较高,对纯度高的铜铝等非铁金属不检测。
2.按用途来划分:1)手持金属探测器:如:MCD-140手持式金属探测器是美创达诚为满足高端客户而推出的一款手持金属探测器集大成之作。
本仪器的设计是集各种手持式金属探测器的优点于一身:超高灵敏度、声光/振动同步报警、有低电压指示功能、既能配戴耳机也可以配戴专用充电器进行本机直充电、性能稳定、直板式扫描面积大,可以直接快速的找到金属物体所在,结构美观大方。
A.最早应用于机场,车间,码头,传扬,场馆的公共安检,B.工业上主要用于防止企业含量有金属万分的产品流失,C.应用在各种考试当中,防止考生作弊。
比如高考,研究生考试,公务员考试等。
2)地下金属探测器:如:MCD-PL3地下金属探测器外观设计新颖,小巧灵便,它具有探测度广、定位准确、分辨力强、操作简单等特点,探盘防水设计,可在1米深的水里正常工作,仪器探测灵敏,液晶屏显示信号强度与金属类别,显示清晰,智能化的识别模式能区分有色金属同黑色金属A.应用在军事中的扫雷,B.考古中探测文物,探险中的探宝。
C.现在地下金属检测仪主要用于金属材料的探测,挖掘废旧金属的。
3)输送式金属检测仪(也叫输送式检针机):主要用于检测体积比较小的产品,以及小型袋装,箱装工业产品,可以连接生产线,并实现联动。
4)食品金属检测仪:可用于干货、半干货食品类,包括土特产、茶叶、熟食、咖啡、纺织品、玩具、服装、鞋帽等行业产品检测。
火灾探测器优缺点比较

火灾探测器优缺点比较0 引言近几年来,随着高速公路的不断发展,世界各地隧道火灾事故频发,已广泛引起人们的高度重视。
从1996年的英吉利海峡隧道火灾、2000年的奥地利萨尔茨堡州基茨施坦霍县山隧道火灾、2003年韩国的地铁隧道火灾到2004年的中国的渝黔高速真武山隧道火灾,都造成了巨大的人员伤亡和财产损失。
可以说,隧道火灾事故救援与高层建筑火灾一样,已经成为当今世界各国面临的一大难题,同时,也是消防部门的重要研究课题。
火灾早期的探测是隧道消防的最重要部分,只有尽早发现,才能及时扑灭火情并减少人员伤亡和财产损失。
火灾探测器的合理设计和运用,是关系到灾情能否及时被发现的重要环节。
1 隧道的火灾成因隧道中火灾发生的原因有多种,而其中较主要的原因是汽车碰撞及自身因素导致的火灾以及电气线路及电器设备短路引发的火灾,根据实际案例统计,又以汽车原因导致的火灾为主。
因隧道结构狭长、封闭且空间小,因此隧道火灾有发生后燃烧物产生的大量浓烟难以排出,火灾蔓延速度快的特点。
汽车起火到成灾一般只需要5-10分钟,同时隧道内燃烧产生的热量不易散发,汽车携带的燃料还会爆炸,给救援和逃生都带来了极大的困难;隧道一旦发生火灾,内部基础设施设备都会遭到损坏,交通中断,甚至导致隧道结构的损坏,给国家和人民带来极大的经济损失。
2 两种火灾探测器的原理及特点目前在隧道用火灾探测领域,针对隧道用的火灾探测器主要分为感温型(线型)和感光型(点型)两大类。
线型火灾探测器以分布式感温光纤为主,点型火灾探测器以双波长火焰探测器居多。
下面分别简要分析下这两类探测装置的原理和特点。
分布式感温光纤探测器(DTS)系统使用一个特定频率的光脉冲照射光纤内的玻璃芯。
当光脉冲沿着光纤玻璃芯下移时,会产生多种类型的辐射散射。
如瑞利(Rayleigh)散射、布里渊(Brillouin)散射和拉曼(Raman)散射等。
其中拉曼散射是對温度最为敏感的一种。
光纤中光传输的每一点都会产生拉曼散射,并且产生的拉曼散射光是均匀分布在整个空间角内的。
探测器类型及选型

2.墙式微波探测器在发射机与接收机之间的微波电磁场形成了一道看不见的警戒线,可以长达几百米、宽2到4米、高3到4米,酷似一道围墙
微波段的电磁波由于波长较短,穿透力强,玻璃、木板、砖墙等非金属材料都可穿透。所以在安装时不要面对室外,以免室外有人通过引起误报。金属物体对微波反射较强,在探测器防范区域内不要有大面积(或体积较大)物体存在,如铁柜等。否则在后阴影部分会形成探测盲区,造成防范漏洞。
安装超声波探测器的空间密封性要求高,不应有大容量的空气流动,不能有过多的门窗且需紧闭。应该避开通风设备及气体的流动。用超声波探测器保护的空间隔音性能要好,以减少外界噪声引起的误报。
超声波对
物体没有穿透性,因此使用时应避免物体的遮挡,玻璃、隔板、房门等对超声波的反射能力较差,因此不应正对安装。
开关型探测器
名称
类型
原理
பைடு நூலகம்特点
安装要点
外形图片
红外探测器
1.主动红外探测器
2被动红外探测器
2.被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警控制器等部分组成。其核心部件是红外探测器件,通过关学系统的配合作用可以探测到某个立体防范空间内的热辐射的变化。
1.主动探测器特点是探测可靠性非常高。但若对一个空间进行布防,则需有多个主动式探测器,价格昂贵。2.被动式报警探测器由于探测性能好、易于布防、价格便宜而被广泛应用。其缺点是相对于主动式探测误报率较高。
1.吸顶式微波探测器
2.壁挂式双鉴探测器
震动探测器
常用的震动探测器有位移式传感器(机械式)、速度传感器(电动式)、加速度传感器(压电晶体式)等
光电探测器探测性能多参数分析

光电探测器探测性能多参数分析光电探测器是一种能够将光信号转化为电信号的设备,广泛应用于光通信、光电子学、生物医学等领域。
光电探测器的探测性能对于其应用效果具有重要影响,因此准确分析和评估光电探测器的性能参数是必不可少的。
1. 灵敏度光电探测器的灵敏度是指能够探测到的最小光功率。
通常用单位面积功率密度来表示。
灵敏度越高,意味着该探测器在较弱的光信号条件下仍能正常工作。
灵敏度的高低取决于光电探测器的设计及其所采用的材料。
一种常见的评估指标是光电探测器的响应度。
2. 噪声等效功率噪声等效功率指的是在光电探测器工作状态下,由于设备本身所产生的噪声引入到输出信号中的功率。
噪声等效功率是光电探测器性能的重要参数之一,能够影响到信号与噪声的比值,从而影响信号的清晰度和精确度。
3. 响应时间响应时间是光电探测器从光信号到电信号的转换所需的时间。
这个时间对于对时间精度要求比较高的应用非常重要,如高速通信和光纤通信。
较快的响应时间有助于光电探测器更快地对光信号进行处理和传输。
4. 波长响应特性波长响应特性是指光电探测器对不同波长的光源的响应能力。
由于不同波长的光源具有不同的能量和频率特性,因此光电探测器在不同波长下的响应特性可能有所差异。
光电探测器的波长响应特性需要与具体应用需求匹配。
5. 饱和光功率饱和光功率是指使光电探测器输出信号达到最大值所需输入光功率。
饱和光功率与灵敏度相关,可以用来评估光电探测器的动态范围。
较高的饱和光功率可以使光电探测器在高强度光信号条件下工作稳定。
6. 线性范围光电探测器的线性范围指的是输入光功率的变化范围,使得其输出信号与输入信号之间呈现线性关系。
较宽的线性范围意味着光电探测器能够适应更大范围的输入光功率变化,从而提高测量的精确性和可靠性。
以上介绍的参数只是光电探测器性能分析中的一小部分,还有一些其他的性能指标也是需要考虑的,如扩散响应、非线性特性等。
在实际应用中,根据具体的需求选取相应的参数进行分析和评估是非常重要的。
各类探探测器优劣比较

三大类探测器比较(闪烁体、半导体、电离室)(闪烁体)碘化钠探头:他的激活剂是(TI),对γ射线,当能量大于150keV时响应是线性的;对质子和电子,线性响应范围很宽,光输出和能量的关系接近通过原点的直线,仅在能量低于几百keV(对电子)和(1~2)MeV(对质子)时才偏离直线;对α粒子,能量大于4~5MeV后近似线性,但其直线部分延长不过原点。
因此测量α粒子(或其他重粒子)时,比须进行能量校准。
NaI(TI)烁体的主要优点是密度大,原子序数高,因而对γ射线探测效率高。
另外它的发光效率高,因而能量分辨率也较好。
它的缺点是容易潮解,因此使用必须密封。
碘化铯探头:CsI(TI)碘化铯是另一种碱金属卤化物,作为闪烁体材料常用铊或纳作激活剂。
铊的能量线性与碘化钠的接近,能量分辨率比碘化钠的差一些。
碘化铯的密度和平均原子序数比碘化钠更大,因此对γ射线的探测效率也更高。
与碘化钠相比,碘化铯的机械强度大,易于加工成薄片或做成极薄的蒸发薄膜。
此外,它不易潮解,也不易氧化。
但若暴露在水或高湿度环境中它也会变质。
碘化铯的主要缺点是光输出比较低,原材料价格较贵。
锗酸铋探头:与碘化钠(TI)同体积时,探测效率比碘化钠的高的多。
对0.511MeV γ光子,与NaI(TI)、CsF、和Ge半导体、塑料闪烁体相比,锗酸铋(BGO)有最大的效率和最好的信噪比。
BGO主要用于探测低能x射线、高能γ射线以及高能电子。
在低能区(<<0.5MeV)的能量分辨率比碘化钠的差,例如对于0.511MeV的γ射线,BGO的时间分辨为1.9ns,而碘化钠NaI(TI)的的为0.75ns。
BGO的主要缺点是折射率较高,尺寸大的BGO难以将光输出去。
价格高。
硫化锌:ZnS(Ag)它对α粒子的发光效率高,而对γ射线和电子不灵敏,很适合在强β、γ本底下探测重带点粒子如α、核裂片等,探测效率可达100%。
laBr3是新型卤化物闪烁体,其基本性能已经全面超越了传统的碘化钠闪烁体,谱仪具有比碘化钠更好的能量分辨率、峰形和稳定性。
光电探测器的性能与参数

依照这一判据,定义探测器的通量阈Pth为
02
06
04
01
03
05
02
01
05
03
02
04
探测器的噪声功率N ∝Δf,所以
01
于是由D的定义知
02
另一方面,探测器的噪声功率N∝ A
03
所以
04
又有
05
把两种因素一并考虑,
定义
称为归一化探测度。
这时就可以说:D*大的探测器其探测能力一定好。 考虑到光谱的响应特性,一般给出D*值时注明响应波长λ、光辐射调制频率f及测量带宽Δf,即D*(λ, f ,Δf )。
以u,P,λ为参变量,i=F(f)的关系称为光电频率特性,相应的曲线称为频率特性曲线。 同样,i=F (P)及曲线称为光电特性曲线。 i=F (λ)及其曲线称为光谱特性曲线。 而i=F (u)及其曲线称为伏安特性曲线。 当这些曲线给出时,灵敏度R的值就可以从曲线中求出,而且还可以利用这些曲线,尤其是伏安特性曲线来设计探测器的使用电路。
知识延伸
了解半导体光电探测器的发展及应用。
半导体光电探测器由于体积小,重量轻,响应速度快,灵敏度高,易于与其它半导体器件集成,是光源的最理想探测器,可广泛用于光通信、信号处理、传感系统和测量系统。最近几年,由于超高速光通信、信号处理、测量和传感系统的需要,需要超高速高灵敏度的半导体光电探测器。为此,发展了谐振腔增强型(RCE)光电探测器、金属半导体-金属行波光电探测器,以及分离吸收梯度电荷和信增(SAGCM)雪崩光电探测器(APD)等。
探测器件
热电探测元件
光子探测元件
气体光电探测元件
外光电效应
内光电效应
非放大型
光电探测器的性能参数

5.频率响应
●光电探测器的响应随入射辐射的调制频率而 变化的特性称为频率响应。
二 有关噪声方面的参数
从响应度的定义来看,好象只要有光辐射存在,不管 它的功率如何小,都可探测出来。 无法肯定是否有辐射入射在探测器上。这并不是探测 器不好引起的,而是它所固有的“噪声”引起的。
●当入射功率很低时,输出只是些杂乱无章的变化信号,
2.等效噪声输入(ENI)功率
●定义:探测器在特定带宽内(1Hz)产生的均方
根信号电流恰好等于均方根噪声电流值时辐射 源的输入通量, 此时,其他参数,如频率温度等应加以规定。
●这个参数是在确定光电探测器件的探测极限
(以输入通量为瓦或流明表示)时使用。
3.噪声等效功率(NEP)
(最小可探测功率Pmin)
●如果对这些随时间起伏的电压(流)按时间取平均值,
则平均值等于零。
●但这些值的均方根不等于零,
这个均方根电压(流)称为探测器的噪声电压(流)。
1.信噪比(S/N)
判定噪声大小通常使用信噪比这个参数。
●在负载电阻RL上产生的信号功率与噪声功率之比,
2 S IS IS 若用分贝(dB)表示,则为: ( N )dB 10lg I 2 20lg I N N
4.响应时间
●响应时间是描述光电探测器对入
射辐射响应快慢的一个参数。即 当入射辐射到光电探测器后或入 射辐射遮断后.光电探测器的输 出上升到稳定值或下降到照射前 的值所需时间称为响应时间。常 用时间常数τ 的大小来表示。
●当用一个辐射脉冲照射光电探测
器,如果这个脉冲的上升和下降 时间很短,如方被,则光电探测 器的输出由于器件的惰性而有延 迟,把从10%上升到90%峰值处 所需的时间称为探测器的上升时 间,而把从90%下降到10%处所 需的时间称为下降时间。
闪烁体、半导体、电离室探测器比较

闪烁体、半导体、电离室三大类探测器比较(闪烁体)碘化钠探头:他的激活剂是(TI),对γ射线,当能量大于150keV时响应是线性的;对质子和电子,线性响应范围很宽,光输出和能量的关系接近通过原点的直线,仅在能量低于几百keV(对电子)和(1~2)MeV(对质子)时才偏离直线;对α粒子,能量大于4~5MeV后近似线性,但其直线部分延长不过原点。
因此测量α粒子(或其他重粒子)时,比须进行能量校准。
NaI(TI)烁体的主要优点是密度大,原子序数高,因而对γ射线探测效率高。
另外它的发光效率高,因而能量分辨率也较好。
它的缺点是容易潮解,因此使用必须密封。
碘化铯探头:CsI(TI)碘化铯是另一种碱金属卤化物,作为闪烁体材料常用铊或纳作激活剂。
铊的能量线性与碘化钠的接近,能量分辨率比碘化钠的差一些。
碘化铯的密度和平均原子序数比碘化钠更大,因此对γ射线的探测效率也更高。
与碘化钠相比,碘化铯的机械强度大,易于加工成薄片或做成极薄的蒸发薄膜。
此外,它不易潮解,也不易氧化。
但若暴露在水或高湿度环境中它也会变质。
碘化铯的主要缺点是光输出比较低,原材料价格较贵。
锗酸铋探头:与碘化钠(TI)同体积时,探测效率比碘化钠的高的多。
对0.511MeVγ光子,与NaI(TI)、CsF、和Ge半导体、塑料闪烁体相比,锗酸铋(BGO)有最大的效率和最好的信噪比。
BGO主要用于探测低能x射线、高能γ射线以及高能电子。
在低能区(<<0.5MeV)的能量分辨率比碘化钠的差,例如对于0.511MeV的γ射线,BGO的时间分辨为1.9ns,而碘化钠NaI(TI)的的为0.75ns。
BGO的主要缺点是折射率较高,尺寸大的BGO难以将光输出去。
价格高。
硫化锌:ZnS(Ag)它对α粒子的发光效率高,而对γ射线和电子不灵敏,很适合在强β、γ本底下探测重带点粒子如α、核裂片等,探测效率可达100%。
laBr3是新型卤化物闪烁体,其基本性能已经全面超越了传统的碘化钠闪烁体,谱仪具有比碘化钠更好的能量分辨率、峰形和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、
探测器响应频率比较
各种探测器响应频率特性都是由探测器的工作机制所 决定的,各类探测器的响应时间见上表。 一般规律: 热电探测器(除热释电探测器外)响应频率最低,一般 只能达几KHz, 其中热电偶响应频率在100Hz范围内; PC探测器响应频率次之,一般在几MHz范围内; PV探测器响应频率比PC探测器高,可达几百MHz, PIN管响应频率最高,可达GHz。
五、入射光功率范围比较
入射光功率范围是指探测器所能探测到的最低光功 率和最高光功率, 一般探测器的入射光功率范围在 10-7W到0.1W量级。 在探测极微弱的可见光信号时多采用光电倍增管, 其入射光功率范围在10-18—10-3W内, APD在10-7—10-5W范围内; 探测高能量激光功率时多采用热电偶(堆)。
2.5~50
20~50 104 105~106 105~107 106~107 103~105 105~107 ~108
~10-8
10-8~10-7 4×10-4 10-2 5×10-5~5×10-4 ~2×10-6 <10-6 <10-6 3×10-9~4×10-5
二、光电探测器的光谱响应范围比较
四、光电特性比较
光电特性直线性是指当加在光电探测器的偏置电压、负 载电阻等参量不变时,探测器输出电压(电流)值与入 射在探测器上的光照度的线性关系。 对于光度测量和辐射度测量来说是一个非常重要的性 能指标。 一般地: 光电导探测器的光电特性直线性最差, 光伏探测器较好, 光电倍增管的光电特性直线性最好。
1 单元光电探测器性能及应用比较
一、典型探测器内阻值比较
设计光电系统时,首先要考虑前置放大器的设计, 为了获得低噪声前置放大器,必须了解探测器内 阻值,以便根据最佳源电阻匹配原则选择低噪声 放大器,以得到最大的输出信噪比。 一般按探测器内阻高低可分为三类: (1)低阻探测器:内阻低于100。 (2)中阻探测器:内阻在100Ω 一lMΩ 之间。 (3)高阻探测器:内阻高于1MΩ
八、二作环境及稳定性比较
探测可见光波段的硅光电探测器、 CdS , CdSe 光 敏电阻以及热电偶对工作环境没有特殊要求,而 且体积小,稳定性比较好,使用方便。 光谱响应在红外波段的光电探测器一般都在低温下 工作,需要致冷装置,使用这类器件时必须考虑 到这一点。 在光电系统中如果对所探测的红外波段信号的灵敏 度的要求不是很高时,一般可采用常温工作的热 探测器。 光电倍增管属于真空类器件,由于对杂散光、电磁 干扰都十分敏感,同对,器件尺寸大,需要防震、 防潮,对工作环境的要求比较苛刻。
六、外加偏置电压比较
除热电偶、光电池以外,大部分光电探测器都 需要外加偏置电压才能形成光电流(电压); 一般偏置电压都在几伏到几十伏范围,可以由 整个光电系统的供电电路统一供电,比较方便。 光电倍增管外加直流电玉在600—3000v范围, APD外加直流偏置电压在100—200V, 供电电路必须另外单独提供,给使用这类探测 器带来不便。
光电探测与信号处理
各类光电探测器的性能及应用比较
光电探测器的性能及应用比较
为了在设计光电系统选择探测器时综合参考, 将各类光电探测器的性能和应用范围作一简 要的比较; 注意:由于实际工程测量和科学研究所需解 决的问题干差万别,以致对光电系统所需的 性能参量各有侧重。 以光电探测器的一些基本参量对各类探测器 作一比较。
2.光子探测器是对波长响应有选择性的探测器. 它们的响应范围由材料自身特性决定。 光谱响应范围在可见光及近红外波段,最重要 的材料有: 硒(350一700nm,λ p为570nm)、 硅(400—1100nm,λ p为850nm), 光谱响应范围在红外波段的材料很多,但它们 的共同特点是一般要在低温下工作(多数在液氮 温度77K下工作)。
七、探测率D*大小的比较
探测率D*包含了探测器噪声特性,因此它 是衡量一个探测器性能的综合性指标。 热电探测器的D*值最低, PC探测器的D*值次之, P波段探测微弱光信号方面 仍是其它固体探测器所不能替代的。
2 光电成像器件性能及应用比较
请看下一节
各种典型探测器的内阻和响应时间
探测器
热电偶 蒸发型热电偶 低 阻
内阻(Ω)
1~10 50~200
响应时间(s)
10-2~1 10-3~10-2
金属测辐射热计
PIN型锗二极管
1~10
~50
10-2~10-1
~10-7
HgCdTe(PV 77K)
HgCdTe(PC 77K) <10-6 中 阻 3×10-9~4×10-5 PbS(PC 常温) PbSe(PC 常温) InSb(PV 77K) 高 阻 Ge:Au(PC 77K) 热释电探测器
光电探测器的光谱响应范围主要由制作 器件的材料决定,在前几节对各种器件 的光谱响应范围已作详细介绍,这里可 综合归纳其基本要点:
1.热电探测器的光谱响应范围最宽,从可见光到远红 外波段(400nm一1000000nm)都有平坦的光谱响应, 它们的光谱响应范围主要取决于器件的窗口材料, 常用的光学窗口材料有: 一般光学玻璃(300一800nm)、 石英玻璃(260—3500nm)、 锗(1700—2300nm)、 KRS—5(碘化铊—溴化铊)(500nm—50000nm)。
九、价格比较
硅、 CdS , CdSe 和制作热敏电阻的金属氧化 物类的材料均是比较成熟的材料,应用范围 宽,制作工艺简单,因此价格便宜; 应用于红外波段的各类光子探测器,材料制 备困难,同时需要加红外透镜,价格贵一些 光电倍增管制作工艺复杂,价格最贵。 目前的许多探测器都配置有前置放大器,作 成一体化,这给用户使用带来方便,但价格 要贵一些。