线代试卷及答案

合集下载

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。

2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。

四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。

答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。

线代参考答案(完整版)

线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。

线性代数题库(含答案)

线性代数题库(含答案)

第一章随堂检测1.已知行列式333231232221131211a a a a a a a a a D = 展开式的六项中含有,则i+j=( )A.1B.2C.4D.6我的答案:D2.某二阶行列式的所有元素都是整数,则该行列式的结果( ) A.一定是整数 B.一定不是零 C.一定是正数 D.一定是负数 我的答案:A3.[单选题] 行列式=bb a a ( )A.0B.b a 22- C.b a 22+ D.2ab我的答案:A4.[单选题] 方程组⎩⎨⎧=-=+2121212x x x x 的解是( )A.⎩⎨⎧==0121x x B.⎩⎨⎧==1121x xC.⎩⎨⎧==1021x xD.⎩⎨⎧==0021x x 我的答案:A 5.[单选题] 行列式34-43的结果是( )A.0B.7C.10D.25我的答案:D6.[单选题] 某三阶行列式的所有元素都是4,则该行列式的值是( ) A.3 B.4 C.7 D.0我的答案:D7.[单选题] 关于三阶行列式说法正确的是( )A.若行列式的所有元素都等于零,则行列式的结果一定等于零B.若行列式的所有元素都等于零,则行列式的结果一定不等于零C.若行列式的所有元素都不等于零,则行列式的结果一定等于零D.若行列式的所有元素都不等于零,则行列式的结果一定不等于零 我的答案:A8.[单选题]行列式101010102( )A.0B.1C.2D.4我的答案:B9.[单选题] 一元一次方程1211x =的解是( )A.x=1B.x=2C.x=3D.x=4我的答案:A10.[单选题] 已知行列式,3333333331=D ,5555555552=D 则( )A.4B.2C.8D.0我的答案:D11.[单选题] 若a 、b 、c 、d 的绝对值都是1,则行列式dc ba 的最大值是( )A.1B.2C.3D.4我的答案:B12.[单选题] 若某二阶行列式的结果为零,则关于该行列式的以下说法正确的是( )A.至少有一行元素为零B.至少有一列元素为零C.至少有一个元素为零D.以上答案都不对 我的答案:D1.[单选题] 三级排列321的逆序数是( ) A.3 B.2 C.1 D.0我的答案:A2.[单选题] 以下四个4级排列中,逆序数为零的是( ) A.1234 B.4231 C.1324 D.1423我的答案:A3.[单选题] 一个偶排列的逆序数可能是( )A.1B.3C.4D.5我的答案:C4.[单选题] 已知由1、2、3、4、5组成的某个5级排列中,数字5排在最前面,则该排列的逆序数至少是( )A.1B.3C.4D.5我的答案:C5.[单选题] 关于逆序数说法正确的是( )A.相同的排列一定有相同的逆序数B.相同的排列一定有不同的逆序数C.不同的排列一定有相同的逆序数D.不同的排列一定有不同的逆序数我的答案:A6.[单选题] D是四阶上三角行列式,主对角线元素分别是1、2、3、4,则该行列式的值是( )A.2B.6C.10D.24我的答案:D7.[单选题] 某对角行列式结果等于1,说明该行列式( )A.主对角线上所有元素都等于1B.主对角线上所有元素都大于1C.主对角线上所有元素都小于1D.主对角线上所有元素乘积为1我的答案:D8.[单选题] D是四阶行列式,且结果不等于零,则该行列式的非零元素个数可能是( )A.1B.2C.3D.4我的答案:D9.[单选题] 若某四阶行列式所有元素都是奇数,则该行列式的结果( ) A.一定是奇数 B.可能是奇数 C.一定是正数 D.一定是偶数 我的答案:D10.[单选题] D 是五阶行列式,且位于前三数行和前三列交叉点处的9个元素都是0,而位于其它位置的16个元素都是1,该行列式的值是( ) A.4 B.16 C.25 D.0我的答案:D1.[单选题] 某三阶该行列式共有三个元素为零,则以下说法正确的是( ) A.该行列式的结果一定为零B.若三个零元素在同一行,则该行列式的结果为零C.若三个零元素都在主对角线上,则该行列式的结果为零D.若三个零元素都在副对角线上,则该行列式的结果为零 我的答案:B2.[单选题] 已知行列式13332312322211312111==a a a a a a a a a D 则==3332312322211312112a a a a a a a a a D ( )A.1B.2C.4D.6我的答案:A3.[单选题] 已知222112111a a a a D =,,121122212a a a a D =,且a D D ==21,则a=( )A.0B.1C.2D.4我的答案:A4.[单选题] 行列式ab bb a b a ab a b a ------+( ) A.0 B.b a 22- C.b a 22+ D.2ab我的答案:A5.[单选题] 已知行列式13332312322211312111==a a a a a a a a a D ,==333231223222121341241182a a a a a a a a a D ( ) A.1B.2C.4D.8我的答案:D6.[单选题] 行列式=11-1-111-111( )A.0B.2C.8D.4我的答案:D7.[单选题] 关于行列式说法正确的是( ) A.交换行列式的两行,行列式的结果不变 B.交换行列式的两列,行列式的结果不变C.交换行列式的两行,然后交换行列式的两列,行列式的结果不变D.交换行列式的两行,然后交换行列式的两列,行列式变号 我的答案:C8.[单选题] 行列式987654321=( )A.2B.0C.8D.4我的答案:B9.[单选题] 行列式30219910132121-1=( ) A.2 B.0 C.8 D.4我的答案:B10.[单选题] 若dc bD a =,则=D T( )A. B. C. D.我的答案:B1.[单选题] 在下列四个二阶行列式中,不满足a A ijij =(i,j=1,2,)的是( )A.1111B.111-1C.1001D.2002我的答案:A2.[单选题] 已知行列式,1333231232221131211==a a a a a a a a a D ,则=++231322122111a a a A A A ()A.1B.2C.3D.0我的答案:D3.[单选题] 对于二阶行列式D,中若a 2a 2112=,则有( )A.A 1212a =B.A 2121a =C.A 2A 2112=D.A 2A 1221=我的答案:D4.[单选题] 已知行列式1333231232221131211==a a a a a a a a a D ,则下列式子结果为1的是( )A.M a M a M a 232322222121++B.M a M a M a 333332323131++C.A a A a A a 131312121111++D.A a A a A a 131312121111+-我的答案:C5.[单选题] 对于二阶行列式D,中若a a 21211=,则有( )A.A 2A 1112=B.A 2A 1211=C.A1211A =D.以上都不对我的答案:D6.[单选题] 行列式300220111=D ,则A A A 131211++( )A.0B.2C.4D.6我的答案:D7.[单选题] 满足122211211====AAAA 的二阶行列式是( )A.1111B.1111----C.1111--D.1111--我的答案:D8.[单选题] 行列式694432111=( )A.2B.0C.8D.4我的答案:A9.[单选题] 行列式c b a D c ba 2221111=,)()()(1112222111111++++++=c b a D c b a ,则( )A.由D D 21=可得a+c=bB.由D D 21=可得a-c=bC.由D D 21=可得a ·c=bD.以上答案都不对我的答案:D10.[单选题] 若D 是二阶对角行列式,且202211=AA,则D=( )A.2B.1C.8D.4我的答案:A1.[单选题] 若b >a ,则线性方程组⎩⎨⎧=+=+c cax bx bx ax 2121解的情况与c 的关系是( )A.当等于零时,方程组无解B.当不等于零时,方程组无解C.当时,方程组无解D.在任何情况下,方程组都有解 我的答案:D2.[单选题] 若方程组⎪⎩⎪⎨⎧=++=++=++b x a x a x a b x a x a x a b x a x a x a 333323213123232221211313212111无解,则行列式==333231232221131211a a a a a a a a a D( ) A.1 B.2 C.3 D.0我的答案:D3.[单选题] 对于⎪⎩⎪⎨⎧=+=+=++000-42-622-53121321x x x x x x x )()()(λλλ有非零解,则不可能取的值是( ) A.5B.8C.2D.6我的答案:D4.[单选题] 方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 解的情况是( )A.一定有解B.一定无解C.可能无解D.当系数行列式为零时无解 我的答案:A5.[单选题] 若齐次线性方程组有一个非零解,则该方程组一定( ) A.有无穷多解 B.恰有两个非零解 C.没有零解 D.恰有三个解 我的答案:A6.[单选题] 在平面直角坐标系中,直线CB A Y X 1111:l =+与直线C B A Y X 2222:l =+相交,则线性方程组⎩⎨⎧=+=+C B A C B A Y X Y X 222111解的情况是( ) A.有无穷多解B.恰有一个解C.恰有两个解D.恰有三个解 我的答案:B7.[单选题] 关于X 、Y 、Z 的齐次线性方程组⎩⎨⎧=++=++0ey 0fz dx cz by ax 解的情况是( )A.无解B.有非零解C.没有零解D.只有零解 我的答案:B8. [单选题] 已知方程组⎩⎨⎧=+=+24622y x y ax 无解,则a=( )A.1B.2C.3D.0我的答案:C9.[单选题] 已知方程组⎩⎨⎧=++=+p y x p y 3225x 3的解满足x+y=2,则p=( )A.1B.2C.3D.4我的答案:D10.[单选题] 若cx a x 2bx )(f ++=,f(d)=f(e)=f(g)=0,且d 、e 、g 两两不等,则关于a 、b 、c 的取值情况是( ) A.a=0,b ≠0,c=0 B.a=0,b=0,c=0 C.a ≠0,b=0,c=0 D.a=0,b ≠0,c ≠0 我的答案:B作业1计算行列式 ____正确答案:132计算行列式 ____正确答案:13计算行列式 ____正确答案: 04计算行列式____正确答案:-275计算行列式____正确答案:06解方程,结果是____正确答案:47解方程,结果是或____正确答案:38解方程,结果是或____正确答案:-21在六阶行列式中,元素乘积应取什么符号____(本节课习题凡是涉及符号问题的,正号请在横线上填“+;正;正号;➕”,负号请在横线上填“-;负;负号;➖”)正确答案:+;正;正号;➕2在六阶行列式中,元素乘积应取什么符号____正确答案:-;负;负号;➖3在六阶行列式中,元素乘积应取什么符号____正确答案:+;正;正号;➕4在六阶行列式中,元素乘积应取什么符号____正确答案:-;负;负号;➖5项是不是五阶行列式中的一项____(是/不是),若是,它的符号是____.(若不是,第二个空不用填)正确答案:第一空:是第二空:+;正;正号;➕6项是不是五阶行列式中的一项____(是/不是),若是,它的符号是____.(若不是,第二个空不用填)正确答案:不是7项是不是五阶行列式中的一项____,若是,它的符号是____.(若不是,第二个空不用填)正确答案:第一空:是第二空:-;负;负号;➖8四阶行列式中乘积前应冠以什么符号? ____ 正确答案:-;负;负号;➖9计算行列式____正确答案:2410计算行列式____正确答案:1某三阶该行列式共有三个元素为零,则以下说法正确的是( )A、该行列式的结果一定为零B、若三个零元素在同一行,则该行列式的结果为零C、若三个零元素都在主对角线上,则该行列式的结果为零D、若三个零元素都在副对角线上,则该行列式的结果为零正确答案: B2已知行列式,则( )A、1B、2C、4D、6正确答案: A3已知,,且,则( )A、0B、1C、2D、4正确答案: A4行列式( )A、0B、C、D、正确答案: A5已知行列式,则( )A、1B、2C、4D、8正确答案: D6行列式( )A、0B、2C、8D、4正确答案: D7关于行列式说法正确的是( )A、交换行列式的两行,行列式的结果不变B、交换行列式的两列,行列式的结果不变C、交换行列式的两行,然后交换行列式的两列,行列式的结果不变D、交换行列式的两行,然后交换行列式的两列,行列式变号正确答案: C8行列式( )A、2B、0C、8D、4正确答案: B9行列式( )A、2B、0C、8D、4正确答案: B10若,则( )A、B、C、D、正确答案: B1用行列式的性质计算行列式的值____正确答案:40131002用行列式的性质计算行列式的值____正确答案:53用行列式的性质计算行列式的值____正确答案:84已知,求行列式的值____ 正确答案:125已知,求行列式的值____ 正确答案:-486计算行列式的值____正确答案:607计算行列式的值____正确答案:-218计算行列式的值____正确答案:09计算行列式的值____正确答案:n!10计算行列式的值____正确答案:-2(n-2)!1求行列式中元素-4的代数余子式(计算出结果).____正确答案:102若某四阶行列式第三行元素依次为,,,,对应的余子式依次为,,,,求此行列式的值.____正确答案:-113计算行列式的值____正确答案:44计算行列式的值____正确答案:435计算行列式的值____正确答案:-246计算行列式的值____正确答案:-277计算行列式的值____正确答案:278计算行列式的值____正确答案:481已知4阶行列式,则中的系数是____正确答案:-4;➖42设4阶行列式,则=____,其中为元素的代数余子式.正确答案:0;零3设4阶行列式,则第一列各元素的代数余子式之和____正确答案:0;零4设5阶行列式,则____ 和____,其中为的第四行第列元素的代数余子式.正确答案:第一空:-9;➖9第二空:185用克莱姆法则求解线性方程组的解为____ ,____,____ .正确答案:第一空: 1第二空: 2第三空: 36用克莱姆法则求解线性方程组的解为____ ,____,____ ,____ .正确答案:第一空:-8;➖8第二空: 3第三空: 6第四空:07用克莱姆法则求解线性方程组的解为____ ,____,____ ,____ .正确答案:第一空:0第二空: 2第三空:0第四空:08用克莱姆法则求解线性方程组的解为____ ,____,____ ,____ ,____ .正确答案:第一空: 1第二空:-1;➖1第三空: 1第四空:-1;➖1第五空: 19当____ 或____时,齐次线性方程组有非零解.(小数在前,大数在后)正确答案:第一空:-2;➖2第二空: 1二.判断题(共1题,10.0分)1判断:齐次线性方程组仅有零解( ) .正确答案:√1已知行列式展开式的六项中含有,则( )A、1B、2D、6我的答案:D2某二阶行列式的所有元素都是整数,则该行列式的结果( )A、一定是整数B、一定不是零C、一定是正数D、一定是负数我的答案:A3行列式( )A、0B、C、D、我的答案:A4方程组的解是( )A、B、C、D、我的答案:A5行列式的结果是( )A、0C、10D、25我的答案:D6某三阶行列式的所有元素都是4,则该行列式的值是( )A、3B、4C、7D、0我的答案:D7关于三阶行列式说法正确的是( )A、若行列式的所有元素都等于零,则行列式的结果一定等于零B、若行列式的所有元素都等于零,则行列式的结果一定不等于零C、若行列式的所有元素都不等于零,则行列式的结果一定等于零D、若行列式的所有元素都不等于零,则行列式的结果一定不等于零我的答案:A8行列式( )A、B、1C、2D、4我的答案:B9一元一次方程的解是( )A、B、C、D、我的答案:A10已知行列式,,则( )A、4B、2C、8D、0我的答案:D11若、、、的绝对值都是1,则行列式的最大值是( )A、1B、2C、3D、4我的答案:B12若某二阶行列式的结果为零,则关于该行列式的以下说法正确的是( )A、至少有一行元素为零B、至少有一列元素为零C、至少有一个元素为零D、以上答案都不对我的答案:D第二章随堂检测1【单选题】已知矩阵是二阶单位矩阵,则( )A、1B、2C、3D、0我的答案:A2【单选题】已知矩阵的四个元素中任意两个都互为相反数,则该矩阵是( )A、单位矩阵B、四阶矩阵C、负矩阵D、零矩阵我的答案:D3【单选题】下列四个矩阵中是单位矩阵的是( )A、B、C、D、我的答案:B4【单选题】关于矩阵说法正确的是( )A、该矩阵是3阶单位矩阵B、该矩阵是9阶单位矩阵C、该矩阵是27阶单位矩阵D、该矩阵不是单位矩阵我的答案:D5【单选题】关于矩阵的行数与列数说法正确的是( )A、四行八列B、八行四列D、两行三列我的答案:D6【单选题】下列关于单位矩阵、对角矩阵以及数量矩阵说法正确的是( )A、对角矩阵是单位矩阵B、单位矩阵是数量矩阵C、对角矩阵是数量矩阵D、以上说法都不对我的答案:B7【单选题】四阶单位矩阵所有元素的和等于( )A、1B、2C、4D、16我的答案:C8【单选题】下列关于零矩阵说法正确的是( )A、所有元素都是零B、未必所有元素都是零,但第一行的元素一定都是零C、未必所有元素都是零,但所有元素的和一定等于零D、未必所有元素都是零,但所有元素的乘积一定等于零我的答案:A9【单选题】一个3×4矩阵和一个4×3矩阵的共同点是( )A、行数相同B、列数相同C、行数及列数都相同D、所含元素的个数相同我的答案:D10【单选题】某方阵共有16个元素,则它的行数是( )A、2B、4C、8D、16我的答案:B1【单选题】在矩阵等式中,已知和都是二行三列,则是( )A、二行三列B、三行二列D、六行六列我的答案:A2【单选题】已知是非零常数,是非零矩阵,则是否是零矩阵( )A、一定是B、一定不是C、可能是D、不确定我的答案:B3【单选题】已知,,则( )A、B、C、D、我的答案:D4【单选题】矩阵不可能是( )A、两个单位矩阵的和B、两个上三角矩阵的和C、两个下三角矩阵的和D、两个对角矩阵的和我的答案:A5【单选题】已知是负数,是上三角矩阵,则是( )A、下三角矩阵B、上三角矩阵C、数量矩阵D、对角矩阵我的答案:B6【单选题】已知矩阵是六行九列,则矩阵是( )A、十八行二十七列B、两行三列C、六行九列D、九行六列我的答案:C7【单选题】当取何值时,矩阵等式成立( )A、1B、2C、3D、不论取何值,等式都不成立我的答案:D8【单选题】是二阶单位矩阵,则( )A、B、C、D、以上答案都不对我的答案:D1【单选题】,,则( )A、B、C、D、我的答案:D2【单选题】在矩阵等式中,若是上三角矩阵,是下三角矩阵,,则关于的说法正确的是( )A、一定是上三角矩阵B、一定是下三角矩阵C、一定是对角矩阵D、以上答案都不对我的答案:D3【单选题】二阶方阵乘以二阶方阵等于( )A、四阶方阵B、四行四列矩阵C、行数和列数相等且含有十六个元素的方阵D、二阶方阵我的答案:D4【单选题】在矩阵等式中,和的元素都是负数,则的元素符号( )A、都是正数B、都是负数C、正负交替出现D、不确定,与矩阵的行数与列数有关我的答案:A5【单选题】关于矩阵和,以下说法不正确的是( )A、若有意义,则必有的行数等于的行数B、若有意义,则必有的行数等于的列数C、若有意义,则必有的列数等于的行数D、若有意义,则必有的行数等于的列数我的答案:B6【单选题】某矩阵既是对称矩阵又是反对称矩阵,则关于该矩阵说法正确的是( )A、是上三角矩阵,但未必是对角矩阵B、是下三角矩阵,但未必是对角矩阵C、是对角矩阵,但未必是零矩阵D、是零矩阵我的答案:D7【单选题】已知矩阵等式成立,则有( )A、,B、,C、,D、,我的答案:A8【单选题】,,,,则在,,,四个矩阵中,对称矩阵的个数是( )A、1B、2C、3D、4我的答案:D9【单选题】是阶方阵,,则( )A、B、C、D、4我的答案:C10【单选题】如果,则( )A、B、C、D、我的答案:A11【单选题】如果是同阶方阵,则以下说法正确的是( )A、若,则B、若,则C、若,则D、若,则我的答案:D12【单选题】,,且第列的元素和是(,,),则( )A、B、C、D、我的答案:A13【单选题】矩阵的结果是零矩阵,说明( )A、的行数等于的列数B、的列数等于的行数C、和至少有一个是零矩阵D、我的答案:D1【单选题】和是同阶可逆矩阵,则( )A、若,则B、若,则C、若,则D、若,则我的答案:A2【单选题】若,则( )A、可逆,且B、可逆,且C、可逆,且逆矩阵不唯一D、未必可逆我的答案:A3【单选题】逆矩阵不唯一的三阶可逆矩阵有( )个A、0B、1C、2D、3我的答案:A4【单选题】若,且,则( )A、B、C、D、我的答案:A5【单选题】是可逆矩阵,且,若,则( ) A、B、C、D、我的答案:A6【单选题】、、是同阶可逆矩阵,且,则( )A、B、C、D、我的答案:A7【单选题】是阶矩阵,是的伴随矩阵,以下说法正确的是( )A、可逆时,也可逆B、可逆时,不可逆C、不可逆时,可逆D、可逆时,不可逆我的答案:A8【单选题】,则的伴随矩阵( )A、B、C、D、我的答案:B9【单选题】是阶方阵,以下说法正确的是( )A、当可逆时,有B、当是数量矩阵时,有C、当是对角矩阵时,有D、当不可逆时,有我的答案:B10【单选题】、是同阶可逆矩阵,则下列矩阵未必可逆的是( ) A、B、C、D、我的答案:B1【单选题】是3阶初等矩阵,则的值不可能是( )A、3B、2C、1D、0我的答案:D2【单选题】下列关于初等矩阵的说法正确的是( )A、初等矩阵一定是可逆矩阵B、可逆矩阵一定是初等矩阵C、初等矩阵的行列式可能为零D、初等矩阵可能是退化矩阵我的答案:A3【单选题】已知矩阵是一行三列,矩阵是三行四列,则的结果是( )A、矩阵的第一列B、矩阵的第一行C、矩阵的第一列D、矩阵的第一行我的答案:B4【单选题】方阵经过一次初等变换后得到方阵,且,则( )A、0B、1C、2D、不确定我的答案:D5【单选题】交换方阵的第一、二行得到矩阵,交换方阵的第一、二列得到矩阵,则下列说法正确的是( )A、与不等价,且B、与不等价,且C、与等价,且D、与等价,且我的答案:C6【单选题】,则( )A、B、C、D、我的答案:A7【单选题】,则的标准形是( )A、B、C、D、我的答案:D8【单选题】,且已知矩阵可以经过行初等变换得到矩阵,其中,,则( )A、B、C、D、我的答案:A9【单选题】某初等矩阵一共有三行,则该矩阵一共有( )列A、27B、9C、3D、1我的答案:C10【单选题】四阶方阵的标准形中含元素1的个数最多是( )个A、2B、4C、1D、3我的答案:B1【单选题】,,则矩阵方程的解是( ) A、B、C、D、我的答案:B2【单选题】,,则矩阵方程的解是( ) A、B、C、D、我的答案:A3【单选题】可逆,且,则( )A、B、C、D、我的答案:C4【单选题】是阶方阵,且,则有( )A、不可逆B、可逆且C、可逆且D、可逆且我的答案:B5【单选题】是三阶可逆方阵,且,,则矩阵方程的解( )A、B、C、D、我的答案:D1【单选题】A是n阶矩阵,是非零常数,则一定有( )A、B、C、D、我的答案:B2【单选题】A=,则有( )A、B、C、D、我的答案:C3【单选题】A是n阶可逆矩阵,则下列结论正确的是( )A、B、C、D、我的答案:D4【单选题】一个六行八列矩阵的秩可能是( )A、6B、8C、66D、88我的答案:A5【单选题】矩阵A是m行n列且,若,则( )A、1B、2C、3D、4我的答案:D6【单选题】A是一个矩阵,则“是零矩阵”是“”的( )条件A、充分不必要B、必要不充分C、充分必要D、不充分不必要我的答案:C7【单选题】A是n阶矩阵,,,则有( )A、B、C、D、以上答案都错我的答案:A8【单选题】k是常数,,则不可能是( )A、1B、2C、3D、4我的答案:B9【单选题】,则有( )A、B、C、D、我的答案:A10【单选题】矩阵经过3次初等变换得到矩阵,,则( )A、8B、2C、5D、15我的答案:C作业1已知矩阵,、是常数且,则____正确答案:第一空: 12已知,满足,则常数____正确答案:第一空: 43矩阵,(),且,则____正确答案:第一空:504矩阵,及常数,满足,则____正确答案:05,是常数,,是未知数,且矩阵方程组有无穷多组解,则常数____正确答案:101某数量矩阵第四行的非零元素是2,则该矩阵第二行的非零元素是4( ) 正确答案:×2对角矩阵主对角线上的元素都不等于零( )正确答案:×3既是上三角矩阵又是下三角矩阵的矩阵是零矩阵( )正确答案:×4非负矩阵的行数不超过列数( )正确答案:×5五阶方阵的每个元素不小于5( )正确答案:×6数量矩阵不可能是单位矩阵( )正确答案:×7上三角矩阵第一行的元素都不等于零( )正确答案:×8某矩阵共四行,且所有元素都是4,则该矩阵是四阶方阵( )正确答案:×9下三角矩阵的行数不等于列数( )正确答案:×10数量矩阵的所有元素都相等( )正确答案:×1已知矩阵,且,则____正确答案:32已知且,是方阵,则是____阶方阵正确答案:4;四3矩阵,,且,又,则主对角线上所有元素的和等于____正确答案:34矩阵是行3列矩阵,是3行列矩阵,且,则____正确答案:35、、、、、是六个矩阵,且,,, 则矩阵所有元素的和等于____正确答案:06,,其中是单位矩阵,,则____正确答案: 27是反对称矩阵,则____正确答案:08二阶方阵、满足,且,, 则____正确答案:109,,则____正确答案:010是矩阵,是矩阵,的行数与列数相等,则____正确答案:81已知矩阵,且是的逆矩阵,则____正确答案:12是反对称矩阵且可逆,则主对角线上元素的和等于____正确答案:03矩阵可逆且,,则____正确答案:24矩阵是8阶方阵,则是 ____阶方阵正确答案:8;八5,是退化矩阵,则常数____正确答案:26方阵不可逆,则____正确答案:07方阵,且可逆,则____正确答案:18方阵,则____正确答案:29可逆矩阵的逆矩阵,若,则____ 正确答案:410矩阵,且,则____正确答案:01方阵经过初等变换后得到方阵,且,则的值不可能是____正确答案:02是四阶方阵且,是的标准形,则____正确答案:13矩阵,若,则____正确答案:24矩阵与等价,且是3行5列,是行列,则____正确答案:85矩阵,,,,,则____正确答案:36矩阵,,,则____正确答案:7矩阵,,,则____正确答案:18、是同阶方阵且,,则将矩阵的第二行乘以____就能得到矩阵正确答案:29在、、,三个矩阵中,逆矩阵等于自身的有____个正确答案:310矩阵,且矩阵序列,实数序列。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。

线性代数试卷及答案3套

线性代数试卷及答案3套

《线性代数》(A 卷 共四页)一.填空或选择填空(共30分,每小题3分)1.设],,,[A 432γγγα=,],,,[B 432γγγβ=,其中432,,,,γγγβα均为四维列向量. 已知4|A |=,1|B |=,则_____|B A |=+.2.设A 为)(m n m n >⨯矩阵,S 为n 阶可逆矩阵,且r r =)A (,)SA (r 1r =,则( ). A r r m >>1B m r r >>1C m r =1D r r =13.四维列向量组 T1]4,2,1,1[-=α,T2]2,1,3,0[=α,T3]14,7,0,3[=α,T 4]0,2,1,1[-=α的秩为_______,一个极大无关组为_____________.4.齐次线性方程组0=AX 有非零解的充分必要条件是( ). A A 的列向量组线性无关 B A 的行向量组线性无关 C A 的列向量组线性相关 D A 的行向量组线性相关5.设T1]0,2,1[=α,T2]1,0,1[=α都是三阶方阵A 的属于特征值12=λ的特征向量,而T]2,2,1[--=β,则______________=βA .6.设2=λ为可逆矩阵A 的一个特征值,则12A 31-⎪⎭⎫⎝⎛有一个特征值为_____=μ.78.下列矩阵中不与对角矩阵相似的是( ).A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡600540321B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡653542321C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200020012D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010012 9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100010001B ,则A 与B ( ). A 合同但不相似 B 合同且相似 C 不合同但相似D 不合同且不相似10.设实二次型312322213212),,(x cx ax bx ax x x x f +++=,当( )时,该二次型为正定二次型.A 0,0>+>c b aB 0,0>>b aC 0|,|>>b c aD 0,||>>b c a 二.计算下列行列式(共12分,每小题6分)1.67412120603115124-----=D ;2.111122111n nn a a a a a a D ---=+(空白处元素全为0).三.计算(共20分,每小题10分) 1.设A 为可逆矩阵,且B AB A +=-1*.1) 求证B 为可逆矩阵;2) 当⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200620062A 时,求矩阵B . 2.求解如下线性方程组;若有无穷多解,请用其特解与导出组的基础解系联合表出通解.四.(18分)求一个正交替换SY X =,将如下实二次型化为标准形.32312123222132184422),,(x x x x x x x x x x x x f ++---=.五.(5分)求证秩为r 的实对称矩阵可以写成r 个秩为1的实对称矩阵之和.《线性代数》(B 卷)一.填空与选择(30分,每小题3分)1.设d a a a a a a a a a =333231232221131211,则=------333232213123222221211312121111432432432a a a a a a a a a a a a a a a ________.2.=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-10057002311003200______________________.3.设B A ,均为n 阶方阵,则有( ).A )B ()A ()B A (r r r +=+ B )B ()A ()AB (r r r =C )B ()A (B O O A r r r +=⎥⎦⎤⎢⎣⎡D )B ()A (B O O A r r r =⎥⎦⎤⎢⎣⎡ 4.设向量组4321,,,αααα线性无关,则14433221,,,αααααααα++++的秩为______.5.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----13222123a 与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡λ00020002相似,则=λ______,=a ______. 6.设33⨯A 的全体特征值为3,2,1-,则( )为可逆矩阵.A A E -B E A 2+C E A 2-DE A 3-7.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100110111A 为线性变换σ在基321,,:(I)ξξξ下的矩阵,则σ在基321211,,:(II)ξξξξξξ+++下的矩阵为=B _______________.8.设T ]2,1[是实对称矩阵A 的特征向量,且0|A |<,则( )也是A 的特征向量.A R ∈k k ,]2,1[T B R ∈-k k ,]1,2[T 非零 C R ∈-+21T2T 1,,]1,2[]2,1[k k k k 不全为零D R ∈-+21T2T 1,,]1,2[]2,1[k k k k 全不为零9.实二此型32312123222132182292),,(x x x x x x x x x x x x f +++++=有标准形( ).A 23222192y y y ++ B 23222192y y y -+ C 23222192y y y -- D 2221y y +10.设B A ,均为n 阶正定矩阵,则( )不一定是正定矩阵.A B A + B BA AB + C ABA D ⎥⎦⎤⎢⎣⎡B O O A 二.(28分,前3小题各6分,第4小题10分)1.计算n 阶行列式(3≥n )0221202122011110 =n D .2.设n 阶方阵A 满足O E A A A =+--43223,求证E A 2-可逆,并求1)2(--E A .3.求向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=6211α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2102α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3013α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=4234α的一个极大无关组,并用该极大无关组线性表示向量组中其他向量.。

线性代数大学试题及答案

线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,它们满足以下哪些条件?A. 线性无关B. 向量空间中的任何向量都可以由基向量线性组合得到C. 向量空间中的任何向量都可以由基向量线性表示D. 所有选项答案:D2. 矩阵A的秩是指:A. A的行向量组的秩B. A的列向量组的秩C. A的转置矩阵的秩D. 所有选项答案:D3. 下列哪个矩阵是可逆的?A. 零矩阵B. 任何2x2的对角矩阵,对角线上的元素不全为零C. 任何3x3的单位矩阵D. 任何4x4的对称矩阵答案:B4. 线性变换可以用矩阵表示,当且仅当:A. 该变换是线性的B. 该变换是可逆的C. 变换的基向量线性无关D. 变换的输出空间是有限维的答案:C5. 特征值和特征向量是线性变换的基本概念,其中特征向量是指:A. 变换后长度不变的向量B. 变换后方向不变的向量C. 变换后保持不变的向量D. 变换后与原向量成比例的向量答案:D6. 矩阵的迹是:A. 矩阵主对角线上元素的和B. 矩阵的行列式的值C. 矩阵的秩D. 矩阵的逆的转置答案:A7. 以下哪个矩阵是正交矩阵?A. 单位矩阵B. 任何对称矩阵C. 任何对角矩阵D. 任何行列式为1的方阵答案:A8. 矩阵的行列式可以用于判断矩阵的:A. 可逆性B. 秩C. 特征值D. 迹答案:A9. 线性方程组有唯一解的条件是:A. 系数矩阵是可逆的B. 系数矩阵的秩等于增广矩阵的秩C. 方程的个数等于未知数的个数D. 所有选项答案:B10. 以下哪个矩阵是对称矩阵?A. 单位矩阵B. 对角矩阵C. 任何方阵的转置D. 任何方阵与其转置的乘积答案:D二、填空题(每题2分,共10分)1. 矩阵的______是矩阵中所有行(或列)向量生成的子空间的维数。

答案:秩2. 如果矩阵A和B可交换,即AB=BA,则称矩阵A和B是______的。

答案:可交换3. 一个向量空间的维数是指该空间的______的个数。

线性代数练习题及答案10套

线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2

1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每小题5分,共20分) 1. 设A 为n 阶方阵且0A =,则 ( )(A ) 矩阵A 必有两行(列)的元素对应成比例。

(B ) 矩阵A 中任意一行(列)向量是其余各行(列)向量的线性组合。

(C ) 矩阵A 中必有一行(列)向量是其余各行(列)向量的线性组合。

(D ) 矩阵A 中至少有一行(列)的元素全为零。

2. 设A 是m n ⨯矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,矩阵B AC =的秩为1r ,则( )(A ) 1r r =。

(B ) 1r r >。

(C ) 1r r <。

(D ) 1r r 与的关系依C 而定。

3.设12,x x 是非齐次线性方程组Ax b =的两个不同解,则也是方程组Ax b =的解是( )。

(A ) 12x x +。

(B ) 12x x -。

(C )1222x x +。

(D ) 212x x -。

4.若三阶矩阵A 的特征值为2, 3, 4, 则该矩阵的伴随矩阵A * 的特征值为( )(A ) 12, 8, 4 (B ) 12, 8, 6 (C ) 8, 6, 3 (D ) 6, 3, 2。

二、填空题:(每小题5分,共20分)1.设121201101A t t t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且线性方程组0Ax =的基础解系含有两个线性无关的解向量,则参数t 等于 。

2.设α1 = (1,2,1)T ,α2 = (2,3,4)T ,α3 = (3,4,3)T 是R 3的一组基,R 3的向量α = (1, 1, 1)T 关于这组基的坐标为 。

3.将 1234⎡⎤⎢⎥⎣⎦写成初等矩阵的乘积是 。

4. 若二次型 2221231231223(,,)22f x x x x x x x x ax x =++++ 是正定的,则a 的取值范围是 。

《线性代数》课程试卷______学院(系)____年级_____专业主考教师:线性代数教学组 试卷类型:(A 卷)三、计算证明题:(共60分)1.(8分)假设矩阵A 和B 满足关系式2AB A B =+,求矩阵B 。

其中423110123A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭2.(10分)已知向量()1,,1T k α=是矩阵211121112A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的逆矩阵的特征向量,试求常数k 的值。

3.(12)求齐次线性方程组1352412514500,0,0x x x x x x x x x x x -+=⎧⎪-=⎪⎨-+=⎪⎪-+=⎩的解空间的一组标准正交基。

4.(10分)设A 为二阶方阵,有二个不同的特征值12,λλ,对应特征向量依次为12,αα,令12βαα=+, 证明:,A ββ 线性无关。

5.(15分)求正交变换x Py =,把二次型2221231231323(,,)44f x x x x x x x x x x =+-++ 化为标准形。

6.(5分)齐次线性方程组0Ax =,其中()ij n nA a ⨯=且10,1,2,,,nij j a i n ===∑证明:矩阵A 第一行元素的代数余子式相等。

一、选择题(每小题5分,共20分)1. (C ) 矩阵A 中必有一行(列)向量是其余各行(列)向量的线性组合。

2.(A ) 1r r = 3.(D) 212x x -。

4.(B) 12, 8, 6 二、填空题:(每小题5分,共20分)1.……, 则参数t 等于 1 . 2.……, 关于这组基的坐标为 11(,0,)22T-3.……, 初等矩阵的乘积是101012310201⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦或101110310102-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦或…… 4.……, 则a 三、计算证明题:(共60分)1.(8分)解 由于2AB A B =+知(2)A E B A -= ------------------------------------------- 2由于 11223143(2)110153121164A E ----⎛⎫⎛⎫⎪ ⎪-=-=-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭----------------------- 41143423386(2)153110296.1641232129B A E A -----⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=--=-- ⎪⎪ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭----- 22.(10分)解 设λ是矩阵1A -对应于特征向量α的特征向量,则 A -1α = λα两边同时左乘矩阵A ,得 α = λA α ------------------------------------ 2即 12111312122.111213k k k k k λλ+⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪==+ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭由此得线性方程组()()31,21.k k k λλ+=⎧⎪⎨+=⎪⎩ 解得11,2.k λ=⎧⎨=-⎩ 或21,41.k λ⎧=⎪⎨⎪=⎩ 因此当21k =-或时,向量α是1A -的特征向量。

--------------- 83.(12)解 对该方程组的系数矩阵作初等行变换1010110011010100101011001001101001100000A --⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭于是化为同解的阶梯形方程组为14524340,0,0,x x x x x x x -+=⎧⎪-=⎨⎪-=⎩ 即 1452434,,,x x x x x x x =-⎧⎪=⎨⎪=⎩ 因()3R A =,故解空间的维数为5-3=2,即基础解系含2个线性无关的向量,由上式易得齐次线性方程组的一个基础解系()()121,1,1,1,0,1,0,0,0,1.T Tαα==- ------------------------------------------------ 6将12,αα正交化,取()111,1,1,1,0Tβα==()()()()2122111,11,0,0,0,11,1,1,1,0,4T Tαββαβββ=-=-+3111,,,,14444T⎛⎫=- ⎪⎝⎭故 -------4 1112221111,,,,0,2222TTβηββηβ⎛⎫== ⎪⎝⎭==即为所求得一个标准正交基。

-------------------- ------------------------- 24.(10分)证明 因为()1,2,i i A i αλα==则()12121122A A A A βααααλαλα=+=+=+ ----- 3设存在两个参数12,k k ,使得 120,k k A ββ+= ------- ----------------------------- 1 即()()11221122k k ααλαλα+++()()121112220k k k k λαλα=+++= 又对应于不同特征值的特征向量线性无关,故12,αα线性无关,于是12112200k k k k λλ+=⎧⎨+=⎩ -------------------------------------------------- 2由于行列式()1212101λλλλ=-≠, ---------------------------------------------- 3故 k 1 = k 2 = 0因此,A ββ线性无关。

- --------------------------------------------- 15.(15分)解 二次型对应的对称矩阵 102012221A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭。

------------------------------------------------ 1 .A 的特征方程为()()()1020123130221E A λλλλλλλ---=--=--+=--+故A 的特征值为1233,1, 3.λλλ===--------------------------------------------------------------------- 6 (i )A 的属于特征值为13λ=的特征向量()1202101022011,224000E A λ--⎛⎫⎛⎫⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭α1=(1, 1, 1)T , 单位化η1= T----- 2 (ii )A 的属于特征值为21λ=的特征向量()2002110002001,222000E A λ-⎛⎫⎛⎫⎪ ⎪-=-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭α2 = (-1, 1, 0)T , 单位化η2=0T⎫⎪⎭----- 2 (iii )A 的属于特征值为33λ=-的特征向量()1402201042021,222000E A λ--⎛⎫⎛⎫⎪ ⎪-=--→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭α3 = (1, 1, -2)T , 单位化 η3= T------- 2 故正交变换矩阵为P⎪= ⎪。

令x = py, 则f(x) = 3y 12 + y 22 – 3y 32--------------- 2 6.(5分)证明 因为10,1,2,,,nijj ai n ===∑故|A| = 0。

当R(A) < n-1时,A * = 0,结论显然成立;当R(A) = n-1时, AA * = |A|E = 0, A * 的列向量是0Ax =的解向量,而ξ = (1, 1, …,1)T 是0Ax =的解向量,且是基础解系,故存在常数k ,使得(A 11, A 12,…,A 1n ) = k ξ = k (1, 1, …,1)T ,故A 的第一列的代数余子式全相等。

相关文档
最新文档