九年级数学圆的切线的判定性质和画法

合集下载

初中数学切线性质和切线长知识点归纳

初中数学切线性质和切线长知识点归纳

初中数学切线性质和切线长知识点归纳切线性质和切线长切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线切线的性质定理圆的切线垂直于经过切点的半径推论1 经过圆心且垂直于切线的直线必经过切点推论2 经过切点且垂直于切线的直线必经过圆心切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角同学们,看了这些学问点的介绍,很熟识了吧,要准时复习哦。

这样才能记得更好的。

中考物理学问归纳:压强和浮力1.压力:垂直作用在物体外表上的力叫压力。

2.压强:物体单位面积上受到的压力叫压强。

3.压强公式:P=F/S ,式中p单位是:帕斯卡,简称:帕,1帕=1牛/米2,压力F单位是:牛;受力面积S单位是:米24.增大压强方法 :(1)S不变,F↑;(2)F不变,S↓ (3) 同时把F↑,S↓。

而减小压强方法则相反。

5.液体压强产生的缘由:是由于液体受到重力。

6.液体压强特点:(1)液体对容器底和壁都有压强,(2)液体内部向各个方向都有压强;(3)液体的压强随深度增加而增大,在同一深度,液体向各个方向的压强相等;(4)不同液体的压强还跟密度有关系。

7.液体压强计算公式:,〔ρ是液体密度,单位是千克/米3;g=9.8牛/千克;h是深度,指液体自由液面到液体内部某点的竖直距离,单位是米。

〕8.依据液体压强公式:可得,液体的压强与液体的密度和深度有关,而与液体的体积和质量无关。

9.证明大气压强存在的试验是马德堡半球试验。

10.大气压强产生的缘由:空气受到重力作用而产生的,大气压强随高度的增大而减小。

11.测定大气压强值的试验是:托里拆利试验。

12.测定大气压的仪器是:气压计,常见气压计有水银气压计和无液气压计〔金属盒气压计〕。

13.标准大气压:把等于760毫米水银柱的大气压。

1标准大气压=760毫米汞柱=1.013×105帕=10.34米水柱。

14.沸点与气压关系:一切液体的沸点,都是气压减小时降低,气压增大时上升。

数学九年级上册专题24.7 圆的切线的判定与性质-重难点题型(人教版)(学生版)

数学九年级上册专题24.7 圆的切线的判定与性质-重难点题型(人教版)(学生版)

专题24.7 圆的切线的判定与性质--重难点题型【人教版】【题型1 切线判定(连半径,证垂直)】【例1】(2021•新兴县一模)如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,连接BD,∠DAB=∠B=30°,求证:直线BD是⊙O的切线.【变式1-1】(2020秋•思明区校级期末)如图,AB是圆O的一条弦,点E是劣弧AB的中点,直线CD经过点E且与直线AB平行,证明:直线CD是圆O的切线.【变式1-2】(2020秋•福州期末)如图,AB是⊙O的直径,C为半圆O上一点,直线l经过点C,过点A 作AD⊥l于点D,连接AC,当AC平分∠DAB时,求证:直线l是⊙O的切线.【变式1-3】(2021•芜湖模拟)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD =∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线.【题型2 切线判定(作垂直,证半径)】【例2】(2020秋•原州区期末)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.【变式2-1】(2020秋•北京期末)如图,以点O为圆心作圆,所得的圆与直线a相切的是()A.以OA为半径的圆B.以OB为半径的圆C.以OC为半径的圆D.以OD为半径的圆【变式2-2】(2020秋•曲靖期末)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC边于点D、F.过点D作DE⊥CF于点E.求证:DE是⊙O的切线;【变式2-3】(2021•南平模拟)如图,在△ABC中,D为BC边上的一点,过A,C,D三点的圆O交AB于点E,已知,BD=AD,∠BAD=2∠DAC=36°.(1)求证:AD是圆O的直径;(2)过点E作EF⊥BC于点F,求证:EF与圆O相切.【题型3 切线判定(定义法)】【例3】(2020秋•北塘区期中)给出下列说法:(1)与圆只有一个公共点的直线是圆的切线;(2)与圆心的距离等于半径的直线是圆的切线;(3)垂直于圆的半径的直线是圆的切线;(4)过圆的半径的外端的直线是圆的切线.其中正确的说法个数为()A.1B.2C.3D.4【变式3-1】(2020秋•锡山区校级月考)下列直线是圆的切线的是()A.与圆有公共点的直线B.到圆心的距离等于半径的直线C.到圆心的距离大于半径的直线D.到圆心的距离小于半径的直线【变式3-2】给出下列说法:①与圆只有一个公共点的直线是圆的切线;②与圆心的距离等于半径的直线是圆的切线;③垂直于圆的半径的直线是圆的切线;④过圆的半径的外端的直线是圆的切线;⑤经过圆心和切点的直线垂直于这条切线.其中正确的是.(填序号)【变式3-3】(2020•龙川县二模)如图,P A和⊙O相切于A点,PB和⊙O有公共点B,且P A=PB,求证:PB是⊙O的切线.【题型4 切线的性质(求长度问题)】【例4】(2020秋•衢江区期末)如图,直线AB与⊙O相切于点C,OA交⊙O于点D,连结CD.已知OD =CD=5,求AC的长.【变式4-1】(2021•温州三模)在等腰三角形ABC中,AC=BC=2,D是AB边上一点,以AD为直径的⊙O恰好与BC相切于点C,则BD的长为()A .1B .2√33C .2D .2√55【变式4-2】(2021•湖州一模)如图,以△ABC 的边AB 为直径作⊙O ,交BC 于点D ,过点D 的切线DE ⊥AC 于点E .(1)求证:AB =AC ;(2)若AB =10,BD =8,求DE 的长.【变式4-3】(2021•陕西模拟)如图,AB 是⊙O 的直径,C 是⊙O 上的一点,连接BC ,F 为BC 的中点,连接FO 并延长交⊙O 于点D ,过点D 的切线与CA 的延长线交于点E .(1)求证:四边形CEDF 是矩形;(2)若AC =OA =2,求AE 的长.【题型5 切线的性质(求半径问题)】【例5】(2020秋•市中区期末)如图,BE 是⊙O 的直径,点A 和点D 是⊙O 上的两点,过点A 作⊙O 的切线交BE 延长线于点C .(1)若∠ADE =28°,求∠C 的度数;(2)若AC =2√3,CE =2,求⊙O 半径的长.【变式5-1】(2020秋•沂水县期末)如图,已知⊙O 上三点A ,B ,C ,∠ABC =15°,切线P A 交OC 延长线于点P ,AP =√3,则⊙O 的半径为( )A .√33B .√32C .√3D .3【变式5-2】(2021•河南模拟)如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,作OF ⊥AD 于点E ,交CD 于点F .(1)在不增加辅助线的情况下,请直接写出图中一对相等的角,并证明;(2)若BD =8,EF =2,求⊙O 的半径.【变式5-3】(2021•贵池区模拟)已知:在⊙O中,AB为直径,P为射线AB上一点,过点P作⊙O的切线,切点为点C,D为弧AC上一点,连接BD、BC、DC.(1)如图1,求证:∠D=∠PCB;(2)如图2,若四边形CDBP为平行四边形,BC=5,求⊙O的半径.【题型6 切线的性质(求角度问题)】【例6】(2021•红桥区三模)在△ABC中,以AB为直径的⊙O分别与边AC,BC交于点D,E,且DE=BE.(Ⅰ)如图①,若∠CAB=38°,求∠C的大小;(Ⅱ)如图②,过点E作⊙O的切线,交AB的延长线于点F,交AC于点G,若∠CAB=52°,求∠BEF 的大小.【变式6-1】(2021•三明模拟)从⊙O外一点A作⊙O的切线AB,AC,切点分别为B,C,D是⊙O上不同于B,C的点,∠BAC=60°,∠BDC的度数是()A.120°B.60°C.90°或120°D.60°或120°【变式6-2】(2021•北辰区二模)如图,在⊙O中,直径AB与弦CD相交于点E,∠ABC=58°.(Ⅰ)如图①,若∠AEC=85°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线DF,与AB的延长线相交于点F,求∠F的大小.【变式6-3】(2021•天津)已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.(Ⅰ)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;(Ⅱ)如图②,若CD∥BA,连接AD,过点D作⊙O的切线,与OC的延长线交于点E,求∠E的大小.。

初中数学知识归纳圆的切线与切线定理计算方法

初中数学知识归纳圆的切线与切线定理计算方法

初中数学知识归纳圆的切线与切线定理计算方法初中数学知识归纳:圆的切线与切线定理计算方法在初中数学中,圆是一个重要的几何概念。

掌握圆的性质和相关定理,对于解决与圆相关的数学问题至关重要。

本文将对初中数学中与圆的切线及切线定理相关的计算方法进行归纳和总结。

一、切线的定义与性质在圆上,如果一条直线与圆相交,且与圆的交点只有一个,那么这条直线被称为圆的切线。

切线具有以下性质:1. 切线与半径的关系:切线与连接切点和圆心的半径垂直,即切线与半径的夹角是直角。

2. 切线的长度:从切点到切线上的圆心的距离是切线的长度。

3. 切线的唯一性:圆的外切线和内切线只有一条。

二、切线定理的计算方法1. 切线与切线的关系:圆外一点到圆的切线与该点连线的夹角等于切线与半径的夹角。

2. 切线与弦的关系:切线与一条弦的夹角等于弦所对的圆心角的一半。

3. 弦的长度计算:如果两条切线相交于圆的外点,那么两条切线的积等于外切点到两个切点的弦的积。

即切线外点到切点的线段的长度分别为a和b,那么a*b等于两条切线的积。

4. 弦切角公式:圆上的两条弦所对的圆心角之和等于两条弦所对的弧所对的圆心角的一半。

5. 切线长度计算:给定圆的半径R和切线与半径的夹角α,可以使用三角函数来计算切线的长度。

切线的长度等于R乘以正切函数的值,即L = R * tan(α)。

三、实例解析下面通过几个实例来应用切线定理的计算方法:示例1:已知圆的半径R为5cm,求切线与半径的夹角α为30°时的切线长度L。

解答:根据切线长度的计算公式L = R * tan(α),代入已知数据,可得L =5 * tan(30°) = 5 * 1/√3 ≈ 2.88cm。

示例2:圆的直径是10cm,切线与半径的夹角α为45°,求切线的长度L。

解答:由于圆的直径等于半径的两倍,所以半径R = 直径/2 = 10/2 = 5cm。

根据切线长度的计算公式L = R * tan(α),代入已知数据,可得L = 5 * tan(45°) = 5 * 1 ≈ 5cm。

初中数学 什么是圆的切线

初中数学  什么是圆的切线

初中数学什么是圆的切线
圆的切线是指与圆的边界相切且只有一个交点的直线。

下面我将详细介绍圆的切线的概念和性质:
1. 圆的切线定义:
圆的切线是指与圆的边界相切且只有一个交点的直线。

这个切点是圆上的点,切线与圆的边界只有这一个交点。

2. 圆的切线的性质:
-圆的切线与半径垂直,即切线与半径的夹角为90°。

-从圆的外部引一条直线与圆相交,如果直线与圆的边界相切,那么这条直线就是圆的切线。

-圆的切线长度等于从切点到圆心的半径长度。

-圆的切线与切点到圆心的连线共线。

-圆的切线是与圆心连线的直线中最短的一条。

3. 圆的切线的应用:
圆的切线在几何学和物理学中有广泛的应用。

例如,在光学中,圆的切线可以用于描述光线与曲面的相交关系;在工程学中,圆的切线可以用于定位和布局。

另外,圆的切线的性质也可以用于解决一些几何问题,如构造、证明等。

需要注意的是,圆的切线是一条直线,它与圆的边界相切且只有一个交点。

以上是关于圆的切线的概念和性质的介绍。

希望以上内容能够满足你对圆的切线的了解。

圆的切线性质与判定

圆的切线性质与判定

圆的切线性质与判定圆是平面上具有特殊性质的图形,它有着多种有趣的性质与判定方法。

其中,圆的切线性质是一项重要的研究内容,具有广泛的应用价值。

本文将从圆的切线的定义开始,逐步介绍圆的切线的性质与判定方法。

一、圆的切线定义切线是一条直线,与圆的某一点相切,且与圆在该点处的切点处于圆的内部。

切点即为切线与圆的交点,切线与半径的夹角为直角。

圆的切线是圆与切点处切线共线的直线。

二、圆的切线性质1. 切线与半径的关系在圆上,以切点为顶点的切线与半径垂直。

2. 切线长度圆的切线长度等于切点到圆心的距离的两倍。

3. 切线的唯一性一个圆上的切线最多只能有两条,并且与该圆在切点处共线。

4. 外切线与内切线若一条直线与圆有且仅有一个公共切点,则称该直线为圆的外切线;若一条直线与圆有两个公共切点,则称该直线为圆的内切线。

5. 切线相交性质若两条切线与圆的切点不同,则这两条切线相交于圆的外部;若两条切线与圆的切点相同,则这两条切线相交于圆的内部。

三、圆的切线判定方法1. 分析法根据切线的定义,通过分析问题中的圆与切点的位置关系,可以判断出切线的存在与否。

2. 考察斜率法假设切点的坐标为(x1, y1),圆心的坐标为(a, b),可以根据斜率公式计算切线的斜率,若斜率存在且符合条件,则该直线为圆的切线。

3. 使用代数方程法对于已知的圆方程和直线方程,可以通过联立方程求解的方式来得到切线方程。

通过判断解的情况,可以判定直线与圆的关系。

四、应用举例1. 圆的切线应用于建筑设计中,可以帮助确定柱体或钟表的刚性支撑结构。

2. 在地理测量学中,圆的切线可以用于研究山脉的坡度和高度。

3. 圆的切线应用于计算机图形学中,用于控制曲线与圆弧的形状和运动轨迹。

总结:圆的切线性质与判定是一个重要且有趣的数学问题,它具有广泛的应用领域。

通过切线的定义和性质,我们可以了解切线在圆上的位置关系和特点。

掌握圆的切线判定方法,可以应用于实际问题的求解和分析中。

九年级数学圆切线知识点

九年级数学圆切线知识点

九年级数学圆切线知识点在九年级数学学习中,圆切线是一个重要的知识点。

本文将介绍圆的切线的定义、性质以及相关的定理。

一、圆切线的定义和性质圆是一个平面上的闭合曲线,它的每个点到圆心的距离都相等。

圆周上的任意一条线段称为弦,连接圆周上两个点的最短线段称为弦。

如果在圆上有一条线段,且这条线段的每一个端点都在圆上,那么这条线段就是圆的切线。

根据圆的定义和性质,圆的切线有一些重要的性质:1. 切线与半径垂直:圆的切线与半径的形成的角是直角。

2. 唯一性:一个圆上的任意点只有唯一一条切线与之相切。

3. 切线长度:当切线与半径形成的角不等于90度时,切线与圆心的距离是半径的长度。

4. 相交性质:如果两个圆相交,那么它们的切线会相交于相交点。

二、圆切线的定理除了基本的定义和性质外,还有一些与圆切线相关的定理。

下面将介绍一些常见的定理:1. 切线定理:如果一条直线与一个圆相切,那么这条直线与半径的形成的角是直角。

2. 弦切定理:如果一条弦与一个切线相交,那么切线与弦间的角等于弦上对应的圆心角。

3. 切线长定理:如果两条切线(包括弦)与一个圆相交,那么这两条切线的长度的乘积等于这两条切线分别与圆心连线长度的平方。

4. 切线角定理:如果两条切线(包括弦)与一个圆相交,那么这两条切线所对应的圆心角相等。

三、习题练习现在我们来做一些练习题,以加深对圆切线知识点的理解。

1. 在圆 O 上,切线 AB,C 是正切点。

若弧 AC 的度数是120度,求角 BAC 的度数。

解答:由弧与切线的性质可得,角 BAC 的度数等于弧 AC 的度数的一半,即 120/2 = 60 度。

2. 已知圆心角 ADC 的度数是135度,弦 AC 与切线 AB 相交于点 E,求角 BDE 的度数。

解答:根据弦切定理可知,角 BDE 等于弦 AC 对应的圆心角ADC 的度数减去切线 AB 与弦 AC 间夹角的度数,即 135 - 90 = 45 度。

通过以上的练习题,我们可以灵活运用圆切线的性质和定理来解决问题。

圆的切线:切线的定义、性质和求解方法

圆的切线:切线的定义、性质和求解方法

圆的切线:切线的定义、性质和求解方法切线是与圆相切于一点且只与圆的该点相交一次的直线。

切线与半径垂直,也就是与半径所在的直径形成直角。

切线的定义给定一个圆,如果通过圆上的一点作两条直线,其中一条与半径垂直且只与该点相交一次,那么称这条直线为这个圆的一条切线。

切线的性质1. 切线与圆相切于一点,且只与圆的该点相交一次。

2. 切线与半径垂直,即与半径所在的直径形成直角。

3. 以切点为端点的切线被称为切线段。

4. 圆心到切点的线段被称为切线的斜率。

切线的求解方法求解圆的切线可以根据以下步骤进行:1. 给定一个圆和切点P,连接圆心O与切点P,得到半径OP。

2. 利用切线性质,使切线与半径OP垂直,得到直角三角形。

3. 根据已知条件,计算切线的长度。

切线的长度可以通过利用勾股定理或几何构造法进行计算。

勾股定理法求切线长度1. 已知圆的半径r和切点与圆心的连线OP的长度d。

2. 根据勾股定理,有切线长度s的平方等于d的平方减去圆的半径r的平方,即s^2 = d^2 - r^2。

3. 取根号可以得到切线的长度s。

几何构造法求切线长度1. 已知圆的半径r和切点与圆心的连线OP的长度d。

2. 以切点为圆心,作一条半径为r的圆。

3. 连接圆心与新圆上与切点P相对应的点Q,得到直角三角形OPQ。

4. 根据直角三角形OPQ中的三边关系,可以计算出切线的长度s。

这是圆的切线的定义、性质和求解方法的简要介绍。

掌握这些基本概念和求解方法,可以帮助我们更好地理解和应用切线在几何学中的重要性。

九年级数学圆的切线的知识点

九年级数学圆的切线的知识点

九年级数学圆的切线的知识点数学中的圆是一个常见的几何图形,它有许多有趣的性质,其中之一就是切线。

切线是一个与圆相切于一点且与圆没有其它的交点的直线。

在这篇文章中,我们将探讨九年级数学课程中关于圆的切线的知识点。

1. 切线定义及性质切线是一个特殊的直线,它与圆只有一个交点,且与圆在该点的切线相切。

切线的性质有以下几点:(1) 切线与半径垂直:切线与从切点到圆心的半径垂直相交。

(2) 弦切角相等:切线和过切点的弦所夹的角相等。

(3) 切线长度相等:从圆外的任意一点引切线,得到的切线长度都相等。

2. 切线的判定方法在几何中,判断一条直线是否为圆的切线,有以下两种判定方法:(1) 切线判定法一:若直线与圆只有一个交点,并且该交点到圆心的距离等于圆的半径,则该直线是圆的切线。

(2) 切线判定法二:若直线与圆相交,且与圆的切点处平分被切角,那么该直线也是圆的切线。

3. 切线的性质在解题中的应用切线的性质经常在解题过程中被使用,下面介绍几个常见的应用情况:(1) 切线的长度:我们可以利用切线的性质来求解切线的长度。

根据切线与半径垂直的性质,我们可以使用勾股定理或者勾股定理的变形来求解切线的长度。

(2) 弦的长度:通过切线和弦的切角相等的性质,我们可以利用已知的切线长度和弦的长度来计算未知的切线或者弦的长度。

(3) 切线的方程:切线与圆的关系可以通过方程来表示。

我们可以利用切线判定法一中的条件,得到切线方程的一般形式。

4. 实际生活中的切线应用切线在实际生活中有许多应用,下面介绍几个例子:(1) 轮胎的设计:车辆的轮胎通常是圆形的,轮胎的切线对于保证行驶的稳定性非常重要。

(2) 光学反射:光线在两种介质之间传播时,若入射角等于反射角,则光线与界面的交点所在的直线即为切线。

(3) 经济决策:在经济学中,曲线图表上的切线可以表示某一点的边际效应,帮助决策者做出合理的判断。

总结起来,九年级数学课程中关于圆的切线的知识点包括切线的定义及性质,切线的判定方法,切线性质的应用,以及实际生活中的切线应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.2圆的切线的判定、性质和画法(1)
一、教学目的要求:
1.知识目的:
(1)掌握切线的判定定理.
(2)应用切线的判定定理证明直线是圆的切线,初步掌握圆的切线证明问题中辅助线的添加方法.
2.能力目的:
(1)培养学生动手操作能力.
(2)培养学生观察、探索、分析、总结、推理论证等能力.
3.情感目的:
通过直观教具的演示和指导学生动手操作的过程,激发学生学习几何的积极性.
二、教学重点、难点
1.重点:切线的判定定理.
2.难点:圆的切线证明问题中,辅助线的添加方法.
三、教学过程:
(一)复习引入
回答下列问题:(投影显示)
1.直线和圆有哪三种位置关系?这三种位置关系是如何定义?如何判定的?
2.什么叫做圆的切线?根据这个定义我们可以怎样来判定一条直线是不是一个圆的切线?
(要求学生举手回答,教师用教具演示)
我们可以用切线的定义来判定一条直线是不是一个圆的切线,但有时使用起来很不方便,为此,我们还要学习切线的判定定理.
(二)新课讲解
1.切线判定定理的导出
上节课讲了“圆心到一条直线的距离等于该圆的半径,则该直线就是一条切线”.下面请同学们按我口述的上不骤作图(一同学到黑板上作):
先画⊙O,在⊙O上任取一点A,边结OA,过A点作⊙O的切线L.
请学生回顾作图过程,切线L是如何作出来的?它满足哪些条件?
引导学生总结出:①经过关径外端,②垂直于这条半径.
如果一条直线满足以上两个条件,它就是一条切线,这就是本节要讲的“切线的判定定理”.(板书定理)
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.
请同学们思考一下,该判定定理的两个条件缺少一个可以吗?
下图中L是不是圆的切线?(用教具演示下面两个反例)
图(1)中直线L经过半径外端,但不与半径垂直.
图(2)中直线L与半径垂直,但不经过径外端.
从以上两个反例可看出,只满足其中一个条件的直线不是圆的切线.
接着提出问题:若把定理中的“半径”改为“直径”可以吗?答案是肯定的.
然后引导学生分析,切线的判定定理是由前一节所讲的“圆心到直线的距离等于半径时直线与圆相切”直接得到的,只是为了便于应用才把它改写成“经过半径外端并且垂直于这条半径的直线是圆的切线”这种形式,所以定理不再需要另加证明.
提问:判定一条直线是圆的切线,我们有多少种方法呢?
经过学生讨论后,师生小结以下三种方法(板书):
①与圆有唯一公共点的直线是圆的切线.
②与圆心的距离等于半径的直线是圆的切线.
③经过半径外端并且垂直于这条半径的直线是圆的切线.
2.应用举例
例1:已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.
已知:直线AB是⊙O的切线.
分析:已知直线AB和⊙O有一个公共点C,
要证AB是⊙O的切线,只需连结这个公共点
C和圆心O,得到半径OC,再证这条半径和直
线AB垂直即可.
证明:连结OC
∵OA=OB,CA=CB
∴OC是等腰三角形OAB底边AB上的中线∴AB⊥OC
直线AB经过半径OC的外端C,并且垂直于半径OC,所以AB是⊙O的切线.
例2:已知:⊙O的直径长6cm,OA=OB=5cm,AB=8cm.
求证:AB与⊙O相切.
分析:题目中不明确直线和圆有公共点,故

明相切,宣用方法2,因此只要证点O到直线AB
的距离等于半径即可,从而想到作辅助线OC⊥
AB于C.
证明:过O点作OC⊥AB于C
∵OA=OB=5cm,AB=8cm
∴AC=BC=4cm
∴OC=OA2-AC2 =52-42 =3cm.
又∵⊙O的直径长6cm
∴圆心O到直线AB的距离OC等于半径等于3cm.
∴AB与⊙O相切.
让学生根据以上例题总结一下,证明直线与圆相切时,作辅助线
的一般规律,以及证明方法的一般规律.
经学生讨论后得出:
①已明确直线和圆有公共点,辅助线的作法是连结圆心和公共点,即得“半径”,再证“直线与半径垂直”.
②不明确直线和圆有公共点,辅助线的作法是过圆心作直线的垂线,再证“圆心到直线的距离等于半径”.
注意:当题目中不明确直线和圆有公共点时,不能将圆上任意一点当作公共点而连结出半径.
3.课堂练习:
4.课堂小结:
5.布置作业:。

相关文档
最新文档