九年级数学下册小专题七与圆的切线有关的计算与证明练习新版湘教版

九年级数学下册小专题七与圆的切线有关的计算与证明练习新版湘教版
九年级数学下册小专题七与圆的切线有关的计算与证明练习新版湘教版

小专题(七) 与圆的切线有关的计算与证明

1.如图,已知Rt△ABC,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连接BD.取BC的中点E,连接ED,求证:ED与⊙O相切.

证明:连接OD.

∵OD=OB,

∴∠OBD=∠BDO.

∵AB是直径(已知),

∴∠ADB=90°.

∴∠ADB=∠BDC=90°.

在Rt△BDC中,E是BC的中点,

∴BE=CE=DE.∴∠DBE=∠BDE.

又∵∠ABC=∠OBD+∠DBE=90°,

∴∠ODE=∠BDO+∠BDE=90°.

∵OD是⊙O的半径,

∴ED与⊙O相切.

2.如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.

(1)判断⊙O与BC的位置关系,并说明理由;

(2)若CE=2,求⊙O的半径r.

解:(1)⊙O与BC相切.

理由:连接OD,OB,

∵⊙O与CD相切于点D,

∴OD⊥CD,∠ODC=90°.

∵四边形ABCD 为菱形,

∴AD =CD =CB.

∵OD =OB ,OC =OC ,CB =CD.

∴△OBC ≌△ODC.∴∠OBC =∠ODC =90°.

又∵OB 为半径,∴⊙O 与BC 相切.

(2)∵AD =CD ,∴∠ACD =∠CAD.

∵AO =OD ,∴∠OAD =∠ODA.

∵∠COD =∠OAD +∠ADO ,

∴∠COD =2∠ACD.

又∵∠COD +∠ACD =90°,

∴∠ACD =30°.∴OD =12

OC , 即r =12

(r +2). ∴r =2.

3.如图,已知AB 是⊙O 的直径,且AB =12,AP 是半圆的切线,点C 是半圆上的一动点(不与点A ,B 重合),过点C 作CD ⊥AP 于点D ,记∠COA =α.

(1)当α=60°时,求CD 的长;

(2)当α为何值时,CD 与⊙O 相切?说明理由.

解:(1)过点C 作CE ⊥AB 于点E.

在Rt △OCE 中,

OE =OC ·cos ∠COA

=12

×6=3, 则CD =OA -OE =6-3=3.

(2)当∠α=90°时,CD 与⊙O 相切.

理由:∠α=90°,则在四边形OCDA 中,

∠COA =∠OAD =∠CDA =90°,

湘教版最新九年级数学圆全章精品教案

第三章

单元要点分析 教学内容 1.本单元数学的主要内容. (1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角. (2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,? 圆和圆的位置关系. (3)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积. 2.本单元在教材中的地位与作用. 学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累 了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特 殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数 学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的 基础性工程. 教学目标 1.知识与技能 (1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、? 弦之间的相等关系的定理, 探索并理解圆周角和圆心角的关系定理. (2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,? 探索切线与过切点的 直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线. (3)熟练掌握弧长和扇形面积公式及其它们的应用;? 理解圆锥的侧面展开图并熟练掌握圆锥的侧面 积和全面积的计算. 2.过程与方法 (1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.? 了解概念,理解等量关系,掌 握定理及公式. (2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流. (3)在探索圆周角和圆心角之间的关系的过程中,? 让学生形成分类讨论的数学思想和归纳的数学思 想. (4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,? 使学生明确图形在运动变化中的 特点和规律,进一步发展学生的推理能力. (5)探索弧长、扇形的面积、? 圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意 义. 3.情感、态度与价值观 经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累 活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探 索的欲望. 教学重点 1.平分弦(不是直径)的直径垂直于弦,? 并且平分弦所对的两条弧及其运用. 2.在同圆或等圆中,相等的圆心角所对的弧相等,? 所对的弦也相等及其运用. 3.在同圆或等圆中,同弧或等弧所对的圆周角相等,? 都等于这条弧所对的圆心角的一半及其运用. 4.半圆(或直径)所对的圆周角是直角,90? °的圆周角所对的弦是直径及其运用. 5.不在同一直线上的三个点确定一个圆. 6.直线 L 和⊙O 相交 ? dr 及其运用. 7.圆的切线垂直于过切点的半径及其运用.
1

九年级数学圆的切线的判定性质和画法

3.2.2圆的切线的判定、性质和画法(1) 一、教学目的要求: 1.知识目的: (1)掌握切线的判定定理. (2)应用切线的判定定理证明直线是圆的切线,初步掌握圆的切线证明问题中辅助线的添加方法. 2.能力目的: (1)培养学生动手操作能力. (2)培养学生观察、探索、分析、总结、推理论证等能力. 3.情感目的: 通过直观教具的演示和指导学生动手操作的过程,激发学生学习几何的积极性. 二、教学重点、难点 1.重点:切线的判定定理. 2.难点:圆的切线证明问题中,辅助线的添加方法. 三、教学过程: (一)复习引入 回答下列问题:(投影显示) 1.直线和圆有哪三种位置关系?这三种位置关系是如何定义?如何判定的? 2.什么叫做圆的切线?根据这个定义我们可以怎样来判定一条直线是不是一个圆的切线?

(要求学生举手回答,教师用教具演示) 我们可以用切线的定义来判定一条直线是不是一个圆的切线,但有时使用起来很不方便,为此,我们还要学习切线的判定定理. (二)新课讲解 1.切线判定定理的导出 上节课讲了“圆心到一条直线的距离等于该圆的半径,则该直线就是一条切线”.下面请同学们按我口述的上不骤作图(一同学到黑板上作): 先画⊙O,在⊙O上任取一点A,边结OA,过A点作⊙O的切线L. 请学生回顾作图过程,切线L是如何作出来的?它满足哪些条件? 引导学生总结出:①经过关径外端,②垂直于这条半径. 如果一条直线满足以上两个条件,它就是一条切线,这就是本节要讲的“切线的判定定理”.(板书定理) 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 请同学们思考一下,该判定定理的两个条件缺少一个可以吗? 下图中L是不是圆的切线?(用教具演示下面两个反例)

九年级数学下册 第二章 圆复习教案 (新版)湘教版

圆 教学目标: 【知识与技能】 掌握本章重要知识.能灵活运用有关定理,公式解决具体问题. 【过程与方法】 通过梳理本章知识,回顾解决问题中所涉及的数形结合思想,分类讨论思想的过程,加深对本章知识的理解. 【情感态度】 在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,增强数学应用意识,感受数学的应用价值,激发学生兴趣. 【教学重点】 回顾本章知识点,构建知识体系. 【教学难点】 利用圆的相关知识解决具体问题. 教学过程: 一、知识框图,整体把握 【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统地了解本章知识及它们之间的关系.教学时,边回顾边建立结构框图. 二、释疑解惑,加深理解 1.垂径定理及推论的应用 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧. 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 拓展:①弦的垂直平分线经过圆心,并且平分弦所对的两条弧. ②平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 说明:由垂径定理及其推论,可知对于一个圆和一条直线.如果具备下列五个性质中的两个,那么就具备其余三个性质.这五个性质分别为:①经过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的劣弧;⑤平分弦所对的优弧. 特别注意:此处被平分的弦不能是直径,因为在圆中,任意两条直径总是互相平分的. 2.三角形内切圆的半径r,周长l与面积S之间的关系.与三角形各边都相切的圆叫做三角形内切圆.内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.所以,三角形的内心到三角形三边的距离相等,并且一定在三角形内,三角形有唯一的一个内切圆,而圆有无数

九年级数学:圆的切线的证明——拔高题

九年级数学:圆的切线的证明——拔高题 圆的切线证明拔高题训练 1.如图,在中,,以为直径的交于点,交于点,过点作 ,垂足为,连接. 求证:直线与相切; 若,,求的长. 2.如图,已知,,以直角边为直径作,交斜边于点,连接 . 若,,求边的长; 取的中点,连接,试证明与相切. 3.如图,在中,,以为直径的分别交,于点,, 于点,交的延长线于点. 1 / 25

求证:直线是的切线; 若,,求的长. 4.如图,的边为的直径,与圆交于点,为的中点,过作于. 求证:; 求证:为的切线; 若,,求的长. 5.在中,直角边为直径的半圆,与斜边交于,点是边的中点,连接 , ① 与半圆相切吗?若相切,请给出证明;若不相切,请说明情况. ②若、的长是方程的根,求直角边的长.

九年级数学:圆的切线的证明——拔高题 6.如图,是的直径,. 求证:是的切线; 若点是的中点,连接交于点,当,时,求的值. 7.如图,已知是的直径,点在上,过点的直线与的延长线交于点, ,. 求证:是的切线; 求证:; 3 / 25

点是的中点,交于点,若,求的值. 8.已知,如图,直线交于,两点,是直径,平分交于,过作 于. 求证:是的切线; 若,,求的半径. 9.如图,是的外接圆,,弦,,, 交的延长线于点. 求证:; 求的长; 求证:是的切线.

九年级数学:圆的切线的证明——拔高题 10.如图,是的直径,垂直于弦于点,且交于点,是延长线上一点,若. 求证:是的一条切线; 若,,求的长. 11.如图,以为直径的半圆交于点,且点为的中点,于点,交半 圆于点,的延长线交于点. 求证:为半圆的切线; 若,,求的长. 12.如图,是的直径,点是上的一点,. 5 / 25

九年级数学圆知识点归纳

:从网络收集整理.word版本可编辑. 圆知识点归纳 一、圆的定义。 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素。 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质。 1、圆的对称性。 (1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3 )圆是旋转对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: ?平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 ?平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。(1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距 五对量中只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设⊙O的半径为r,OP=d。 7、(1 (2 (直角三角形的外心就是斜边的中点。) 8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。 2 9A(x1,y1)、B(x2,y2)。 d= r 直线与圆相切。 d< r(r > d直线与圆相交。 d > r(r d点P在⊙O内 d > r(r

九年级数学下册第二章2.1圆的对称性练习(新版)湘教版

第2章圆 2.1 圆的对称性 基础题 知识点1 圆的有关概念 1.下列说法正确的是(C) A.直径是弦,弦是直径 B.过圆心的线段是直径 C.圆中最长的弦是直径 D.直径只有一条 2.下列命题中正确的有(A) ①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个 3.如图,已知AB是⊙O的弦,且AB=OA,则∠AOB=60度. 4.如图,在⊙O中,点A,O,D以及B,O,C分别都在同一条直线上. (1)图中共有几条弦?请将它们写出来; (2)请任意写出两条劣弧和两条优弧. 解:(1)2条,它们是弦AE,AD.

(2)答案不唯一,如:劣弧有AC ︵,DE ︵等,优弧有ACE ︵,AEC ︵ 等. 知识点2 点与圆的位置关系 5.已知⊙O 的半径是5,点A 到圆心O 的距离是7,则点A 与⊙O 的位置关系是(C) A .点A 在⊙O 上 B .点A 在⊙O 内 C .点A 在⊙O 外 D .点A 与圆心O 重合 6.已知⊙O 的半径为6,点P 在⊙O 内,则OP 的长可能是(A) A .5 B .6 C .7 D .8 7.圆心在坐标原点,其半径为7的圆,则下列各点在圆外的是(D) A .(3,4) B .(4,4) C .(4,5) D .(4,6) 8.已知⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥R ,则点P 与圆O 的位置关系是点P 在⊙O 上或⊙O 外. 9.(教材P46练习T2变式)已知⊙O 的半径为5 cm ,A 为线段OP 中点,试判断点A 与⊙O 的位置关系: (1)OP =6 cm ;(2)OP =10 cm ;(3)OP =14 cm. 解:(1)点A 在圆内.(2)点A 在圆上.(3)点A 在圆外. 知识点3 圆的对称性 10.下列图形中,不是轴对称图形的是(A)

中考九年级证明圆的切线例题方法

切线证明法 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 证明:连结OE,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=BC, ∴∠3=∠4. ⌒⌒ ∴BD=DE,∠1=∠2. 又∵OB=OE,OF=OF, ∴△BOF≌△EOF(SAS). ∴∠OBF=∠OEF. ∵BF与⊙O相切, ∴OB⊥BF. ∴∠OEF=900. ∴EF与⊙O相切. 说明:此题是通过证明三角形全等证明垂直的 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD,

∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E ∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切. 证明二:延长AD交⊙O于E,连结OA,OE. ∵AD是∠BAC的平分线, ⌒⌒ ∴BE=CE, ∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE, ∴∠E=∠1. ∵PA=PD, ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900 即OA⊥PA. ∴PA与⊙O相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切.

九年级数学证明圆的切线专题

证明圆的切线专题 证明一条直线是圆的切线,主要有两个思路: 1是证这条直线到圆心的距离等于这个圆的半径: 2,是利用切线的判判定定理,证明这条直线经过一条半径的外端,并且和这条半径垂直. 1不常用,一般常用2. 1. 如图,在Rt ABC ?中, 90C ?∠=,点D 是AC 的中点,且90A CDB ?∠+∠=,过点,A D 作O ,使圆心O 在AB 上,O 与AB 交于点E . (1)求证:直线BD 与O 相切; (2)若:4:5,6AD AE BC ==,求O 的直径. 2.如图,在Rt △ABC 中,∠C=90o,O 、D 分别为AB 、BC 上的点,经过A 、D 两点的⊙O 分别交AB 、AC 于点E 、F ,且D 为EF 的中点。 (1)(4分)求证:BC 与⊙O 相切 (2)(4分)当,∠CAD=30o时,求AD 的长。 3. 如图,已知CD 是ΘO 的直径,AC ⊥CD ,垂足为C ,弦DE ∥OA ,直线AE 、CD 相交于点B . (1)求证:直线AB 是OO 的切线; (2)如果AC =1,BE =2,求tan ∠OAC 的值.

4. 如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)如果BC =8,AB =5,求CE 的长。 5.如图,在△ABC 中,∠C=90°,∠ACB 的平分线交AB 于点O ,以O 为圆心的⊙O 与AC 相切于点D . (1)求证:⊙O 与BC 相切; (2)当AC=3,BC=6时,求⊙O 的半径 6. 如图,AB 是⊙O 的直径,AM ,BN 分别切⊙O 于点A ,B ,CD 交AM ,BN 于点D ,C ,DO 平分∠A DC . (1)求证:CD 是⊙O 的切线; (2)若AD=4,BC=9,求⊙O 的半径R . 7.如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是?AB 的中点,连接P A ,PB ,PC . (1)如图①,若∠BPC =60°,求证: AP AC 3=; (2)如图②,若2524sin = ∠BPC ,求PAB ∠tan 的值.

九年级数学:切线长定理

初中数学新课程标准教材 数学教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 数学教案 / 初中数学 / 九年级数学教案 编订:XX文讯教育机构

切线长定理 教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中九年级数学科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来. 2、教法建议 本节内容需要一个课时. (1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析的基本图形;对重要的结论及时总结; (2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展

在教师组织下,以学生为主体,活动式教学. 教学目标 1.理解切线长的概念,掌握; 2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想. 3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度. 教学重点: 是教学重点 教学难点: 的灵活运用是教学难点 教学过程设计: (一)观察、猜想、证明,形成定理 1、切线长的概念. 如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O 的切线长.

初中数学九年级数学下册第二章2.4过不共线三点作圆练习新版湘教版0918199.docx

xx学校xx学年xx学期xx试卷 姓名:_____________ 年级:____________ 学号:______________ 题型选择题填空题简答题xx题xx题xx题总分 得分 一、xx题 (每空xx 分,共xx分) 试题1: 下列条件中,可以画出唯一一个圆的是( ) A.已知圆心 B.已知半径 C.已知不在同一直线上的三点 D.已知直径 试题2: 小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示.为配成与原来大小一样的圆形玻璃,小明带到商店去的玻璃碎片应该是( ) A.第①块 B.第②块 C.第③块 D.第④块 试题3: 评卷人得分

某地出土一个明代残破圆形瓷盘,为复制该瓷盘需确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.(不要求写作法,证明和讨论,但要保留作图痕迹) 试题4: 三角形的外心是( ) A.三角形三角平分线交点 B.三角形三条边的垂直平分线的交点 C.三角形三条高的交点 D.三角形三条中线的交点 试题5: 如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数是( ) A.40° B.50° C.60° D.100° 试题6: 若三角形的三边长分别为6,8,10,则此三角形的外接圆半径是( ) A.5 B.4 C.3 D.2

试题7: 如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,4),(5,4),(1,-2),则△ABC外接圆的圆心坐标是( ) A.(2,3) B.(3,2) C.(1,3) D.(3,1) 试题8: 如图,分别作出锐角三角形ABC、直角三角形ABC、钝角三角形ABC的外接圆,观察所画外接圆,探究三角形的外接圆的圆心与三角形的形状有什么关系? 试题9: 下列说法:①三点确定一个圆;②三角形有且只有一个外接圆;③三角形的外心到三角形三边的距离相等.其中正确的是.(填序号) 试题10: 如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为() A. B.3 C.2 D.4 试题11:

初中数学九年级《圆的切线证明及计算》公开课教学设计

圆的切线证明及计算(教案) 一、教学目标: 1、复习直线和圆的位置关系,以d和r的关系强化学生对切线判定定理的理解。 2、使学生把握好切线判定和切线性质的基本要素,理解切线问题中常用的辅助线———过 切点的半径。 3、通过对切线长定理的推导分析,提高学生对图形知识的系统化认识,在实际解题中提高 学生对两条切线的边、角关系的理解与应用。 4、强化基础知识的同时,通过中考切线问题考试热点的讲解,提高学生对切线证明及切线 计算问题的理解;对考试中常见的动点问题,提出动点问题静态化的思考。 5、 二、教学重点:整固切线的有关定理;理解切线问题中常用的辅助线 三、教学难点:切线的证明思想,对动点问题的分析思考方法 四、教学过程: 1.回顾知识要点: 通过演示回顾直线和圆的位置关系,用距离d和半径r的关系引导学生对切线判定定理、和切线性质定理进行理解。把握好判定中的两个要素,理解切线问题中一般辅助线的作法。 学生对知识要点表格的完成达到对知识要点的巩固,并在d=r ?直线l与⊙O相切的条件下扼要说明切线的判定定理和切线的性质定理,使学生记住关键字词,理解解题中的一般方法。 2.基础练习: 通过对简单题型的练习,认识切线定理的一般应用方法,在同一图形变换不同的问法,分别从边和角的角度进行理解。进一步巩固切线问题中辅助线的作法。 例1.如图,直线AB与⊙O相切于点A,若∠OBA = 36°, 则∠AOB=() 例2.如图,直线AB与⊙O相切于点A,⊙O的半径为2, 若∠OBA = 30°,则OB的长为() A .B.4 C .D.2 d>r ?直线l与⊙O相离 d

2017春九年级数学下册2圆小专题(三)圆的切线的判定方法习题(新版)湘教版

小专题(三) 圆的切线的判定方法 类型1直线与圆有交点 方法归纳:直线过圆上某一点,证明直线是圆的切线时,只需“连半径,证垂直,得切线”.“证垂直”时通常利用圆中的关系得到90°的角,如直径所对的圆周角等于90°等. 【例1】如图,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DM⊥AC于M.求证:DM与⊙O相切. 1.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,求证:CD是⊙O的切线. 2.(衡阳中考改编)如图,AB是⊙O的直径,点C,D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.求证:CE为⊙O的切线. 3.(张家界中考)如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为

点D,且∠BAC=∠CAD. (1)求证:直线MN是⊙O的切线; (2)若CD=3,∠CAD=30°,求⊙O的半径.

类型2不确定直线与圆是否有公共点 方法归纳:直线与圆没有已知的公共点时,通常“作垂直,证半径,得切线”.证明垂线段的长等于半径常用的方法是利用三角形全等或者利用角平分线上的点到角的两边的距离相等. 【例2】如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于点D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线. 4.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M,与AB,AD分别相交于点E,F.求证:CD与⊙O相切. 5.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB

湘教版九年级数学下册第二章圆的教案

湘教版九年级数学下册第二章圆的教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2.2.2 圆周角 第1课时圆周角(1) 教学目标: 1.知识与技能 (1)理解圆周角的定义,会区分圆周角和圆心角. (2)能在证明或计算中熟练运用圆周角的定理. 2.过程与方法 经历探索圆周角与圆心角的关系的过程,加深对分类讨论和由特殊到一般的转化等数学思想方法的理解. 3.情感态度 (1)在探究过程中体验数学的思想方法,进一步提高探究能力和动手能力. (2)通过分组讨论,培养合作交流意识和探索精神. 教学重点: 理解并掌握圆周角的概念及圆周角与圆心角之间的关系,能进行有关圆周角问题的简单推理和计算. 教学难点: 分类讨论及由特殊到一般的转化思想的应用. 教学过程: 一、创设情境,导入新课 我们已经学习了圆心角的定义,知道顶点在圆心,角的两边与圆相交的角是圆心角,那么顶点在圆上,角的两边与圆相交的角又叫什么角,它与圆心角有何关系?这就是我们这节课需要探讨的内容. 二、自主探究,解读目标 学生自学教材P49-51,并完成以下问题: 1.顶点在______上,并且两边都与圆_________的角叫做圆周角.

2. 同学们作出AB所对的圆周角,和圆心角 并回答下列问题: (1)AB所对的圆心角,圆周角有几个? (2)度量下这些圆心角,圆周角的关系. (3)你能得出圆心角,圆周角的哪些结论? 三、点拨释疑,应用举例 (一)点拨释疑: 1.探究圆周角定理. 教师引导,学生讨论:①当圆心在圆周角的一边上, ②当圆心在圆周角的内部, ③当圆心在圆周角的外部. 结论:圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半. 还可以得出下面推论: 在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。 (二)应用举例: 例1.教材P52例2:如图,OA,OB,OC都是⊙O的半径, = 70 ∠BOC, 50 = ∠AOB,0 求ACB ∠和BAC ∠的度数。 教师设疑:(1)要求的ACB ∠是两个什么 ∠和BAC 角? (2)已知的两个角与所求的两个角有何关系可利用 哪个知识点求解 例2:如图:AB,CD是⊙O的直径,DF,BE是弦,且DF=BE,求证:D ∠ B∠ =

圆证明切线的练习题

圆证明切线的练习题 1. 如图,AB是⊙O的直径,⊙O交BC的中点 于D,DE⊥AC,E是垂足. 求证:DE是⊙O的切线;如果AB=5,tan∠B=的长. 2.如图,△ABC中,AB=AE,以AB为直径作⊙O交BE 于C,过C作CD⊥AE于D, 1C ,求CE B DC的延长线与AB的延长线交于点P . 求证:PD是⊙O的切线;若AE=5,BE=6,求DC的长. 3.在Rt△ABC 中,∠C=90 ? , BC=9, CA=12,∠ABC的平分线 BD交AC于点D, DE⊥DB交AB于点E,⊙O是△BDE的外接圆, 交BC于点F 求证:AC是⊙O的切线; 联结EF,求 4.已知:如图,△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O交AC于点D,交BC于点E,EF⊥AC于F交AB的延长线于G. 求证:FG是⊙O的切线;求AD的长.

证明: 1 A EF 的值. AC 5.如图,点A、B、F在?O上,?AFB?30?,OB的延长线交直线AD于点D,过点 B作BC?AD于C,?CBD?60?,连接AB. 求证:AD是?O 的切线; 若AB?6,求阴影部分的面积. 6.已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF 的延长线于点C.判断直线CE与⊙O的位置关系,并证明你的结论; A 若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长. 7.如图,以等腰?ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE?AC,垂足为E.求证:DE为⊙O的切线; 8.如图,已知R t△ABC,∠ABC=90°,以直角边 AB为直径作O,交斜边AC于点D,连结BD.

2019届九年级数学下册单元测试圆(B卷)湘教版

单元测试(二) 圆(B 卷) (时间:45分钟 满分:100分) 一、选择题(每小题3分,共30分) 1.下列说法正确的是(B) A .直径是弦,弦是直径 B .半圆是轴对称图形 C .无论过圆内哪一点,只能作一条直径 D .直径的长度是半径的2倍 2.已知⊙O 的半径为5,点P 到圆心O 的距离为6,那么点P 与⊙O 的位置关系是(C) A .点P 在⊙O 上 B .点P 在⊙O 内 C .点P 在⊙O 外 D .无法确定 3.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是(B) A .70° B .60° C .50° D .30° 4.一个正六边形的半径为R ,边心距为r ,那么R 与r 的关系是(A) A .r = 32 R B .r = 22 R C .r =3 4 R D .r =53 R 5.如图,AB 是半圆的直径,AB =2,∠B =30°,则BC ︵ 的长为(B) A.1 3 π B.2 3 π C .π D.43 6.如图,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为(C) A .(2,-1) B .(2,2) C .(2,1) D .(3,1) 7.如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长

为(C) A .3 B .4 C .3 2 D .4 5 8.如图,AB ,AC 为⊙O 的切线,B 和C 是切点,延长OB 到点D ,使BD =OB ,连接AD.若∠DAC =78°,则∠ADO 等于(B) A .70° B .64° C .62° D .51° 9.如图,圆形薄铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O ,三角尺的直角顶点C 落在直尺10 cm 处,铁片与直尺的唯一公共点A 落在直尺14 cm 处,铁片与三角尺的唯一公共点为点B.下列说法错误的是(C) A .圆形铁片的半径是4 cm B .四边形AOBC 为正方形 C.AB ︵ 的长度为4π cm D .扇形OAB 的面积是4π cm 2 10.如图,在扇形OAB 中,∠AOB =100°,OA =12,C 是OB 的中点,CD ⊥OB 交AB ︵ 于点D ,以OC 为半径的CE ︵ 交OA 于点E ,则图中阴影部分的面积是(C) A .12π+18 3 B .12π+36 3 C .6π+18 3 D .6π+36 3

九年级数学圆知识点总结

初三圆的知识点总结 如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理” “弧径定理”“中垂定理”. 几何表达式举例:∵ CD 过圆心∵CD ⊥AB 2.平行线夹弧定理: 圆的两条平行弦所夹的弧相等 . 几何表达式举例: 3.“角、弦、弧、距”定理:(同圆或等圆中) “等角对等弦”;“等弦对等角”;“等角对等弧”;“等弧对等角”;“等弧对等弦”;“等弦对等(优,劣)弧”;“等弦对等弦心距”;“等弦心距对等弦” . 几何表达式举例:(1) ∵∠AOB=∠COD ∴ AB = CD (2) ∵ AB = CD ∴∠AOB=∠COD 4.圆周角定理及推论: (1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图) (3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;(如图) (5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 .(如 图) (1)(2)(3) (4) 几何表达式举例: (1)∵∠ACB=2 1∠AOB ∴ …………… (2)∵ AB 是直径 ∴∠ACB=90° (3)∵∠ACB=90° ∴ AB 是直径 (4)∵ CD=AD=BD ∴ΔABC 是Rt Δ 5.圆内接四边形性质定理: 圆内接四边形的对角互补,并且任何一个外 角都等于它的内对角 . 几何表达式举例:∵ ABCD 是圆内接四边形∴ ∠CDE =∠ABC ∠C+∠A =180° 6.切线的判定与性质定理: 如图:有三个元素,“知二可推一”;需记忆其中四个定理. (1)经过半径的外端并且垂直于这条 半径的直线是圆的切线; (2)圆的切线垂直于经过切点的半径; ※(3)经过圆心且垂直于切线的直线必经过切点;※(4)经过切点且垂直于切线的直线必经过圆心. 几何表达式举例: (1)∵OC 是半径∵OC ⊥AB ∴AB 是切线 (2)∵OC 是半径 ∵AB 是切线∴OC ⊥AB (3) …………… 7.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线平分两条切线的夹角. 几何表达式举例: ∵ PA 、PB 是切线∴ PA=PB ∵PO 过圆心∴∠APO =∠BPO 8.弦切角定理及其推论 : 几何表达式举例: A B C D O A B C D E O 平分优弧 过圆心 垂直于弦平分弦平分劣弧 ∴ AC BC AD BD == AE=BE A B C D E F O A B C O P A B O A B C D E A B C O A B C D ∵∴ ∥=AB CD AC BD A B C O 是半径垂直是切线

九年级数学证明圆的切线专题

九年级数学证明圆的 切线专题 证明一条直线是圆的切线;主要有两个思路: 1是证这条直线到圆心的距离等于这个圆的半径: 2;是利用切线的判判定定理;证明这条直线经过一条半径的外端;并且和这条半径垂直. 1不常用;一般常用2. 1. 如图;在Rt ABC ?中; 90C ?∠=;点D 是AC 的中点;且90A CDB ?∠+∠=;过点,A D 作O ;使圆心O 在AB 上;O 与AB 交于点E . (1)求证:直线BD 与O 相切; (2)若:4:5,6AD AE BC ==;求O 的直径. 2.如图;在Rt △ABC 中;∠C=90o;O 、D 分别为AB 、BC 上的点;经过A 、D 两点的⊙O 分别交AB 、AC 于点E 、F ;且D 为EF 的中点。 (1)(4分)求证:BC 与⊙O 相切 (2)(4分)当;∠CAD=30o时;求AD 的长。 3. 如图;已知CD 是ΘO 的直径;AC ⊥CD ;垂足为C ;弦DE ∥OA ;直线AE 、CD 相交于点B . (1)求证:直线AB 是OO 的切线; (2)如果AC =1;BE =2;求tan ∠OAC 的值.

4.如图;在△ABC中;AB=AC;以AB为直径作⊙O;交BC于点D;过点D作DE⊥AC;垂足为E。(1)求证:DE是⊙O的切线; (2)如果BC=8;AB=5;求CE的长。 5.如图;在△ABC中;∠C=90°;∠ACB的平分线交AB于点O;以O为圆心的⊙O与AC相切于点D. (1)求证:⊙O与BC相切; (2)当AC=3;BC=6时;求⊙O的半径 6.如图;AB是⊙O的直径;AM;BN分别切⊙O于点A;B;CD交AM;BN于点D;C;DO平分∠A DC. (1)求证:CD是⊙O的切线; (2)若AD=4;BC=9;求⊙O的半径R.

中考复习专题——圆切线证明

中考复习专题--------圆的切线的判定与性质 知识考点: 1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。

2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。 精典例题: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切.

例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线 例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP. 求证:PC是⊙O的切线. 例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F. 求证:CE与△CFG的外接圆相切.

二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA 是⊙O的半径就行了,简称:“作垂直;证半径” 例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点. 求证:AC与⊙D相切. 例8 已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900. 求证:CD是⊙O的切线. [习题练习] 例1如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD. 例2已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC?交于点E,求证:△DEC

初中数学:圆的切线的证明

中国最大的教育门户网站 E 度网https://www.360docs.net/doc/4d11601780.html, 圆的切线的证明 一、“见切点,连半径”――证明半径与直线垂直 例1.A B 是O 的直径,AB AC ⊥,B C 交⊙O 于P Q ,是A C 的中点.求证:QP 是⊙O 的切线. 分析:本例中,要证明“QP 是⊙O 的切线”,因为P 在⊙O 上,如果结论成立,则点P 肯定是切点,所以只要连接O P ,证明OP PQ ⊥即可. 证明:连接O P ,P A , A B 是⊙O 的直径,90APB ∠=?∴. 在R t A P C △中,Q 是A C 的中点, PQ AQ =∴,QAP QPA ∠=∠∴. 又O P O A =,OAP QPA ∠=∠∴,OAQ QPO ∠=∠∴. A B A C ⊥ ,OP PQ ⊥∴.QP ∴是⊙O 的切线. 二、“过圆心,作垂线”――证明垂线段等于半径 例2.直角梯形A B C D 中,以腰C D 为直径的⊙1O 恰与另一腰A B 相切,求证:以腰A B 为直径的⊙2O 也与腰C D 相切. 分析:要证明以腰A B 为直径的⊙2O 与腰C D 相切,因为⊙2O 的半径是A B 的一半, 由切线的定义可知,C D 如果与⊙2O 相切,则2O 到C D 的距离应等于半径 12 A B ,所以过2 O 作2O E C D ⊥,证明212 O E A B = 即可. 证明:过1O 作12O O AB ⊥,则22O A O B =, 作21DF O O ⊥于F ,作2O E C D ⊥于E , A B 与⊙1O 相切,121O O O D =∴. 211211Rt Rt O O E DO F O O E DO F ∠=∠ ,∴△≌△, 2O E DF =∴. A B C Q P O A B C D E F 1O 2O

(完整版)九年级数学圆的知识点总结大全

第四章:《圆》 一、知识回顾 圆的周长:C=2πr或C=πd、圆的面积:S=πr2 圆环面积计算方法:S=πR2-πr2或S=π(R2-r2)(R是大圆半径,r是小圆半径) 二、知识要点 一、圆的概念 集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 固定的端点O为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线; 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r>?无交点; A

2、直线与圆相切 ? d r = ? 有一个交点; 3、直线与圆相交 ? d r < ? 有两个交点; 四、圆与圆的位置关系 外离(图1)? 无交点 ? d R r >+; 外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; 图4 图5

证明圆的切线经典例题

证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线l 过⊙O 上某一点A ,证明l 是⊙O 的切线,只需连OA ,证明OA ⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,交AC 于E ,B 为切点的切线交OD 延长线于F. 求证:EF 与⊙O 相切. 证明:连结OE ,AD. ∵AB 是⊙O 的直径, ∴AD ⊥BC. 又∵AB=BC , ∴∠3=∠4. ∴BD=DE ,∠1=∠2. 又∵OB=OE ,OF=OF , ∴△BOF ≌△EOF (SAS ). ∴∠OBF=∠OEF. ∵BF 与⊙O 相切, ∴OB ⊥BF. ∴∠OEF=900. ∴EF 与⊙O 相切. 说明:此题是通过证明三角形全等证明垂直的 ⌒ ⌒

例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD. 求证:PA 与⊙O 相切. 证明一:作直径AE ,连结EC. ∵AD 是∠BAC 的平分线, ∴∠DAB=∠DAC. ∵PA=PD , ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB , ∴∠1=∠B. 又∵∠B=∠E , ∴∠1=∠E ∵AE 是⊙O 的直径, ∴AC ⊥EC ,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA ⊥PA. ∴PA 与⊙O 相切. 证明二:延长AD 交⊙O 于E ,连结OA ,OE. ∵AD 是∠BAC 的平分线, ∴BE=CE , ∴OE ⊥BC. ∴∠E+∠BDE=900. ∵OA=OE , ∴∠E=∠1. ∵PA=PD , ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ⌒ ⌒

相关文档
最新文档