二级减速器毕业设计
二级减速器 毕业设计

关键词:solidworks技术;减速器;三维造型
I
本设计以SolidWorks软件为主,并结合AutoCAD、CAXA电子图板等二维绘图软件,设计了一个二级圆柱齿轮减速器,实现了减速器的三维模型生成,以及由此生成二维工程图的设计思想。通过该软件特有的三维设计功能,检查、优化设计方案,实现了减速器的运动仿真,完成了减速器在计算机中的模拟设计。
二级减速器三维造型设计
ห้องสมุดไป่ตู้
摘 要
减速器作为一种重要的动力传递装置,在机械化生产中起着不可替代的作用。目前在减速器的设计领域,研究开发以产品设计为目标,全过程综合应用CAD及其相关的一体化集成技术已成为必然趋势。这对于减速器的三维综合设计及模拟仿真,对提高减速器设计技术水平、快速响应市场要求有着十分重要的意义。由于减速器内部结构复杂,如果单独用二维看上去不能一目了然,三维造型设计就解决了这样的一个问题,它能把减速器的关键部件很清晰的展现出来。因此,通过减速器的三维造型设计来研究三维造型设计技术具有很强的代表性。
二级展开式直齿圆柱齿轮减速器毕业设计

论文题目:二级直齿圆柱齿轮减速器毕业设计(论文)任务书院(系)系机电工程专业机械设计及其自动化1.毕业设计(论文)题目:二级齿轮减速器2.题目背景和意义:本次论文设计进行结构设计,并完成带式输送机传动装置中减速器装配图、零件图设计及主要零件的工艺、工装设计。
综合运用机械设计、机械制图、机械制造基础、金属材料与热处理、公差与技术测量、理论力学、材料力学、机械原理。
掌握机械设计的一般程序、方法、设计规律、技术措施,并与生产实习相结合,培养分析和解决一般工程实际问题的能力,具备了机械传动装置、简单机械的设计和制造的能力。
3.设计(论文)的主要内容:带式输送机传动总体设计;带式输送机传动总体设计;主要传动机构设计;主要零、部件设计;完成主要零件的工艺设计;设计一套主要件的工艺装备;撰写设计论文;翻译外文资料等4.设计的基本要求及进度安排(含起始时间、设计地点):,地点:主要参:转距T=850N•m,滚筒直径D=380mm,运输带工作转速V=1.35m/s 工作条件:送机连续工作,单向运转,载荷较平稳,空载起动,每天两班制工作,每年按300个工作日计算,使用期限10年。
具体要求:主要传动机构设计;主要零、部件设计;设计一套主要件的工艺装备;撰写设计论文;选一典型零件,设计其工艺流程;电动机电路电气控制;翻译外文资料等5.毕业设计(论文)的工作量要求:设计论文一份1.0万~1.2万字装配图1张 A0,除标准件外的零件图9张 A3 设计天数:四周指导教师签名:年月日学生签名:年月日系(教研室)主任审批:年月日带式运输机传动装置传动系统摘要本次论文设计的题目是“带式输送机传动装置的设计及制造”。
进行结构设计,并完成带式输送机传动装置中减速器装配图、零件图设计及主要零件的工艺、工装设计。
本次的设计具体内容主要包括:带式输送机传动总体设计;主要传动机构设计;主要零、部件设计;完成主要零件的工艺设计;设计一套主要件的工艺装备;撰写开题报告;撰写毕业设计说明书;翻译外文资料等。
二级减速器毕业设计论文

人生最大的幸福,是发现自己爱的人正好也爱着自己。
济源职业技术学院毕业设计题目二级直齿圆柱齿轮减速器系别机电系专业机电一体化班级机电0808 姓名乔吉培学号08010813指导教师菅毅日期2010年12月设计任务书题目:带式运输机传动系统中的二级直齿圆柱齿轮减速器设计要求:1:运输带的有效拉力为F=2500N2:运输带的工作速度为V=1.7m/s3:卷筒直径为D=300mm5:两班制连续单向运转(每班8小时计算)载荷变化不大室内有粉尘6:工作年限十年(每年300天计算)小批量生产设计进度要求:第一周拟定分析传动装置的设计方案:第二周选择电动机计算传动装置的运动和动力参数:第三周进行传动件的设计计算校核轴轴承联轴器键等:第四周绘制减速器的装配图:第五周准备答辩指导教师(签名):摘要齿轮传动是现代机械中应用最广的一种传动形式它由齿轮、轴、轴承及箱体组成的齿轮减速器用于原动机和工作机或执行机构之间起匹配转速和传递转矩的作用齿轮减速器的特点是效率高、寿命长、维护简便因而应用极为广泛本设计讲述了带式运输机的传动装置--二级圆柱齿轮减速器的设计过程首先进行了传动方案的评述选择齿轮减速器作为传动装置然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)运用AutoCAD软件进行齿轮减速器的二维平面设计完成齿轮减速器的二维平面零件图和装配图的绘制关键词:齿轮啮合轴传动传动比传动效率目录1、引言 12、电动机的选择 22.1. 电动机类型的选择 22.2.电动机功率的选择 22.3.确定电动机的转速 23、计算总传动比及分配各级的传动比 43.1. 总传动比 43.2.分配各级传动比 44、计算传动装置的传动和动力参数 54.1.电动机轴的计算 54.2.Ⅰ轴的计算(减速器高速轴) 54.3.Ⅱ轴的计算(减速器中间轴) 54.4.Ⅲ轴的计算(减速器低速轴) 64.5.Ⅳ轴的计算(卷筒轴) 65、传动零件V带的设计计算75.1.确定计算功率75.2.选择V带的型号75.3.确定带轮的基准直径dd1 dd2 75.4.验算V带的速度75.5.确定V带的基准长度Ld和实际中心距a 75.6.校验小带轮包角ɑ1 85.7.确定V带根数Z 85.8.求初拉力F0及带轮轴的压力FQ 85.9.设计结果96、减速器齿轮传动的设计计算 106.1.高速级圆柱齿轮传动的设计计算106.2.低速级圆柱齿轮传动的设计计算117、轴的设计 147.1.高速轴的设计147.2.中间轴的设计157.3.低速轴的设计168、滚动轴承的选择209、键的选择 2010、联轴器的选择2111、齿轮的润滑2112、滚动轴承的润滑2113、润滑油的选择2214、密封方法的选取22结论23致谢24参考文献251、引言计算过程及说明国外减速器现状齿轮减速器在各行各业中十分广泛地使用着是一种不可缺少的机械传动装置当前减速器普遍存在着体积大、重量大或者传动比大而机械效率过低的问国外的减速器以德国、丹麦和日本处于领先地位特别在材料和制造工艺方面占据优势减速器工作可靠性好使用寿命长但其传动形式仍以定轴齿轮传动为主体积和重量问题也未解决好最近报导日本住友重工研制的FA型高精度减速器美国Jan-Newton公司研制的X-Y式减速器在传动原理和结构上与本项目类似或相近都为目前先进的齿轮减速器当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展因此除了不断改进材料品质、提高工艺水平外还在传动原理和传动结构上深入探讨和创新平动齿轮传动原理的出现就是一例减速器与电动机的连体结构也是大力开拓的形式并已生产多种结构形式和多种功率型号的产品目前超小型的减速器的研究成果尚不明显在医疗、生物工程、机器人等领域中微型发动机已基本研制成功美国和荷兰近期研制分子发动机的尺寸在纳米级范围如能辅以纳米级的减速器则应用前景远大2、电动机的选择2.1. 电动机类型的选择按已知的工作要求和条件选用Y型全封闭笼型三相异步电动机2.2.电动机功率的选择Pd=Fv/(1000ηηw)由电动机的至工作机之间的总效率为ηηw=η1η23η32η4η5η6η1、η2、η3、η4、η5、η6分别为带的传动、齿轮传动的轴承、齿轮传动、齿轮传动联轴器、卷筒轴的轴承、卷筒的效率则ηηw=0.96³0.993³0.972³0.97³0.98³0.96=0.82Pd=Fv/(1000ηηw)=2500³1.7/1000³0.82=5.2kw2.3.确定电动机的转速卷筒轴的工作转速为nW =60³1000³V/ΠD=60³1000³1.7/300³π=108.28r/min取V带传动比i 1=2 ~4齿轮传动比i2=8~40则总传动比为i总=16~160故电动机转速的可选范围nd=i总³nW=﹙16~160﹚³108.28r/min=﹙1732~17325﹚r/min符合这一范围的同步转速有3000 r/min再根据计算出的容量由参考文献【1】查得Y132s1-2符合条件型号额定功率同步转速满载转速Y132s1-25.5 kw3000r/min2900r/min3、计算总传动比及分配各级的传动比3.1. 总传动比i总=n电动/nW=2900/108.28=26.783.2.分配各级传动比i1为V带传动的传动比 i1的范围(2~4) i1=2.5 i2为减速器高速级传动比i3为低速级传动比i4为联轴器连接的两轴间的传动比 i4 =1i总= i1 i2 i3 i4i2 i3=26.78/2.5=10.71i2=(1.3 i2 i3)1/2=3.7i3=2.94、计算传动装置的传动和动力参数4.1.电动机轴的计算n0=nm=2900r/minP0= Pd =5.2kwT0=9550³P0/n0=9550³5.2/2900=17.12N.m4.2.Ⅰ轴的计算(减速器高速轴)n1=n0/i1=2900/2.5=1160r/minP1=P0³η1=5.2³0.96=4.99kwT1=9550³P1/n1带=9550³4.99/1160=41.1N.m4.3.Ⅱ轴的计算(减速器中间轴)n2=n1/i2=1160/3.7=313.51 r/minP2=P1³η22³η3=4.99³0.992³0.97=4.75kwT2=9550³P2/n2=9550³4.75/313.51=144.57 N.m4.4.Ⅲ轴的计算(减速器低速轴)n3=n2/i3=313.51/2.9=108.11r/minP3=P2³η2³η3³η4=4.75³0.99³0.97³0.97=4.42kwT3=9550³P3/n3=9550³4.42/108.11=390.53 N.m4.5.Ⅳ轴的计算(卷筒轴)n4=n3=108.11r/minP4=P3³η5³η6=4.42³0.98³0.96=4.16kwT4=9550³P4/n4=9550³4.16/108.11=367.41 N.m5、传动零件V带的设计计算5.1.确定计算功率PC=KA²P额=1.1²5.5=6.05 kw5.2.选择V带的型号由PC的值和主动轮转速由【1】图8.12选A型普通V带5.3.确定带轮的基准直径dd1 dd2由【1】表8.6和图8.12 选取dd1=80mm且dd1=80mm>dmin=75mm大带轮基准直径为dd2=dd1³n0/n1=2900³80/1160=200mm按【1】表8.3选取标准值dd2=200mm 则实际传动比ii =dd2/dd1=200/80=2.5主动轮的转速误差率在±5%内为允许值5.4.验算V带的速度V=Π³dd1³n0/60000=12.14m/s在5~25 m/s范围内5.5.确定V带的基准长度Ld和实际中心距a按结构设计要求初定中心距a0=500mmL0=2 a0+∏﹙dd1+dd2﹚/2+﹙dd2-dd1﹚2/4 a0 =1000+∏³280/2+1602/2000=1446.8mm由【1】表8.4选取基准长度Ld=1400mm实际中心距a为a=a0+﹙Ld-L0﹚/2=1000+﹙1400-1446.8﹚/2= 476.6mm5.6.校验小带轮包角ɑ1α=[180°-﹙dd2-dd1﹚/a ] ³57.3°=[180°-﹙200-80﹚/476.6] ³57.3°=165.6°>120°合格5.7.确定V带根数ZZ≥Pc/[P0] =Pc/﹙P0+ΔP0﹚³Kα³KcP0=[1.22+﹙1.29-1.22﹚³﹙2900-2800﹚/﹙3200-2800﹚] =1.24kwΔP0=Kb³n0³﹙1-1/Ki﹚=0.0010275³2900³﹙1-1/1.1373﹚=0.3573kwKL=0.96Kα=0.97Z=6.05/﹙1.24+0.3573﹚³0.97³0.96=4.06圆整得Z=45.8.求初拉力F0及带轮轴的压力FQ由【1】表8.6查得q=0.1kg/mF0=500³Pc2.5/Kα-1﹚/z³V+qV2=113N轴上压力Fq为Fq=2³F³z³sin165.6/2=2³113³4³sin165.6/2=894.93N5.9.设计结果选用4根A-1400GB/T11544-1997的V带中心距476.6mm 轴上压力894.93N 带轮直径80mm和200mm6、减速器齿轮传动的设计计算6.1.高速级圆柱齿轮传动的设计计算6.1.1.选择齿轮材料及精度等级小齿轮选用45号钢调质硬度为220~250HBS大齿轮选用45号钢正火硬度为170~210HBS因为是普通减速器故选用9级精度要求齿面粗糙度Ra≦3.2~6.3μm6.1.2.按齿面接触疲劳强度设计T1=41.1N²m=41100N²mm由【1】表10.11查得K=1.1选择齿轮齿数小齿轮的齿数取25则大齿轮齿数Z2=i2²Z1=92.5圆整得Z1=93齿面为软齿面由【1】表10.20选取Ψd=1由【1】图10.24查得σHLim1 =560 MPa σHLim2 =530 MPa由表【1】10.10查得SH=1 N1=60njLh=60³1160³1³( 10³300³16) =3.34³109N2= N1/ i2=3.34³109/3.7=9.08³108查【1】图10.27知ZNT1=0.9 ZNT2=1[σH]1= ZNT1³σHLim1/SH=0.9³560/1=504 MPa[σH]2= ZNT2³σHLim2/SH=1³530/1 =530 MPa故d1≧76.43³[KT1﹙i2+1﹚/Ψd³i2³[σH]12]1/3=76.43³[1.1³41100³﹙3.7+1﹚/1³3.7³5042]1/3=46.62mmm= d1/Z1=46.62/25=1.86由【1】表10.3知标准模数 m=26.1.3.计算主要尺寸d1=m Z1=2³25=50mmd2=m Z2=2³93=186mmb=Ψdd1=1³50=50mm小齿轮的齿宽取 b2=50mm 大齿轮的齿宽取 b1=55ma=m﹙Z1+Z2﹚/2=2³﹙25+93/2=118m6.1.4.按齿根弯曲疲劳强度校核查【1】表10.13得 YF1 =2.65 YF2=2.18应力修正系数YS查【1】表10.14得 YS1=2.21 YS2=1.79许用弯曲应力[σF]由【1】图10.25查得σFlim1 =210 MPa σFlim2 =190 MPa由【1】表10.10差得 SF=1.3由【1】图10.26查得 YNT1=YNT2=0.9有公式(10.14)可得[σF]1= YNT1³σFlim1/SF =210³0.9/1.3=145.38 MPa[σF]2= YNT2³σFlim2/SF =190³0.9/1.3=131.54 MPa 故σF1 =2KT YF YS/bm2Z1=76.19MPa<[σF]1=145.38MPaσF2 =σF1³YF2³YS2/YF1³YS1=76.19³2.21³1.79/2.65³1.59 =71.53MPa<[σF]2 =131.54MPa所以齿根弯曲强度校核合格6.1.5.检验齿轮圆周速度V=πd1³n1/60000=3.14³50³1160/60000=3.03 m/s由【1】表10.22可知选9级精度是合适的6.2.低速级圆柱齿轮传动的设计计算6.2.1.选择齿轮材料及精度等级小齿轮选用45号钢调质硬度为220~250HBS大齿轮选用45号钢正火硬度为170~210HBS因为是普通减速器故选用9级精度要求齿面粗糙度Ra≦3.2~6.3μm6.2.2.按齿面接触疲劳强度设计T2=144.57N²m=145000N²mm n2=313.51r/min由【1】表10.11查得K=1.1选择齿轮齿数小齿轮的齿数取31则大齿轮齿数Z2=i3²Z1=89.9圆整得Z1=90齿面为软齿面由【1】表10.20选取Ψd=1由【1】图10.24查得σHLim1 =550 MPa σHLim2 =530 MPa由表【1】10.10查得SH=1 N1=60njLh=60³313.51³1³( 10³300³16) =9.03³108N2= N1/ i3=9.03³108/2.9=3.11³108查【1】图10.27知ZNT1=1 ZNT2=1.06[σH]1= ZNT1³σHLim1/SH=1³550/1=550 MPa[σH]2= ZNT2³σHLim2/SH=1.06³530/1 =562 MPa故d1≧76.43³[KT1﹙i2+1﹚/Ψd³i3³[σH]12]1/3=76.43³[1.1³145000³﹙2.9+1﹚/1³2.9³5502]1/3=68.02mmm= d1/Z1=68.02/31=2.2由【1】表10.3知标准模数 m=2.56.2.3.计算主要尺寸d1=m Z1=2.5³31=77.5mmd2=m Z2=2.5³90=225mmb=Ψdd1=1³77.5=77.5mm大齿轮的齿宽取 b2=80mm 小齿轮的齿宽取 b1=85mma=m﹙Z1+Z2﹚/2=2³﹙31+90)/2=151.25m6.2.4.按齿根弯曲疲劳强度校核查【1】表10.13得 YF1 =2.53 YF2=2.22应力修正系数YS查【1】表10.14得 YS1=1.64 YS2=1.79许用弯曲应力[σF]由【1】图10.25查得σFlim1 =210 MPa σFlim2 =190 MPa由【1】表10.10差得 SF=1.3由【1】图10.26查得 YNT1=YNT2=1有公式(10.14)可得[σF]1= YNT1³σFlim1/SF =210³1/1.3=162 MPa[σF]2= YNT2³σFlim2/SF =190³1/1.3=146 MPa故σF1 =2KT YF YS/bm2Z1=85.4MPa<[σF]1=162MPaσF2 =σF1³YF2³YS2/YF1³YS1=85.4³2.22³1.79/2.53³1.64 =81.8MPa<[σF]2 =146MPa所以齿根弯曲强度校核合格6.2.5.检验齿轮圆周速度V=πd1³n1/60000=3.14³77.5³313.51/60000=1.27 m/s 由【1】表10.22可知选9级精度是合适的7、轴的设计7.1.高速轴的设计7.1.1.选择轴的材料及热处理由已知条件知减速器传递的功率属于小功率对材料无特殊要求故选用45号钢并经调质处理7.1.2.按钮转强度估算直径根据表【1】表14.1得C=107~118 P1=4.99Kw又由式 d1≧C³﹙P1/n1﹚1/3d1≧﹙107~118﹚³﹙4.99/1160﹚1/3=17.5~19.35 mm 考虑到轴的最小直径要连接V带会有键槽存在故将估算直径加大3%~5%取为18.03~20.32mm 由设计手册知标准直径为20mm7.1.3.设计轴的直径及绘制草图确定轴上零件的位置及固定方式此轴为齿轮轴无须对齿轮定位轴承安装于齿轮两侧的轴段采用轴肩定位周向采用过盈配合确定各轴段的直径由整体系统初定各轴直径轴颈最小处连接V带d1=20mmd2=27mm轴段3处安装轴承d3=30mm齿轮轴段d4=38mmd5=d3=30mm确定各轴段的宽度由带轮的宽度确定轴段1的宽度B=(Z-1)e+2f(由【1】表8.5得)B=63mm所以b1=75mm;轴段2安装轴承端盖b2取45mm轴段3、轴段5安装轴承由【2】附表10.2查的选6206标准轴承宽度为16mmb3=b5=16mm;齿轮轴段由整体系统决定初定此段的宽度为b4=175mm按设计结果画出草图如图1-1图1-17.2.中间轴的设计7.2.1.选择轴的材料及热处理由已知条件知减速器传递的功率属于小功率对材料无特殊要求故选用45号钢并经调质处理7.2.2.按钮转强度估算直径根据表【1】表14.1得C=107~118 P2=4.75Kw又由式 d1≧C³﹙P2/n2﹚1/3d1≧﹙107~118﹚³﹙4.75/313.51﹚1/3=26.75~29.5 mm 由设计手册知标准直径为30mm7.2.3.设计轴的直径及绘制草图确定轴上零件的位置及固定方式此轴安装2个齿轮如图2-1所示从两边安装齿轮两边用套筒进行轴向定位周向定位采用平键连接轴承安装于齿轮两侧轴向采用套筒定位周向采用过盈配合固定确定各轴段的直径由整体系统初定各轴直径轴段1、5安装轴承d1=30mm轴段2、4安装齿轮d2=35mm轴段3对两齿轮轴向定位d3=42mmd4=35mmd5=d1=30mm确定各轴段的宽度如图2-1所示由轴承确定轴段1的宽度由【2】附表10.2查的选6206标准轴承宽度为16mm所以b1= b5=33mm;轴段2安装的齿轮轮毂的宽为85mmb2取83mm轴段4安装的齿轮轮毂的宽为50mmb4=48mm按设计结果画出草图如图2-1图2-17.3.低速轴的设计7.3.1.选择轴的材料及热处理由已知条件知减速器传递的功率属于小功率对材料无特殊要求故选用45号钢并经调质处理由【1】表14.7查的强度极限σb=650MP再由表14.2得需用弯曲用力[σ﹣1b]=60MPa7.3.2.按钮转强度估算直径根据【1】表14.1得C=107~118 P3=4.42KwT3=390.53 N.mn3=108.11r/min又由式 d1≧C³﹙P3/n3﹚1/3d1≧﹙107~118﹚³﹙4.42/108.11﹚1/3=37.45~41.3 mm 考虑到轴的最小直径要安装联轴器会有键槽存在故将估算直径加大3%~5%取为38.57~43.37mm由设计手册知标准直径为40mm7.3.3.设计轴的直径及绘制草图确定轴上零件的位置及固定方式如图3-1所示齿轮的左右两边分别用轴肩和套筒对其轴向固定齿轮的周向固定采用平键连接轴承安装于轴段2和轴段6 处分别用轴肩和套筒对其轴向固定周向采用过盈配合固定确定各轴段的直径由整体系统初定各轴直径轴颈最小处连接轴承d1=40mm轴段2轴段6处安装轴承d2=d6=45mmd3=53mm轴段4对齿轮进行轴向定位d4=63mm轴段5安装大齿轮d5= 56mm确定各轴段的宽度由联轴器的宽度确定轴段1的宽度选用HL型弹性柱销联轴器由【2】附表9.4查得选HL3型号所以b1取94mm;轴段2安装轴承端盖和轴承由【2】附表10.2查的选6209标准轴承宽度为b2取65mm由整体系统确定轴段3取65mmb4=12.5mm轴段5安装的齿轮轮毂的宽为80mmb5=78mm轴段6安装轴承和套筒b6=38.5mm按设计结果画出草图如图3-17.3.4.按弯扭合成强度校核轴径画出轴的受力图(如图3-2)做水平面内的弯矩图(如图3-3)圆周力 FT= 2T3/d=390530³2/225=3471.38N径向力 Fr=Fttanα=3471.38³0.364=1263.58N支点反力为 FHA=L2FT/﹙L1+L2﹚=3471.38³126/﹙68+126﹚=2254.61NFHc=L1FT/﹙L1+L2﹚=3471.38³68/﹙68+126﹚=1216.77NB-B截面的弯矩 MHB左=FHA³L1=2254.61³68=153313.48 N.mm MHB右=FHC³L2=1216.77³126=153313.02 N.mm 做垂直面内的弯矩图(如图3-4)支点反力为FVA=L2Fr/﹙L1+L2)=1263.58³126/﹙68+126﹚=820.58 NFVc=L1Fr/﹙L1+L2﹚=1263.58³68/﹙68+126﹚=442.90 NB-B截面的弯矩 MVB左=FVA³L1=820.58³68=55806.24N.mmMVB右=FVC³L2=442.90³126=55805.40N.mm做合成弯矩图(如图3- 5)合弯矩 Me左=[﹙MHB左﹚2+﹙MVB左﹚2 ]1/2=[﹙153313.48﹚2+﹙55806.24﹚2] 1/2= 163154.4 N.mmMe右=[﹙MHB右﹚2+﹙MVB右﹚2 ]1/2=[﹙153313.02﹚2+﹙55805.40﹚2] 1/2=163153.68 N.mm求转矩图(如图3- 6)T3=9550³P3/n3=9550³4.42/108.11=390.53 N.m求当量弯矩修正系数α=0.6Me=[﹙M﹚2+﹙αT﹚2]1/2=285534.21 N.mm确定危险截面及校核强度σ eB=Me/W=285534.21/0.1²(50)3=16.26MPa查【1】表14.2得知满足σ≦[σ﹣1b] =60MPa的条件故设计的轴有足够的强度并有一定的余量图3-18、滚动轴承的选择轴型号d(mm)D(mm)B(mm)高速轴62063016中间轴6206306216低速轴62094585199、键的选择由【1】表14.8查得选用A型普通平键轴轴径(mm)键宽(mm)键高(mm)键长(mm)高速轴206660中间轴35108703510840低速轴401288456166810、联轴器的选择低速轴和滚筒轴用联轴器连接由题意选LT型弹性柱销联轴器由【2】附表9.4查得HL3联轴器型号公称扭矩(N²m)许用转速(r/min)轴径(mm)轴孔长度(mm)D(mm)HL36305000406016011、齿轮的润滑采用浸油润滑由于低速级周向速度低所以浸油高度约为六分之一大齿轮半径取为35mm12、滚动轴承的润滑如果减速器用的是滚动轴承则轴承的润滑方法可以根据齿轮或蜗杆的圆周速度来选择:圆周速度在2m/s~3m/s以上时可以采用飞溅润滑把飞溅到箱盖上的油汇集到箱体剖分面上的油沟中然后流进轴承进行润滑飞溅润滑最简单在减速器中应用最广这时箱内的润滑油粘度完全由齿轮传动决定圆周速度在2m/s~3m/s以下时由于飞溅的油量不能满足轴承的需要所以最好采用刮油润滑或根据轴承转动座圈速度的大小选用脂润滑或滴油润滑利用刮板刮下齿轮或蜗轮端面的油并导入油沟和流入轴承进行润滑的方法称为刮油润滑13、润滑油的选择采用脂润滑时应在轴承内侧设置挡油环或其他内部密封装置以免油池中的油进入轴承稀释润滑脂滴油润滑有间歇滴油润滑和连续滴油润滑两种方式为保证机器起动时轴承能得到一定量的润滑油最好在轴承内侧设置一圆缺形挡板以便轴承能积存少量的油挡板高度不超过最低滚珠(柱)的中心经常运转的减速器可以不设这种挡板转速很高的轴承需要采用压力喷油润滑如果减速器用的是滑动轴承由于传动用油的粘度太高不能在轴承中使用所以轴承润滑就需要采用独自的润滑系统这时应根据轴承的受载情况和滑动速度等工作条件选择合适的润滑方法和油的粘度齿轮与轴承用同种润滑油较为便利考虑到该装置用于小型设备选用L-AN15润滑油14、密封方法的选取选用凸缘式端盖易于调整采用闷盖安装骨架式旋转轴唇型密封圈实现密封密封圈型号按所装配轴的直径确定为(F)B25-42-7-ACM(F)B70-90-10-ACM轴承盖结构尺寸按用其定位的轴承的外径决定结论我们的设计是自己独立完成的一项设计任务我们工科生作为祖国的应用型人才将来所从事的工作都是实际的操作及高新技术的应用所以我们应该培养自己市场调查、收集资料、综合应用能力提高计算、绘图、实验这些环节来锻炼自己的技术应用能力本次毕业设计针对"二级圆柱齿轮减速器设计"的要求在满足各种参数要求的前提下拿出一个具体实际可行的方案因此我们从实际出发认真的思考与筛选经过一个多月的努力终于有了现在的收获回想起来在创作过程中真的是酸甜苦辣咸味味俱全有时为了实现一个参数翻上好几本资料然而也不见得如人心愿在制作的过程中遇到了很多的困难通过去图书馆查阅资料上网搜索还有和老师与同学之间的讨论、交流最终实现了这些问题较好的解决由齿轮、轴、轴承及箱体组成的齿轮减速器用于原动机和工作机或执行机构之间起匹配转速和传递转矩的作用在现代机械中应用极为广泛本次设计的是带式运输机用的二级圆柱齿轮减速器首先熟悉题目收集资料理解题目借取一些工具书进行了传动方案的评述选择齿轮减速器作为传动装置然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)然后用AutoCAD进行传统的二维平面设计完成圆柱齿轮减速器的平面零件图和装配图的绘制通过毕业设计树立正确的设计思想培养综合运用机械设计课程和其他先修课程的理论与生产实际知识来分析和解决机械设计问题的能力及学习机械设计的一般方法和步骤掌握机械设计的一般规律进行机械设计基本技能的训练:例如计算、绘图、查阅资料和手册、运用标准和规范进行计算机辅助设计和绘图的训练通过这次毕业设计的学习和研究我们开拓了视野掌握了设计的一般步骤和方法同时这三年来所学的各种专业知识又得到了巩固同时这次毕业设计又涉及到计算、绘图等让我们又学到很多新的知识但毕竟我们所学的知识有限本设计的好多地方还等待更改和完善致谢短暂的毕业设计是紧张而有效的在掌握了三年所业学的专知识后自己能够综合的运用并能完成自己和同学拟订的毕业设计这也是对自己所学专业知识的考察和温习虽然这是第一次全面的从完成由构思到设计完成我从中也学到了很多综合运用了课本知识再加上实际生产所用到的一些设计工艺认真的对自己设计的数据进行计算和核对严格按照设计的步骤和自己已经标出的设计过程来进行计算这些都是自己在设计中所能获得的好处虽然在计算的过程中也遇到了很多在课本中没有遇到过的问题这些都是在实际生产中所要考虑到的细节问题而自己往往都会遗漏这样的设计但在毕业设计指导老师高清冉老师指导下她给出我们在设计中必须及在实际中所要考虑到的细节的讲解使我体会到了理论联系实践的重要性另外在设计的过程中需要用大量的数据而这些数据都是计算得来的因此需要翻阅大量的相关设计的文献所以我在学校图书馆里认真的查阅并记录了数据再进行数次的核对最终有了正确的设计数据毕业设计能够顺利的完成与高老师的指导是分不开的遇到的问题和自己不能设计的步骤都是在高老师的讲解下得到满意的答案从而加快了自己设计的进度和设计的正确性、严谨性对学校要求的设计格式高老师也反复的检查每一个格式和布局的美观这样我们才能设计出符合标准的设计时间就这样在自己认真设计的过程中慢慢的过去了几周的时间过的是有效和充实的到最后看到自己设计的题目完成后心情是非常喜悦的因为这凝结了自己辛苦的劳动和指导老师的指导所以说这次和同学完成设计收获甚多最后在对高老师感激的同时也要对在百忙中认真评阅我们设计的学院领导表示感谢你们丰富的专业知识能给我们提出很多可行的方案所以我由衷的表示谢意!参考文献【1】陈立德机械设计基础.第3版.高等教育出版社出版2007【2】陈立德机械设计课程设计.第3版.高等教育出版社2007【3】杜白石机械设计课程设计.西北农林科技大学机电学院2003【4】龚桂义机械设计课程设计指导书.北京:高等教育出版社1996【5】吴宗泽机械设计课程设计手册.第2版. 北京:高等教育出版社1999【6】朱文坚机械设计课程设计.第2版.华南理工大学出版社2004【7】汪朴澄机械设计基础.第1版.人民教育出版社出版1977????????1济源职业技术学院毕业设计II1济源职业技术学院毕业设计12。
两级减速器-毕业设计

毕业设计任务书一、设计题目设计用于带式运输机的传动装置。
带式运输机的主要构成见图1。
采用交流电动机驱动,经过带传动和齿轮减速器,再带动卷筒转动,从而驱动运输带运动,实现物料的输送。
二、设计目的1. 综合运用所学课程的理论知识解决工程设计中的实际问题;掌握机械产品设计开发的基本方法和步骤;2. 通过毕业设计使学生熟练地应用所学课程、软件、计算机等理论知识和现代设计计算手段,完成一个工程技术人员在机械产品设计开发方面所必须具备的全面训练。
三、工作条件和设计要求1.工作条件:单班制(8小时/天),连续单向运转,轻微冲击,室内工作,有粉尘。
2.使用要求:使用三相交流电动机;使用期限10年,3年可进行一次大修;运输带速度允许误差:±3%3.生产条件:中等规模机械厂,可加工7~8级精度齿轮和蜗杆。
4.生产批量:小批量四、设计原始数据 运输带工作参数见表1.表1 适用于单级减速器注:运输带与卷筒以及卷筒与轴承间的摩擦阻力已在F 中考虑。
表2 适用于双级减速器注:运输带与卷筒以及卷筒与轴承间的摩擦阻力已在F中考虑。
表3 适用于蜗杆减速器注:运输带与卷筒以及卷筒与轴承间的摩擦阻力已在F中考虑。
五、设计任务完成装置总装图一张、零件图四张((减速箱体、齿轮、带轮、轴各一张)、设计计算说明书一份。
六、参考资料1.濮良贵主编,机械设计,高等教育出版社2.龚溎义主编,机械设计课程设计指导书,高等教育出版社3.与本设计内容相同的各种版本的《机械设计课程设计指导书》均可4.《机械设计手册》5.《减速器图册》七、完成时间2012年4月1日毕业设计指导书一、设计内容设计一普通用途的带式运输机的传动装置。
图1所示为传动的几种备选方案,图b 采用双级圆柱齿轮减速器,图c 采用圆锥齿轮-圆柱齿轮减速器,图d 为单级蜗杆减速器。
除了图示方案,还可以有其它的多种传动和布置方案可选择。
设计大致包括以下内容:⑴ 决定传动装置的总体设计方案; ⑵ 选择电动机;⑶ 计算传动装置的运动和动力参数;c )d )图1a )b )1—电动机 2、5—联轴器 3—制动器 4—减速器 6—卷筒 7—轴承 8—机架⑷传动零件、轴的设计计算;⑸轴承、联接件、润滑密封、联轴器的选择和校核计算;⑹减速箱箱体(或称机体)结构及其附件的设计与选择;⑺绘制装配图及零件工作图;⑻编写计算说明书;⑼答辩。
毕业设计-----二级圆锥圆柱齿轮减速器设计

毕业设计(论文)说明书题目:二级圆锥圆柱齿轮减速器机械实体造型设计、仿真系别:机械工程系专业:机电设备维修与管理学生姓名:学号:指导教师:职称:题目类型:理论研究软件开发摘要本课题主要研究的内容是根据减速器设计的原始资料,研究减速器够组成部件(包括齿轮、轴、轴承、上箱体和下箱体)的设计及校核方法。
对二级圆锥圆柱齿轮减速器设计进行功能分解,确立齿轮减速器三维参数化设计方法以及齿轮减速器零件(各主要传动件,标准件等)模型库、总装配库的构建方法。
并用inventor虚拟软件,进行二级圆锥圆柱齿轮机构的三维建模,对圆锥圆柱减速器的机构的组成,内部传动部件,进行装配干涉分析、应力应变分析、运动仿真,最终生成二维工程图。
利用inventor虚拟软件对所设计的产品进行三维建模,装配,运动仿真和工程图的产生等方面进行研究后发现,干涉、应力分析在CAD中是极其重要的内容。
从三维开始设计,在现有的软件支持下,这个模型至少有可能表达出设计构思的全部几何参数,整个设计过程可以完全在三维模型上讨论,对设计的辅助就很容易迅速扩大的全过程,设计的全部流程都能使用统一的数据,从三维开始的设计,二维工程图的表达仍然要遵守传统设计的要求。
关键字:三维虚拟设计;三维建模;减速器;AbstractThe main research topics are based on the design of the original data reducer, reducer enough of component parts (including gears, shafts, bearings, the upper casing and lower casing) design and verification method. Of the two conical gear reducer design of functional decomposition, the establishment of three-dimensional parametric gear reducer and gear reducer design parts (the main transmission parts, standard parts, etc.) model library, the total assembly method of constructing the library. And with the inventor of virtual software and database technology, for two conical cylindrical gears three-dimensional modeling of conical reducer cylindrical body composition, the internal transmission parts, and assembly interference analysis, stress and strain analysis, spatial motion analysis, motion simulation, eventually to produce two dimensional drawings.Using inventor of virtual software products designed three-dimensional modeling, assembly, motion simulation and engineering plans and other aspects of the production study found that stress and strain analysis in the CAD is an extremely important element. Only three-dimensional design, be possible to set up the finite element analysis of raw data, and then to part geometry and the optimal shape. Otherwise, the design is the traditional method: even the prototype for many of the bench test for the high cost, cycle length, is the modern market economy can not be tolerated.Starting from the three-dimensional design, in support of existing software, this model may be expressed at least all the geometric parameters of the design concept, the whole design process can be fully discussed in the three-dimensional model, it is easy to design the supporting rapid expansion of the whole process the design of all the processes can use a unified data, starting from the three-dimensional design, the expression of two-dimensional engineering drawings still have to comply with the requirements of traditional design. This is a CAD developed today, tomorrow our computer CAD.Key words:3D virtual design; three-dimensional modeling; reducer;目录引言 (1)1 概述 (2)2 电机的选择计算 (4)2.1 选择电动机的类型 (4)2.2 选择电动机的容量 (4)2.3确定电动机转速 (4)2.4 计算传动装置的总传动比i∑并分配传动比 (5)2.4.1 分配原则 (5)2.4.2 总传动比i∑ (5)2.4.3分配传动比 (5)2.5 计算传动装置各轴的运动和动力参数 (5)2.5.1 各轴的转速 (5)2.5.2 各轴的输入功率 (5)2.5.3 各轴的输入转矩 (6)3 传动零件的设计计算 (6)3.1 闭式直齿轮圆锥齿轮传动的设计计算 (6)3.2 闭式直齿圆柱齿轮传动的设计计算 (9)3.3 轴的设计计算 (12)3.3.1减速器高速轴Ⅰ的设计 (12)3.3.2 减速器的低速轴Ⅱ的设计 (14)3.3.3 减速器低速轴Ⅲ的设计计算 (16)4 滚动轴承的选择与寿命计算 (18)4.1 减速器高速I轴滚动轴承的选择与寿命计算 (18)4.2 减速器低速III轴滚动轴承的选择与寿命计算 (19)5 键联接的选择 (20)5.1 高速轴的键联接 (20)5.2 低速轴的键连接 (20)6 减速器机体的结构设计 (20)6.1 机体要具有足够的刚度 (20)6.2 机体的结构要便于机体内零件的润滑,密封及散热 (21)6.3 机体结构要具有很好的工艺性 (22)6.4 确定机盖大小齿轮一段的外轮廓半径 (22)7 润滑和密封设计 (22)7.1 润滑 (22)7.2 密封 (23)8 箱体设计的主要尺寸及数据 (23)9 三维建模 (24)9.1 三维建模技术 (24)9.2 草图概念设计 (25)9.2.1 零件的三维参数化设计建摸 (25)9.2.2 虚拟装配 (28)9.2.3 干涉分析 (30)9.2.4 应力分析 (30)10 结论 (31)谢辞 (32)参考文献 (33)引言本课题研究的目的是在已有减速器设计的基本理论基础上,利用Inventor 2008三维设计软件和数据库技术,建立齿轮、轴、轴承、上箱体及下箱体的三维参数模型,将各零件进行装配。
二级直齿圆柱齿轮减速器毕业设计论文

前言机械设计课程设计是新乡职业技术学院多数专业第一次全面的机械设计训练,是机械设计课的最后一个重要教育环节,其目的是:(1)培养学生综合运用机械设计及相关课程知识解决机械设计课程问题的能力,并使所学知识得到巩固和发展;(2)学习机械设计的一般方法和步骤;(3)进行机械设计基本技能的训练毕业论文是我们组在完成此次课程设计之后对整个设计计算过程的整理总结,主要包括整个设计的主要计算及简要说明,对于必要的地方,还有相关简图说明。
对于一些需要的地方,还包括一些手绘图纸补充说明,电动机和V带的选择齿轮的润滑方式及润滑剂的选择,使我们图纸设计的理论依据。
通过这次设计,我学到了很多知识,巩固了一些原来遗忘、疏忽的知识点;原来不理解、没掌握好的问题,也通过翻阅资料、请教老师,把它们都解决了。
由于CAD制图是我的一个薄弱环节,因此在造型中遇到了许多难题。
通过查阅资料,请教老师、同学,我都一一解决了。
通过本次毕业设计,我体会到了团队的精神的重要性。
同时,我也发现自己在大学几年的学习过程中存在着很多不足,尤其是专业知识的应用方面,不能在实践中很好的运用。
通过这次毕业设计,使自己有了一种新的感受和认识,相信自己在今后的工作和学习中将发挥的更好。
由于本人未在生产实际中真正切切的接触过减速器及其零部件的设计生产,因此有些数据只是根据查阅资料获得,离实际应用可能有些出入,有很多零件尺寸材料选择的时候考虑不周全,希望老师在审阅时予以指正。
摘要减速器(又称减速机、减速箱)是一台独立的传动装置,它由密闭的箱体、互相啮合的一对或几对齿轮、传动轴及轴承等组成。
常安装在电动机(或其他原动机)与工作机之间。
作为一种重要的动力传递装置,在机械化生产中起着不可替代的作用。
减速器主要运用齿轮传动装置而实现运作。
本设计简述了带式输送机的动力传递装置—二级直齿圆柱齿轮减速器的设计过程。
主要包括传动方案设计、电动机的选择、V带设计选择、,齿轮传动设计及轴的设计选择和校核等。
二级直齿圆柱齿轮减速器。毕业设计论文

二级直齿圆柱齿轮减速器。
毕业设计论文1.引言2.传动方案的评述3.齿轮减速器的设计计算4.齿轮减速器的二维平面设计5.结论1.引言齿轮传动是一种应用广泛的传动形式,其特点是效率高、寿命长、维护简便。
本设计主要讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。
2.传动方案的评述在传动方案的选择上,我们考虑到带式运输机需要匹配转速和传递转矩,因此选择了齿轮减速器作为传动装置。
经过对市面上的齿轮减速器进行比较和分析,最终决定采用二级圆柱齿轮减速器。
3.齿轮减速器的设计计算在齿轮减速器的设计计算中,我们首先选择了合适的电动机,并进行了齿轮传动、轴的结构设计、滚动轴承的选择和验算、联轴器的选择和验算、平键联接的校核、齿轮传动和轴承的润滑方式的设计计算。
这些步骤都是必要的,以确保齿轮减速器的正常运行。
4.齿轮减速器的二维平面设计为了更好地展示齿轮减速器的结构和零件,我们使用AutoCAD软件进行了二维平面设计。
通过绘制二维平面零件图和装配图,我们可以更清晰地了解齿轮减速器的结构和工作原理。
5.结论在本设计中,我们成功地设计出了带式运输机的传动装置——二级圆柱齿轮减速器。
通过传动方案的评述、齿轮减速器的设计计算和二维平面设计,我们可以更深入地了解齿轮减速器的结构和工作原理,为今后的机械设计提供了参考。
1.引言本文旨在介绍电动机传动装置的设计计算方法,以帮助工程师们在设计电动机传动装置时更加准确、高效地进行计算。
电动机传动装置作为机械传动的一种,广泛应用于各种机械设备中,具有传动效率高、结构简单、使用寿命长等优点。
2.电动机的选择2.1.电动机类型的选择在进行电动机选择时,需要根据具体的使用要求和工作环境来选择合适的电动机类型,包括直流电动机、交流电动机、无刷电机等。
同时,还需考虑电动机的功率、转速等参数。
2.2.电动机功率的选择选择电动机功率时需要根据传动装置的工作负载和传动效率来计算,以确保电动机具有足够的输出功率。
本科毕业设计机械设计二级齿轮减速器(展开)

XXX大学机械课程设计说明书课题名称:二级圆柱齿轮减速器学院:专业班级:学号:学生:指导教师:20XX学年目录前言 (3)第一章设计说明书 (4)§1.1设计题目 (4)§1.2工作条件 (4)§1.3原始技术数据(表1) (4)§1.4设计工作量 (4)第二章机械装置的总体设计方案 (5)§2.1电动机选择 (5)§2.1.1选择电动机类型 (5)§2.1.2选择电动机容量 (5)§2.1.3确定电动机转速 (5)§2.2传动比分配 (6)§2.2.1总传动比 (6)§2.2.2分配传动装置各级传动比考虑到传动装置的外部空间尺寸取V (6)§2.3运动和动力参数计算 (6)§2.3.10轴(电动机轴): (6)§2.3.21轴(高速轴): (6)§2.3.32轴(中间轴): (7)§2.3.43轴(低速轴): (7)§2.3.54轴(卷筒轴): (7)第三章主要零部件的设计计算 (8)§3.1展开式二级圆柱齿轮减速器齿轮传动设计 (8)§3.1.1高速级齿轮传动设计 (8)§3.1.2低速级齿轮传动设计 (11)§3.3轴系结构设计 (15)§3.3.1 高速轴的轴系结构设计 (15)§3.3.2 中间轴的轴系结构设计 (17)§3.3.3 低速轴的轴系结构设计 (20)第四章减速器箱体及其附件的设计 (24)§4.1箱体结构设计 (24)§4.2减速器附件的设计 ......................................................... 错误!未定义书签。
第五章运输、安装和使用维护要求 .. (26)1、减速器的安装 (26)2、使用维护 (26)3、减速器润滑油的更换: (26)参考文献 (26)小结 (27)前言机械设计综合课程设计在机械工程学科中占有重要地位,它是理论应用于实际的重要实践环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
济源职业技术学院毕业设计题目二级圆柱齿轮减速器的设计系别机电系专业机电一体化技术班级机电0602班姓名Xxx学号06010204指导教师高清冉日期2008年11月设计任务书设计题目:二级圆柱齿轮减速器设计要求:运输带拉力 F = 3400 N运输带速度 V = 1.3 m/s卷筒直径 D = 320 mm滚筒及运输带效率η=0.94 。
要求电动机长期连续运转,载荷不变或很少变化。
电动机的额定功率Ped稍大于电动机工作功率Pd。
工作时,载荷有轻微冲击。
室内工作,水份和灰份为正常状态,产品生产批量为成批生产,允许总速比误差为±4%,要求齿轮使用寿命为10年,传动比准确,有足够大的强度,两班工作制,轴承使用寿命不小于15000小时,要求轴有较大刚度,试设计二级圆柱齿轮减速器。
设计进度要求:第一周:熟悉题目,收集资料,理解题目,借取一些工具书。
第二周:完成减速器的设计及整理计算的数据,为下步图形的绘制做准备。
第三周:完成了减速器的设计及整理计算的数据。
第四周:按照上一阶段所计算的数据,完成零部件的CAD的绘制。
第五周:根据设计和图形绘制过程中的心得体会撰写论文,完成了论文的撰写。
第六周:修改、打印论文,完成。
指导教师(签名):摘要齿轮传动是现代机械中应用最广的一种传动形式。
它的主要优点是:①瞬时传动比恒定、工作平稳、传动准确可靠,可传递空间任意两轴之间的运动和动力;②适用的功率和速度范围广;③传动效率高,η=0.92-0.98;④工作可靠、使用寿命长;⑤外轮廓尺寸小、结构紧凑。
由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。
齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。
齿轮减速器按减速齿轮的级数可分为单级、二级、三级和多级减速器几种;按轴在空间的相互配置方式可分为立式和卧式减速器两种;按运动简图的特点可分为展开式、同轴式和分流式减速器等。
单级圆柱齿轮减速器的最大传动比一般为8~10,作此限制主要为避免外廓尺寸过大。
若要求i>10时,就应采用二级圆柱齿轮减速器。
二级圆柱齿轮减速器应用于i:8~50及高、低速级的中心距总和为250~400mmm的情况下。
本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。
首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。
运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。
关键词:齿轮啮合轴传动传动比传动效率目录摘要 (II)1 传动装置总体设计 (1)1.1传动简图 (1)1.2拟定传动方案 (2)1.3选择电动机 (2)1.4确定传动装置的总传动比及其分配 (3)1.5计算传动装置的运动及动力参数 (3)2 设计计算传动零件 (5)2.1高速齿轮组的设计与强度校核 (5)2.2高速齿轮组的结构设计 (8)2.3低速齿轮组的设计与强度校核 (9)2.4低速齿轮组的结构设计 (12)2.5校验传动比 (13)3 设计计算轴 (14)3.1低速轴的设计与计算 (14)3.2中间轴的设计与计算 (15)3.3高速轴的设计与计算 (15)4 键联接,润滑方式,润滑剂牌号及密封件的选择 (23)4.1选择和校验键联接 (23)4.2齿轮的润滑 (23)4.3滚动轴承的润滑 (24)4.4润滑油的选择 (24)4.5密封方法的选取 (24)结论 (25)致谢 (26)参考文献 (27)附录 (28)1 传动装置总体设计1.1传动简图绘制传动简图如下:从带的拉力、带的速度、卷筒直径、齿轮的工作寿命等多方面因素考虑,选择并确定传动简图。
1-1 传动简图1.2 拟定传动方案采用二级圆柱齿轮减速器,适合于繁重及恶劣条件下长期工作,使用与维护方便。
(缺点:结构尺寸稍大)。
高速级常用斜齿,低速级可用直齿或斜齿。
由于相对于轴承不对称,要求轴具有较大的刚度。
高速级齿轮在远离转矩输入端,以减少因弯曲变形所引起的载荷沿齿宽分布不均的现象。
常用于载荷较平稳的场合,应用广泛。
传动比范围:i = 8~401.3 选择电动机稳定运转下工件主轴所需功率:kw FV P W 420.410003.134001000=÷⨯== 工作机主轴转速为: min /627.7732014.33.1100060100060r X D v n =⨯⨯=⨯=π 工件主轴上的转矩:1.电动机 2.联轴器 3.底座 4.齿轮轴 5.大齿轮 6.联轴器 7.卷筒 图1-2 齿轮啮合图m N n P T ⋅=⨯=⨯=767.543627.779550420.49550ω 如图1-2所示,初选联轴器为弹性柱销联轴器和凸缘联轴器,滚动轴承为滚子轴承,传动齿轮为闭式软齿面圆柱齿轮,因其速度不高,选用7级精度(GB10095-88),则机械传动和摩擦副的效率分别如下:弹性柱销联轴器: η = 0.9925滚子轴承: η = 0.98闭式圆柱齿轮(7级):η = 0.98凸缘联轴器(刚性):η = 0.97滚筒及运输带效率: η = 0.94所以,电动机至工件主轴之间的总效率为:η = 0.9925×0.98×0.98×0.98×0.98×0.98×0.97×0.98×0.94= 0.8264所以电动机所需功率为 kw P P d 3485.58264.0420.4===ηω 选取电动机的转速为 n = 1500min /r ,查[9]表16-1,取电动机型号为Y132S-4,则所选取电动机:额定功率为 kw P ed 5.5= 满载转速为 min /1440r n m =1.4 确定传动装置的总传动比及其分配总传动比 55.18627.771440===ωn n i m选用浸油深度原则,查表得 1i =5.3 ;2i =3.5;1.5计算传动装置的运动及动力参数各轴转速: Ⅰn = min /1440r n m =Ⅱn = min /70.2713.514401r i n Ⅰ==Ⅲn = min /628.775.370.2712r i n Ⅱ== 各轴输入功率: kw P P d Ⅰ3084.59925.03485.501=⨯=⨯=ηkw P P ⅠⅡ0982.598.098.03084.512=⨯⨯=⨯=ηkw P P ⅡⅢ8963.498.098.00982.523=⨯⨯=⨯=η电动机的输出转矩:m N n P T md d ⋅==471.359550 各轴输入转矩: m N n P T ⅠⅠⅠ⋅==2050.359550同理m N T Ⅱ⋅=1969.179m N T Ⅲ⋅=355.6022 设计计算传动零件标准减速器中齿轮的齿宽系数a φ=b/a (其中a 为中心距) 对于一般减速器取齿宽系数 a φ=0.42.1 高速齿轮组的设计与强度校核2.1.1选定齿轮类型、精度等级、材料及齿数(1)如上图所示,选用斜齿圆柱齿轮传动,四个齿轮均为斜齿,有利于保障传动的平稳性;(2)运输机为一般工作机器,速度不高,故选用7级精度(GB10095—88);(3)材料选择。
由文献[2]表10—1,选择小齿轮材料为40r C (调质),硬度为280HBS ,大齿轮材料为45钢(调质),硬度为240HBS ,二者材料硬度差为40HBS 。
(4)初选小齿齿数1Z =24,大齿轮齿数为2Z =5.3×1Z =127.2,取2Z =128。
2.1.2 按齿面接触强度设计3211)][()1(2H E H a d t t Z Z u u T K d σεφ+≥ 2.1.3 确定公式内的数值(1)试选 载荷系数t K =1.6,由文献[2]图10—30选取节点区域系数 H Z =2.433(2)由文献[2]图10—26查得 1a ε=0.771 、 2a ε=0.820 所以 a ε =1.591(3)外啮合齿轮传动的齿宽系数 d φ=0.5×(1+u)× a φ=0.5(1+5.3)×0.4=1.26(4)查表材料的弹性影响系数 E Z =189.8MPa(5)由表按齿面硬度查得小齿轮的接触疲劳强度极限为 1lim H σ=600MPa ;大齿轮的接触疲劳强度极限为 2lim H σ=MPa 550(6)计算应力循环次数1N =60nj h L =60×1440×1×(2×8×300×10)=4.1472×910同理 2N =7.825X 810由文献[2]图10—19查得接触疲劳寿命系数 1HN K =0.9 、2HN K =0.97(7)计算接触疲劳许用应力取失效概率为1%,安全系数为 S=1.05 ,则1][H σ = 1HN K 1lim H σ/S=514.2MPa 2][H σ = 2HN K 2lim H σ/S=508MPa 所以 ][H σ=(514.2+508)/2=511.1MPa2.1.4 基本数据计算(1)由小齿轮分度圆直径 3211)][()1(2H E H a d t t Z Z u u T K d σεφ+≥=36.70mm 圆整为37mm (2)计算圆周速度 v=10006011X n d t π=2.813m/s(3)计算齿宽b 及模数nt mb=d φt d 1=46.55mmnt m =mm 494.1cos 11=Z d t β 圆整为nt m =1.5 h=2.25×nt m =3.375mm 螺旋角β=b/h=13.715(4)计算纵向重合度βεβε=0.318d φ1Z tan β=2.397(5)计算载荷系数 K已知使用系数A K =1,根据v=2.813m/s ,7级精度,由由文献[3]图10-8查得动载系数v K =1.054;由文献[3]表10-4查得416.11023.018.012.132=⨯++=-b K d H φβ查文献[3]图10-13得37.1=βF K ;查文献[3]表10-3得4.1==Fa Ha K K所以 载花系数 K =A K v K Ha K βH K =2.089(6)按实际载荷系数校正所算得的分度圆直径 73.43311==t t K Kd d mm(7)计算模数 768.1cos 11==Z d m n βmm 圆整为2mm 2.1.5 按齿根弯曲强度设计32121][cos 2F a d SaFa n Z Y Y Y KT m σεφββ≥2.1.6 确定计算参数(1)计算载荷系数K =A K v K Fa K βF K =2.021(2)由纵向重合度βε=2.397,查文献[3]图10-28得螺旋角影响系数βY =0.8846(3)计算当量齿数 27.26cos 211==βZ Z v 同理 2v Z =140.12 (4)查取齿形系数由文献[3]表10-5查得齿形系数599.21=Fa Y ; 148.22=Fa Y应力校正系数595.11=Sa Y ; 2Sa Y =1.822(5)由文献[3]图10-20C 查得小齿轮的弯曲疲劳强度极限MPa FE 5001=σ; MPa FE 3802=σ(6)由文献[3]图10-18查得弯曲疲劳寿命系数 85.01=FN K ;90.02=FN K(7)计算弯曲疲劳许用应力取弯曲疲劳安全系数S=1.4;则MPa S K FE FN F 57.303][111==σσ; 同理2][F σ=244.285MPa(8)计算大、小齿轮的][F Sa Fa Y Y σ,并加以比较 111][F Sa Fa Y Y σ=0.01365 222][F Sa Fa Y Y σ=0.01602 所以,大齿轮的数值大2.1.7 模数设计计算32121][cos 2F a d SaFa n Z Y Y Y KT m σεφββ≥=1.1832mm对比计算结果,由齿面接触疲劳强度计算的法面模数n m 大于由齿根弯曲疲劳强度计算的法面模数,取n m =2.0mm ,已可满足弯曲强度。