九年级数学证明圆的切线专题
九年级数学圆的切线

求证:直线AB是⊙O的切线 B
问:直线AB与圆有没有明确的公共点
C
O
A
辅助线:连接OB
只需再证:AB ⊥ OB
例2.如图A是⊙O外的一点,AO的延长线交
⊙O于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°,
求证:直线AB是⊙O的切线 B
根据作图直线l是切线满足两个条件 1.经过半径的外端
O
D
l
几何语言
OD是⊙O的半径
OD⊥l于D
2.与半径垂直
切线的判定定理
经过半径的外端并且垂直于这条半径的直 线是圆的切线
l是⊙O的切线
例1、已知⊙O圆心O到直线l的距离d等于⊙O的半径r
求证:直线l是⊙O的切线
问:圆与直线l有没有明确共同点
O.
辅助线: OA ⊥l
只需证OA是⊙O的半径
A
l
例1、已知⊙O圆心O到直线l的距离d等于⊙O的半径r 求证:直线l是⊙O的切线
证明:过点O作OA ⊥l,A为垂足。
O.
OA=d=r
点A在⊙O上
A
l
OA是⊙O的半径 l是⊙O的切线
定理:当圆心到直线的距离等于圆的半径时,该直 线是这个圆的切线。
一 判断题
于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°, 求证:直线AB是⊙O的切线
B
证明:连接OBCO NhomakorabeaA
∠C=30° ° AB=BC
∠BOA=60 ∠A= ∠C=30 °
∠OBA=90 ° OB是半径
直线AB是⊙O的切线
练习二
1如图,AB是⊙O的直径,AT=AB,∠ABT=45º。
专题复习与圆的切线有关的证明

是圆的切线
5、常用的添加辅助线的方法
(1)直线与圆的公共点已知时,作出过公共点的 半径,再证半径垂直于该直线。 有切点,连半径,证垂直 (2)直线与圆的公共点不确定时,过圆心作直线 的垂线段,再证明这条垂线段为圆的半径 无切点,作垂直,证半径
切线的性质
如图,⊙O的切线PC交直径AB的延长线于点P,C为切点, 若∠P=30°,⊙O的半径为1,则PB的长为_______
无交点,作垂直,证半径
例:如图 ,已知:O 为 BAC 角平分线上一点,
OD AB 于 D ,以 O 为圆心, 为半径作圆。
求证:AC 是⊙ O 的切线。
E
数学解答题P7 数学解答题P9
P9《数学解答题》
切线的性质
P9《数学解答题》
切线的性质
P9《数学解答题》
切线的性质
切线的性质
垂直 于经过切点的半径. 定理:圆的切线________ 技巧:圆心与切点的连线是常用的辅助线.
垂直 于这条半径的直线是圆 定理: 经过半径的外端并且________ 的切线. 证圆的切线技巧: (1)如果直线与圆有交点,连接圆心与交点的半径,证明直 线与该半径垂直,即“有交点,作半径,证垂直”.
(2)如果直线与圆没有明确的交点, 则过圆心作该直线的垂 线段,证明垂线段等于半径,即“无交点,作垂直,证半径”.
切线的判定
作业:《数学解答题》 P7-10第一问
专题复习 与圆的切线有关的证明
1、圆的切线性质定理
圆的切线垂直于经过切点的半径.
2、辅助线: 连接圆心与切点
连半径,得垂直
半径与切线垂直
3、切线判定
定理:经过半径的外端并且垂直于这条半径的 直线是圆的切线。
专题 证明圆的切线的常用方法(六大题型)(解析版)

(苏科版)九年级上册数学《第2章对称图形---圆》专题证明圆的切线的常用的方法★★★方法指引:证明一条直线是圆的切线的方法及辅助线作法:1、有交点:连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称:“有交点,连半径,证垂直”.2、无交点:作垂直、证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称:“无交点,作垂直,证半径”.类型一:有公共点:连半径,证垂直●●【典例一】(2022•雁塔区校级模拟)如图,AB 是⊙O 的直径,点D 在直径AB 上(D 与A ,B 不重合),CD ⊥AB ,且CD =AB ,连接CB ,与⊙O 交于点F ,在CD 上取一点E ,使得EF =EC .求证:EF 是⊙O 的切线;【分析】连接OF ,根据垂直定义可得∠CDB =90°,从而可得∠B +∠C =90°,然后利用等腰三角形的性质可得∠B =∠OFB ,∠C =∠EFC ,从而可得∠OFB +∠EFC =90°,最后利用平角定义可得∠OFE =90°,即可解答;【解答】证明:连接OF ,∵CD ⊥AB ,∴∠CDB =90°,∴∠B +∠C =90°,∵OB =OF ,EF =EC ,∴∠B =∠OFB ,∠C =∠EFC,∴∠OFB+∠EFC=90°,∴∠OFE=180°﹣(∠OFB+∠EFC)=90°,∵OF是⊙O的半径,∴EF是⊙O的切线:【点评】本题考查了切线的判定与性质,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式1-1】(2022•澄城县三模)如图,AB是△ABC外接圆⊙O的直径,过⊙O外一点D作BC的平行线分别交AC,AB于点G,E,交⊙O于点F,连接DB,CF,∠BAC=∠D.求证:BD是⊙O的切线;【分析】证明∠ABD=90°,根据切线的判定可得BD与⊙O相切;【解答】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DG∥BC,∴∠AGE=∠ACB=90°,∴∠A+∠AEG=90°,又∵∠A=∠D,∠AEG=∠DEB,∴∠D+∠DEB=90°,∴∠DBE=90°,∴AB⊥BD,∵AB为直径,∴BD与⊙O相切;【点评】此题考查了切线的判定,垂径定理,解答本题需要我们熟练掌握切线的判定.【变式1-2】如图,AB是⊙O的直径,点C是圆上一点,CD⊥AB于点D,点E是圆外一点,CA平分∠ECD.求证:CE是⊙O的切线.【分析】利用切线的判定定理证明∠OCE=90°即可得出结论.【解答】证明:∵CA平分∠ECD,∴∠ECA=∠DCA.∵CD⊥AB,∴∠CAD+∠DCA=90°,∴∠ECA+∠CAD=90°.∵OA=OC,∴∠CAD=∠ACO,∴∠ECA+∠ACO=90°,即∠OCE=90°,∴OC⊥EC,∵OC是⊙O的半径,∴CE是⊙O的切线.【点评】本题主要考查了圆的切线的判定,熟练应用圆的切线的判定定理是解题的关键.【变式1-3】(2022秋•阳谷县校级期末)如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线.(2)求证:FD=FG.【分析】(1)欲证明MN是半圆的切线,只需证得∠MAB=90°,即MA⊥AB即可;(2)根据圆周角定理推论得到∠ACB=90°,由DE⊥AB得到∠DEB=90°,则∠1+∠5=90°,∠3+∠4=90°,又D是弧AC的中点,即弧CD=弧DA,得到∠3=∠5,于是∠1=∠4,利用对顶角相等易得∠1=∠2,则有FD=FG.【解答】证明:(1)如图,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°.又∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即∠MAB=90°,∴MA⊥AB.∴MN是半圆的切线.(2)∵AB为直径,∴∠ACB=90°,而DE⊥AB,∴∠DEB=90°,∴∠1+∠5=90°,∠3+∠4=90°,∵D是弧AC的中点,即弧CD=弧DA,∴∠3=∠5,∴∠1=∠4,而∠2=∠4,∴∠1=∠2,∴FD=FG.【点评】本题考查了切线的判定:经过半径的外端点,并且与半径垂直的直线是圆的切线.也考查了圆周角定理及其推论、三角形外角的性质以及等腰三角形的判定.【变式1-4】如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接OC,PB,已知PB=6,DB=8,∠EDB=∠EPB.(1)求证:PB是⊙O的切线;(2)求⊙O的半径.(3)连接BE,求BE的长.【分析】(1)由已知角相等及直角三角形的性质得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB =6,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,即为圆的半径.(3)延长PB、DE相交于点F,证明△PED≌△PEF(ASA),由全等三角形的性质得出PD=PF=10,DE =EF,求出DF的长,则可得出答案.【解答】(1)证明:∵DE⊥PE,∴∠DEO=90°,∵∠EDB=∠EPB,∠BOE=∠EDB+∠DEO,∠BOE=∠EPB+∠OBP,∴∠OBP=∠DEO=90°,∴OB⊥PB,∴PB为⊙O的切线;(2)解:在Rt△PBD中,PB=6,DB=8,根据勾股定理得:PD=10,∵PD与PB都为⊙O的切线,∴PC=PB=6,∴DC=PD﹣PC=10﹣6=4;在Rt△CDO中,设OC=r,则有OD=8﹣r,根据勾股定理得:(8﹣r)2=r2+42,解得:r=3,则圆的半径为3.(3)延长PB、DE相交于点F,∵PD与PB都为⊙O的切线,∴OP平分∠CPB,∴∠DPE=∠FPE,∵PE⊥DF,∴∠PED=∠PEF=90°,又∵PE=PE,∴△PED ≌△PEF (ASA ),∴PD =PF =10,DE =EF ,∴BF =PF ﹣PB =10﹣6=4,在Rt △DBF 中,DF==∴BE =12DF =【点评】本题考查了切线的判定和性质,勾股定理,平行线的性质,全等三角形的判定和性质,熟练掌握性质定理是解题的关键.●●【典例二】 如图,△ABC 是直角三角形,点O 是线段AC 上的一点,以点O 为圆心,OA 为半径作圆.O 交线段AB 于点D ,作线段BD 的垂直平分线EF ,EF 交线段BC 于点.(1)若∠B =30°,求∠COD 的度数;(2)证明:ED 是⊙O 的切线.【分析】(1)根据三角形的内角和定理得到∠A =60°,根据等腰三角形的性质得到∠ODA =∠A =60°,于是得到∠COD =∠ODA +∠A =120°;(2)根据线段垂直平分线的性质得到∠EDB =∠B =30°,求得ED ⊥DO ,根据切线的判定定理即可得到结论.【解答】(1)解:∵∠C =90°,∠B =30°,∴∠A =60°,∵OD =OA,∴∠COD=∠ODA+∠A=120°;(2)证明:∵EF垂直平分BD,∴∠EDB=∠B=30°,∴∠EDO=180°﹣∠EDB﹣∠ODA=180°﹣30°﹣60°=90°,∴ED⊥DO,∵OD是⊙O的半径,∴ED是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,线段垂直平分线的性质,熟练掌握切线的判定定理是解题的关键.【变式2-1】如图,AB为⊙O的直径,点C,D在⊙O上,AC=CD=DB,DE⊥AC.求证:DE是⊙O的切线.【分析】连接OD,根据已知条件得到∠BOD=13×180°=60°,求得∠EAD=∠DAB=12∠BOD=30°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,求得∠EDA=60°,根据切线的判定定理即可得到结论.【解答】证明:连接OD,∵AC=CD=DB,∴∠BOD=13×180°=60°,∵CD=DB,∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,正确的作出辅助线是解题的关键.【变式2-2】如图,AC是⊙O的直径,B在⊙O上,BD平分∠ABC交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.求证:DE是⊙O的切线.【分析】连接OD,根据圆周角定理的推论得到∠ABC=90°,根据角平分线的性质求出∠DBE=45°,根据圆周角定理得到∠DOC,根据平行线的性质求出∠ODE=90°,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AC是⊙O的直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠DBE=45°,∴∠DOC=2∠DBE=90°,∵DE∥AC,∴∠ODE=∠DOC=90°,∴DE是⊙O的切线;【点评】本题考查的是切线的判定定理、圆周角定理以及正方形的判定和性质,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.【变式2-3】(2023•鼓楼区校级模拟)如图,在⊙O中,AB为⊙O的直径,AC为弦,OC=4,∠OAC=60°.(1)求∠AOC的度数;(2)在图(1)中,P为直径BA的延长线上一点,且S△PAC=PC为⊙O的切线;【分析】(1)根据等腰三角形中有一角为60度时是等边三角形得到△ACO是等边三角形,则∠AOC=60°;(2)由等边三角形的性质以及勾股定理得出CD的长,再利用三角形外角的性质以及等腰三角形的性质得出∠PCA=30°,进而得出答案;【解答】(1)解:在△OAC中,∵OA=OC=4,∠OAC=60°,∴△OAC是等边三角形,∴∠AOC=60°;(2)证明:过点C作CD⊥AO于点D,∵△AOC是等边三角形,CD⊥AO,∴AD=DO=12OA=2,∠ACO=60°,∴CD∵S △PAC =∴12PA •CD =∴PA =4,∴PA =AC ,∴∠P =∠PCA =12∠OAC =30°,∴∠PCO =∠PCA +∠ACO =30°+60°=90°,∴OC ⊥PC ,∵OC 是⊙O 的半径,∴PC 为⊙O 的切线.【点评】本题考查了等边三角形的判定和性质,切线的判定,熟练掌握相关的性质和判定是解决问题的关键.【变式2-4】(2023•门头沟区二模)如图,AB 是⊙O 直径,弦CD ⊥AB 于E ,点F 在CD 上,且AF =DF ,连接AD ,BC .(1)求证:∠FAD =∠B(2)延长FA 到P ,使FP =FC ,作直线CP .如果AF ∥BC .求证:直线CP 为⊙O 的切线.【分析】(1)根据垂径定理、圆周角定理可得∠ACD =∠ACD =∠B ,根据等腰三角形的性质可得∠FAD=∠FDA,进而可得∠FAD=∠B;(2)根据平行线的性质以及三角形内角和定理可得∠FAB=∠FAD=∠FDA=30°,进而得到∠CFP=60°,再利用等边三角形的性质可得∠PCO=60°+30°=90°,由切线的判定方法可得结论.【解答】证明:(1)如图,连接AC,∵AB是⊙O直径,弦CD⊥AB,∴AC=AD,∴∠ACD=∠ACD=∠B,∵AF=FD,∴∠FAD=∠FDA,∴∠FAD=∠B;(2)如图,连接OC,∵AF∥BC,∴∠FAB=∠B,∴∠FAB=∠FAD=∠FDA,∵∠AED=90°,∴∠FAB=∠FAD=∠FDA=30°,∴∠CFP=60°,∵FP=FC,∴△CFP是等边三角形,∴∠PCF=60°,∵OB=OC,∴∠B=∠OCB=30°,∴∠OCD=30°,∴∠PCO=60°+30°=90°,即OC⊥PC,∵OC是半径,∴PC是⊙O的切线.【点评】本题考查切线的判定,圆周角定理、平行线的性质以及三角形内角和定理,掌握切线的判定方法,圆周角定理是正确解答的前提.●●【典例三】如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,过点C 作CE ⊥AD 交AD 的延长线于点E ,延长EC ,AB 交于点F ,∠ECD =∠BCF .求证:CE 为⊙O 的切线;【分析】连接OC ,BD ,可推出EF ∥BD ,进而可证CD =BC ,进而得出CE 为⊙O 的切线;【解答】证明:如图1,连接OC ,BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∵CE ⊥AE,∴∠E=∠ADB,∴EF∥BD,∴∠ECD=∠CDB,∠BCF=∠CBD,∵∠ECD=∠BCF,∴∠CDB=∠CBD,∴CD=BC,∴半径OC⊥EF,∴CE为⊙O的切线;【点评】本题考查了圆周角定理及其推论,圆的切线判定,解决问题的关键是作合适的辅助线.【变式3-1】(2022秋•阿瓦提县校级期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.【分析】连接OD,根据OA=OB,CD=BD,得出OD∥AC,∠ODE=∠CED,再根据DE⊥AC,即可证出OD⊥DE,从而得出答案.【解答】证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定与性质,解决本题的关键是掌握圆周角定理的推论、线段垂直平分线的性质以及等边三角形的判定,是一道常考题型.【变式3-2】已知,如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论.【分析】(1)连接CD,如图,根据圆周角定理,由BC为直径得到∠BDC=90°,然后根据等腰三角形的性质得AD=BD;(2)连接OD,先得到OD为△ABC的中位线,再根据三角形中位线性质得OD∥AC,而DE⊥AC,则DE⊥OD,然后根据切线的判定定理可得DE为⊙O的切线.【解答】(1)证明:连接CD,如图,∵BC为直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,即点D是AB的中点;(2)解:DE与⊙O相切.理由如下:连接OD,∵AD=BD,OC=OB,∴OD为△ABC的中位线,∴OD∥AC,而DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.【变式3-3】如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.【分析】(1)连接OD,根据角平分线的定义得到∠BAD=∠CAD,而∠OAD=∠ODA,则∠ODA=∠CAD,于是判断OD∥AC,由于∠C=90°,所以∠ODB=90°,然后根据切线的判定定理即可得到结论;(2)由∠B=30°得到∠BAC=60°,则∠CAD=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到AC=Rt△ABC中,根据含30度的直角三角形三边的关系可得到AB=【解答】(1)证明:连接OD,如图,∵∠BAC的平分线交BC于点D,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴BC是⊙O的切线;(2)解:∵∠B=30°,∴∠BAC=60°,∴∠CAD=30°,在Rt△ADC中,DC=4,∴AC==在Rt△ABC中,∠B=30°,∴AB=2AC=【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.【变式3-4】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.【分析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.【点评】此题主要考查了切线的判定,角平分线的性质,含30°的直角三角形的性质,勾股定理,矩形的判定和性质,构造出直角三角形是解本题的关键,是一道中等难度的中考常考题.●●【典例四】(2022•城关区一模)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为6,PB=4,PC=8.求证:PC是⊙O的切线;【分析】可以证明OC2+PC2=OP2得△OCP是直角三角形,即OC⊥PC,PC是⊙O的切线;【解答】解:如图,连接OC、BC,∵⊙O的半径为6,PB=4,PC=8.∴OC=OB=6,OP=OB+BP=6+4=10,∴OC2+PC2=62+82=100,OP2=102=100,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线;【点评】本题考查圆的切线的判定和勾股定理逆定理,利用勾股定理的逆定理证明垂直是解决问题的关键.【变式4-1】如图,AD, BD是⊙O的弦,AD⊥BD,且BD=2AD=8 ,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先由勾股定理的逆定理证明垂直,再由切线的判断进行解答即可.【解答】证明:连接AB,∵AD⊥BD,且BD=2AD=8 ,∴AB为直径,AB2 =82+42 =80,∵CD=2,AD=4 ,∴AC2 =22 +42=20,∵CD=2,BD=8,∴BC=102=100,∴AC2+AB2=CB2,∴∠BAC=90° ,∴AC是⊙O的切线【点评】本题考查切线的判定,圆周角定理的推论,勾股定理的逆定理,解题关键是作出辅助线构造直角三角形.【变式4-2】如图,AD,BD是⊙O的弦,AD⊥BD,且BD=2AD=8,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先根据圆周角定理得到AB为⊙O的直径,再利用勾股定理计算出AB、AC,接着利用勾股定理的逆定理证明△ABC为直角三角形,∠BAC=90°,所以AC⊥AB,然后根据切线的判定定理得到结论.【解答】证明:∵AD⊥BD,∴∠ADB=90°,∴AB为⊙O的直径,∵BD =2AD =8,∴AD =4,在Rt △ADB 中,AB 2=AD 2+BD 2=42+82=80,在Rt △ADC 中,AC 2=AD 2+CD 2=42+22=20,∵BC 2=(2+8)2=10,∴AC 2+AB 2=BC 2,∴△ABC 为直角三角形,∠BAC =90°,∴AC ⊥AB ,∵AB 为直径,∴AC 是⊙O 的切线.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理和勾股定理的逆定理.●●【典例五】(2022•鄞州区校级开学)如图,AB 为⊙O 的直径,点C 和点D 是⊙O 上的两点,连接BC ,DC ,BC =CD ,CE ⊥DA 交DA 的延长线于点E .求证:CE 是⊙O 的切线;【分析】连接OD ,OC ,证得△COD ≌△COB ,可得∠OCD =∠BCO ,从而得到∠ADC =∠DCO ,进而得到DA ∥CO ,利用切线的判定定理即可求证;【解答】证明:连接OD ,OC,如图,在△COD和△COB中,OD=OBOC=OC,CD=CB∴△COD≌△COB(SSS),∴∠OCD=∠BCO,∵CO=BO,∴∠B=∠BCO,∵∠B=∠ADC,∴∠ADC=∠DCO.∴DA∥CO,∴∠E+∠ECO=180°.∵CE⊥EA,∴∠E=90°.∴∠ECO=90°,∴EC⊥CO,∵CO是⊙O的半径,∴EC是⊙O的切线;【点评】本题主要考查了切线的判定,圆周角定理等知识,熟练掌握切线的判定,相似三角形的判定和性质,圆周角定理等知识是解题的关键.【变式5-1】如图,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.求证:CD是⊙O的切线;【分析】连接OD,利用SAS得到三角形COD与三角形COB全等,利用全等三角形的对应角相等得到∠ODC 为直角,即可得证;【解答】证明:如图,连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD,又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB,在△COD和△COB中,OC=OC∠COD=∠COB,OD=OB∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°,∵OD是⊙O的半径,∴CD是⊙O的切线;【点评】此题考查了切线的判定和性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.【变式5-2】(2022秋•新抚区期末)如图,AB为⊙O的直径,四边形OBCD是矩形,连接AD,延长AD 交⊙O于E,连接CE.求证:CE为⊙O的切线.【分析】连接OC、BE,根据矩形性质和圆半径相等,推出∠CDE=∠AEO,进而得到OP=CP,然后根据OB∥CD,可以推出∠COE=∠BOC,最后通过证明△BOC≌△EOC即可求解.【解答】证明:如图:连接OC、BE,OE,CD交于点P,∵四边形OBCD是矩形,∴OB∥CD,∠OBC=90°,OB=CD,∵OB∥CD,∴∠A=∠CDE,∵在⊙O中,OA=OB=OE,∴OE=CD,∵OA=OE,∴∠A=∠AEO,∴∠CDE=∠AEO,∴DP=PE,∵OE=CD,∴OP=CP,∴∠COE=∠DCO,∵OB∥CD,∴∠DCO=∠BOC,∴∠COE=∠BOC,在△BOC和△EOC中,OB=OECO=CO,∠BOC=∠COE∴△BOC≌△EOC(SAS),∴∠CEO=∠OBC=90°,∴CE⊥OE,又∵OE为⊙O的半径,∴CE为⊙O的切线.【点评】本题考查圆周角定理,全等三角形的判定和性质,矩形的性质等众多知识点,熟悉掌握以上知识点是解题关键.【变式5-3】(2022•建邺区二模)如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若AP BF=1,求⊙O的半径.【分析】(1)连接AF,根据菱形的性质得到∠ACF=∠ACE,根据全等三角形的性质得到∠AFC=∠AEC,推出OA⊥AE,根据切线的判定定理即可得到结论;(2)连接BP,根据圆周角定理得到∠APB=90°,求得AC=2AP=【解答】(1)证明:连接AF,∵四边形ABCD为菱形,∴∠ACF=∠ACE,在△ACF与△ACE中,CF=CE∠ACF=∠ACEAC=AC,∴△ACF≌△ACE(SAS),∴∠AFC=∠AEC,∵AB是⊙O的直径,∴∠AFB=∠AFC=90°,∴∠AEC=90°,∵AB∥DC,∴∠BAE+∠AEC=90°,∴∠BAE=90°,∴OA⊥AE,∵OA是⊙O的半径,∴AE是⊙O的切线;(2)解:连接BP,∵AB是⊙O的直径,∴∠APB=90°,∵AB=CB,AP=∴AC=2AP=设⊙O的半径为R,∵AC2﹣CF2=AF2,AB2﹣BF2=AF2,∴2−(2R−1)2=(2R)2−12,∴R=32(负值舍去),∴⊙O的半径为3 2.【点评】本题考查了切线的判定和性质,圆周角定理,菱形的性质,三角形全等的性质和判定,勾股定理等知识,解答本题的关键是根据勾股定理列方程解决问题.类型二:无公共点:作垂直,证半径●●【典例六】如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【分析】过点O作OE⊥AC于点E,连接OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【解答】证明:过点O作OE⊥AC于点E,连接OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是⊙O的半径,∵圆心到直线的距离等于半径,∴AC是⊙O的切线.【点评】本题考查了切线的判定和性质,等腰三角形的性质,角平分线的性质,熟练掌握性质定理是解题的关键.【变式6-1】如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.【分析】利用正方形的性质得出AC平分角∠BCD,再利用角平分线的性质得出OM=ON,即可得出答案.【解答】证明:如图所示,连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴ON为⊙O的半径,∴CD与⊙O相切.【点评】此题主要考查了正方形的性质以及角平分线的性质,得出OM=ON是解题关键.【变式6-2】如图,OC平分∠AOB,D是OC上任意一点,⊙D和OA相切于点E,连接CE.(1)求证:OB与⊙D相切;(2)若OE=4,⊙D的半径为3,求CE的长.【分析】(1)过点D作DF⊥OB于点F,先由切线的性质得DE⊥OA,则由角平分线的性质得DF=DE,即可证得结论;(2)过E作EG⊥OD于G,先由勾股定理求出OD=5,再由面积法求出EG=125,然后由勾股定理求出DG=95,最后由勾股定理求出CE即可.【解答】(1)证明:连接DE,过点D作DF⊥OB于点F,如图所示:∵⊙D与OA相切于点E,∴DE⊥OA,∵OC平分∠AOB,∴DF=DE,又∵DF⊥OB,∴OB与⊙D相切;(2)解:过E作EG⊥OD于G,如图所示:由(1)得:DE⊥OA,∴∠OED=90°,∵OE=4,DE=3,∴OD=5,∵EG⊥OD,∴12OD×EG=12OE×DE,∴EG=OE×DEOD=4×35=125,∴DG===9 5,∴CG=CD+DG=3+95=245,∴CE=【点评】此题考查了切线的判定与性质、勾股定理以及角平分线的性质等知识,解题的关键是准确作出辅助线.【变式6-3】如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.【分析】(1)过O点作OE⊥CD于点E,通过角平分线的性质得出OE=OA即可证得结论.(2)过点D作DF⊥BC于点F,根据切线的性质可得出DC的长度,继而在Rt△DFC中利用勾股定理可得出DF的长,继而可得出半径.【解答】(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,又∵DO平分∠ADC,∴OE=OA,∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,∴CD是⊙O的切线.(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,∴四边形ABFD是矩形,∴AD=BF,AB=DF,又∵AD=4,BC=9,∴FC=9﹣4=5,∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,∴DC=AD+BC=4+9=13,在Rt△DFC中,DC2=DF2+FC2,∴DF=12,∴AB=12,∴⊙O的半径R是6.【点评】此题考查了切线的性质、角平分线的性质及勾股定理的知识,证明第一问关键是掌握切线的判定定理,解答第二问关键是熟练切线的性质.【变式6-4】(2022秋•清原县期末)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O 经过点C 且与AB 边相切于点E ,∠FAC =12∠BDC .(1)求证:AF 是⊙O 的切线;(2)若BC =6,AB =10,求⊙O 的半径长.【分析】(1)作OH ⊥FA ,垂足为点H ,连接OE ,证明AC 是∠FAB 的平分线,进而根据OH =OE ,OE ⊥AB ,可得AF 是⊙O 的切线;(2)勾股定理得出AC ,设⊙O 的半径为r ,则OC =OE =r ,进而根据切线的性质,在Rt △OEA 中,勾股定理即可求解.【解答】(1)证明:如图,作OH ⊥FA ,垂足为点H ,连接OE ,∵∠ACB =90°,D 是AB 的中点,∴CD =AD =12AB ,∴∠CAD =∠ACD ,∵∠BDC =∠CAD +∠ACD =2∠CAD ,又∵∠FAC =12∠BDC ,∴∠FAC =∠CAD ,即AC 是∠FAB 的平分线,∵点O 在AC 上,⊙O 与AB 相切于点E ,∴OE ⊥AB ,且OE 是⊙O 的半径,∴OH =OE ,OH 是⊙O 的半径,∴AF 是⊙O 的切线;(2)解:如图,在△ABC中,∠ACB=90°,BC=6,AB=10,∴AC==8,∵BE,BC是⊙O的切线,∴BC=BE=6,∴AE=10﹣6=4设⊙O的半径为r,则OC=OE=r,在Rt△OEA中,由勾股定理得:OE2+AE2=OA2,∴16+r2=(8﹣r)2,∴r=3.∴⊙O的半径长为3.【点评】本题考查了切线的性质与判定,勾股定理,熟练掌握切线的性质与判定是解题的关键.1.如图,已知AB是⊙O的直径,AB=BE,点P在BA的延长线上,连接AE交⊙O于点D,过点D作PC⊥BE垂足为点C.求证:PC与⊙O相切;【分析】连接OD,根据等腰三角形的性质得到∠BAE=∠BEA,∠BAE=∠ODA,等量代换得到∠ODA=∠BEA,证明OD∥BE,根据平行线的性质得到PC⊥OD,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AB=BE,∴∠BAE=∠BEA,∵OA=OD,∴∠BAE=∠ODA,∴∠ODA=∠BEA,∴OD∥BE,∵PC⊥BE,∴PC⊥OD,∵OD是⊙O的半径,∴PC与⊙O相切;【点评】本题考查的是切线的判定、解直角三角形,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.2.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,点D是BC的中点,DE∥BC交AC的延长线于点E.(1)求证:直线DE与⊙O相切;(2)若⊙O的直径是10,∠A=45°,求CE的长.【分析】(1)连接OD,如图,先利用垂径定理得到OD⊥BC,再根据平行线的性质得到OD⊥DE,然后根据切线的判定方法得到结论;(2)先根据圆周角定理得到∠B=90°,则∠ACB=45°,再根据平行线的性质得到∠E=45°,则可判断△ODE 为等腰直角三角形,于是可求出OE,然后计算OE﹣OC即可.【解答】(1)证明:连接OD,如图,∵点D是BC的中点,∴OD⊥BC,∵DE∥BC,∴OD⊥DE,∴直线DE与⊙O相切;(2)解:∵AC是⊙O的直径,∴∠B=90°,∵∠A=45°,∴∠ACB=45°,∵BC∥DE,∴∠E=45°,而∠ODE=90°,∴△ODE为等腰直角三角形,∴OE==∴CE=OE﹣OC=5.【点评】本题考查了切线的性质与判定:圆的切线垂直于经过切点的半径.也考查了垂径定理、圆周角定理和等腰直角三角形的性质.3.(2023•东城区校级模拟)如图,⊙O的半径OC与弦AB垂直于点D,连接BC,OB.(1)求证:2∠ABC+∠OBA=90°;(2)分别延长BO、CO交⊙O于点E、F,连接AF,交BE于G,过点A作AM⊥BC,交BC延长线于点M,若G是AF的中点,求证:AM是⊙O的切线.【分析】(1)先根据垂径定理得到AC=BC,再根据圆周角定理得到∠BOC=2∠ABC,然后利用互余关系得∠BOD+∠OBD=90°,从而得到结论;(2)如图,连接OA,根据垂径定理得到BE⊥AF,再根据圆周角定理得到∠CAF=90°,则可判断BE ∥AC,所以∠ABE=∠BAC,接着证明∠BAO=∠CBA得到OA∥BC,根据平行线的性质得到AM⊥OA,然后根据切线的判断方法得到结论.【解答】证明:(1)∵OD⊥AB,∴AC=BC,∠ODB=90°,∴∠BOC=2∠ABC,∵∠BOD+∠OBD=90°,∴2∠ABC+∠OBA=90°;(2)如图,连接OA,∵G是AF的中点,∴BE⊥AF,∵CF为直径,∴∠CAF=90°,∴CA⊥AF,∴BE∥AC,∴∠ABE=∠BAC,∴AC=BC,∴∠CAB=∠CBA,∵OA=OB,∴∠BAO=∠ABO,∴∠BAO=∠CBA,∴OA∥BC,∵AM⊥BC,∴AM⊥OA,而OA为⊙O的半径,∴AM是⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、垂径定理.4.(2022•思明区校级二模)如图,四边形ABCD是⊙O的内接四边形,AC是⊙O直径,BE∥AD交DC 延长线于点E,若BC平分∠ACE.(1)求证:BE是⊙O的切线;(2)若BE=3,CD=2,求⊙O的半径.【分析】(1)连接OB,由条件可以证明OB∥DE,从而证明OB⊥BE;(2)由垂径定理求出AD长,从而由勾股定理可求AC长.【解答】(1)证明:连接OB,∵″OB=OC,∴∠OBC=∠OCB,∵∠BCE=∠OCB,∴∠OBC=∠BCE,∴OB∥DE,∵AC是⊙O直径,∴AD⊥DE,∵BE∥AD,∴BE⊥DE,∴OB⊥BE,∵OB是⊙O半径,∴BE是⊙O切线;(2)解:延长BO交AD于F,∵∠D=∠DEB=∠EBF=90°,∴四边形BEDF是矩形,∴BF⊥AD,DF=BE=3,∴AD=2DF=6,∵AC2=AD2+CD2,∴AC2=62+22=40,∴AC=∴⊙O【点评】本题考查切线的判定,矩形的判定和性质,垂径定理,勾股定理,用到的知识点较多,关键是熟练掌握知识点,并能灵活应用.5.(2023•封开县一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求DE的长.【分析】(1)连接OD,由AC=AB,根据等边对等角得到一对角相等,再由OD=OB,根据等边对等角得到又一对角相等,等量代换可得一对同位角相等,根据同位角相等两直线平行可得OD与AC平行,又EF垂直于AC,根据垂直于两平行线中的一条,与另一条也垂直,得到EF与OD也垂直,可得EF为圆O的切线;(2)连接AD,由AB为圆的直径,根据直径所对的圆周角为直角可得∠ADB=90°,即AD与BC垂直,又AC=AB,根据三线合一得到D为BC中点,由BC求出CD的长,再由AC的长,利用勾股定理求出AD的长,三角形ACD的面积有两种求法,AC乘以DE除以2,或CD乘以AD除以2,列出两个关系式,两关系式相等可求出DE的长.【解答】(1)证明:连接OD,∵AB=AC,∴∠C=∠OBD,∵OD=OB,∴∠1=∠OBD,∴∠1=∠C,∴OD∥AC,∵EF⊥AC,∴EF⊥OD,∴EF是⊙O的切线;(2)连接AD,∵AB为⊙O的直径,∴∠ADB=90°,又∵AB=AC,且BC=6,∴CD=BD=12BC=3,在Rt△ACD中,AC=AB=5,CD=3,根据勾股定理得:AD=4,又S△ACD =12AC•ED=12AD•CD,即12×5×ED=12×4×3,∴ED=12 5.【点评】此题考查了等腰三角形的性质,圆周角定理,平行线的性质,勾股定理,三角形面积的求法,以及切线的判定,其中证明切线的方法为:有点连接圆心与此点,证垂直;无点过圆心作垂线,证明垂线段长等于圆的半径.本题利用的是第一种方法.6.(2023•宁德模拟)如图,OM 为⊙O 的半径,且OM =3,点G 为OM 的中点,过点G 作AB ⊥OM 交⊙O 于点A ,B ,点D 在优弧AB 上运动,将AB 沿AD 方向平移得到DC ;连接BD ,BC .(1)求∠ADB 的度数;(2)如图2,当点D 在MO 延长线上时,求证:BC 是⊙O 的切线.【分析】(1)连接AO ,BO ,先根据特殊角的正弦值可得∠OAG =30°,再根据等腰三角形的性质可得∠OAG =∠OBG =30°,从而可得∠AOB =120°,然后根据圆周角定理即可得;(2)连接AO ,BO ,CO ,先证出四边形ABCD 是平行四边形,再根据等边三角形的判定与性质可得AB =AD ,根据菱形的判定可得四边形ABCD 是菱形,根据菱形的性质可得CB =CD ,然后根据SSS 定理证出△COB ≌△COD ,根据全等三角形的性质可得∠OBC =∠ODC =90°,最后根据圆的切线的判定即可得证.【解答】(1)解:如图1,连接AO ,BO .∵点G 为OM 的中点,且OM =3,∴OG =12OM =32,OA =OB =OM =3,∵AB ⊥OM ,在Rt △AOG 中,OG =12OA .∴∠OAG =30°,又∵OA =OB ,∴∠OAG=∠OBG=30°,∴∠AOB=120°,∴∠ADB=12∠AOB=60°.(2)证明:如图2,连接AO,BO,CO,由平移得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∵OM⊥AB,点D在MO延长线上,∴DM⊥CD,∵OA=OB,AB⊥OM,∴AG=BG,∴DM垂直平分AB,∴AD=BD,∵∠ADB=60°,∴△ABD为等边三角形,∴AB=AD,∴平行四边形ABCD是菱形,∴CB=CD,在△COB和△COD中,CB=CDOB=ODOC=OC,∴△COB≌△COD(SSS),∴∠OBC=∠ODC=90°,又∵OB是⊙O的半径,。
圆的切线定理

圆的切线定理定理表述设有一个圆和一条直线,当这条直线与圆相切时,直线与圆的切点之间的线段与半径垂直。
证明过程证明圆的切线定理的方法主要有两种:几何法和代数法。
几何法几何法是通过几何构造来证明定理。
我们可以通过以下步骤进行证明:1. 假设有一个圆和一条直线,直线与圆相切于点P。
2. 以圆心为起点,作一条半径OP。
3. 连接直线上的点P和圆心O,得到线段OP。
4. 利用三角形的性质,我们可以得出线段OP与直线的斜率相等。
5. 因为直线与圆相切,所以线段OP与半径OP垂直。
6. 因此,根据直线斜率的性质,直线与半径垂直。
通过以上步骤,我们证明了圆的切线与半径垂直。
代数法代数法是通过代数计算来证明定理。
我们可以使用坐标系的方法进行证明:1. 假设圆的方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)为圆心坐标,r为半径。
2. 假设直线的方程为y = mx + c,其中m为直线的斜率,c为截距。
3. 将直线方程代入圆的方程,得到(x-a)^2 + (mx + c - b)^2 - r^2 = 0。
4. 根据圆的定义,当直线与圆相切时,该方程只有一个解。
5. 解方程得到一个二次方程,利用判别式判断方程有一个解的特性。
6. 通过计算判别式,可以得到切线方程有唯一解的条件。
7. 根据等式等式的性质,解方程得到的根与圆的切点相对应。
8. 证明了切线方程与圆的切点正交。
通过以上代数计算,我们证明了圆的切线与半径垂直。
应用和实例圆的切线定理在几何学和应用数学中有着广泛的应用。
它在解析几何的证明和问题求解中起着重要的作用。
例如,通过圆的切线定理,我们可以解决求直线与圆的切点坐标和切线方程的问题。
这对于工程学和物理学中的曲线研究非常有用。
另外,圆的切线定理在计算机图形学和计算机模拟中也被广泛应用。
通过计算机算法,我们可以快速计算出圆与直线的切点坐标,从而实现更精确的模拟效果。
总之,圆的切线定理是解析几何中重要的定理之一,它在几何学和应用数学中有着广泛的应用价值。
2023年中考九年级数学高频考点拔高训练-圆的切线的证明

2023年中考九年级数学高频考点拔高训练-圆的切线的证明1.如图,△ABD是△O的内接三角形,E是弦BD的中点,点C是△O外一点,且△DBC=△A=60°,连接OE并延长与△O相交于点F,与BC相交于点C.(1)求证:BC是△O的切线;(2)若△O的半径为6cm,求弦BD的长.2.如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)如果∠BAC=60°,AE=4√3,求AC长.3.如图,AC与△O相切,切点为C,点B在CO的延长线上,BD△AO,垂足为D,△ABD=△BO D.(1)求证:AB为△O的切线;(2)若BC=4,AC=3,求BD的长.4.如图,AB 是△O 的直径,点E 在△O 上,连接AE 和BE ,BC 平分△ABE 交△O 于点C ,过点C 作CD△BE ,交BE 的延长线于点D ,连接CE .(1)请判断直线CD 与△O 的位置关系,并说明理由;(2)若sin△ECD =35,CE =5,求△O 的半径. 5.如图,AB 为△O 的直径,C 、D 为△O 上不同于A 、B 的两点,△ABD =2△BAC ,连接CD ,过点C 作CE△DB ,垂足为E ,直径AB 与CE 的延长线相交于F 点.(1)求证:CF 是△O 的切线;(2)当BD = 185 ,sinF = 35时,求OF 的长. 6.如图,线段AB 经过圆心O ,交△O 于点A 、C ,点D 为△O 上一点,连结AD 、OD 、BD ,△A =△B =30°.(1)求证:BD 是△O 的切线.(2)若OA =5,求OA 、OD 与AD 围成的扇形的面积.7.如图,在Rt△ABC 中,△ACB =90°,CD 是斜边AB 上的中线,以CD 为直径的△O 分别交AC 、BC 于点M 、N ,过点N 作NE△AB ,垂足为E(1)若△O的半径为52,AC=6,求BN的长;(2)求证:NE与△O相切.8.如图,AB是△O的弦,OP△OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是△O的切线;(2)若△O的半径为√5,OP=1,求BC的长.9.如图,AB是△O的直径,点C在AB的延长线上,AD平分△CAE交△O于点D,且AE△CD,垂足为点E.(1)求证:直线CE是△O的切线.(2)若BC=3,CD=3 √2,求弦AD的长.10.如图,AB为圆的直径,C是△O上一点,过点C的直线交AB的延长线于点M.作AD△MC,垂足为D,已知AC平分△MAD .(1)求证:MC是△O的切线:(2)若AB=BM=4,求tan△MAC的值11.如图,AB是△O的直径,点C在△O上,BD平分∠ABC交△O于点D,过点D作DE⊥BC,垂足为E.(1)求证:DE与△O相切;(2)若AB=10,AD=6,求DE的长.12.如图,点O在△APB的平分线上,△O与PA相切于点C.(1)求证:直线PB与△O相切;(2)PO的延长线与△O交于点E.若△O的半径为3,PC=4.求弦CE的长.13.如图,已知A(﹣5,0)、B(﹣3,0),点C在y轴的正半轴上,△CBO=45°,CD△AB,△CDA=90°点,P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时间ts.(1)求点C的坐标;(2)当△BCP=15°时,且△OPC中最长边是最短边的2倍,求t的值;(3)以点P为圆心,PC为半径的△P随点P的运动而变化,当△P与四边形ABCD的边(或边所在的直线)相切时,求t的值.14.已知AB为⊙O的直径,C为⊙O上一动点,连接AC,BC,在BA的延长线上取一点D,连接CD,使CD=CB.(1)如图1,若AC=AD,求证:CD是⊙O的切线;(2)如图2,延长DC交⊙O于点E,连接AE.①若⊙O的直径为√10,sinB=√10,求AD的长;10②若CD=2CE,求cosB的值.15.如图,AB、AC分别是△O的直径和弦,OD△AC于点D,过点A作△O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是△O的切线;(2)若△ABC=60°,AB=10,求线段CF的长,16.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,△BCD=60°,点E是AB上一点,AE=3EB,△P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是△P的切线;(3)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.答案解析部分1.【答案】(1)证明:连接OB ,如图所示:∵E 是弦BD 的中点,∴BE =DE ,OE△BD , BF ⌢=12BD ⌢ , ∴△BOE =△A ,△OBE+△BOE =90°,∵△DBC =△A ,∴△BOE =△DBC ,∴△OBE+△DBC =90°,∴△OBC =90°,即BC△OB ,∴BC 是△O 的切线;(2)解:∵OB =6,△DBC =△A =60°,BC△OB , ∴OC =12,∵△OBC 的面积= 12 OC•BE = 12OB•BC , ∴BE = OB×BC OC =6×6√312=3√3 , ∴BD =2BE =6 √3 ,即弦BD 的长为6 √3 .2.【答案】(1)证明:连接 OD ,如图,∵∠BAC 的平分线 AD 交 ⊙O 于点 D ,∴∠BAD=∠DAC,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠DAC,∴OD//AE,∵DE⊥AE,∴DE⊥OD,OD为半径,∴DE是⊙O的切线(2)解:作OF⊥AC于F∵∠BAC=60°,∴∠DAE=30°,在RtΔADE中,DE=AE⋅tan30°=4四边形ODEF为矩形,∴OF=DE=4,在RtΔOAF中,∵∠OAF=60°∴AF=√3=4√33∴AC=2AF=8√3 33.【答案】(1)证明:作OH△AB,垂足为H∵AC与△O相切,切点为C,∴△ACO=90°∴△OAC+△AOC=90°又BD△AO∴△BDO=90°∴△BOD+△DBO=90°,△BAD+△ABD=90°又△BOD=△AOC,△ABD=△BOD∴△OAC=△BAD∴OH=OC又OC为△O半径∴AB为△O的切线(2)解:在Rt△BOH和Rt△BAC中AB=√BC2+AC2=5sin∠ABC=OHOB=ACAB=354−OB OB=35,解得OB=52,OC=32,OA=√OC2+AC2=32√5∵△AOC=△BOD,△C=△D=90°∴△AOC△△BOD∴OAOB=ACBD∴32√552=3BD,解得:BD=√5.4.【答案】(1)解:结论:CD是△O的切线.理由:连接OC.∵OC=OB,∴△OCB=△OBC,∵BC平分△ABD,∴△OBC=△CBE,∴△OCB=△CBE,∴OC//BD ,∵CD△BD ,∴CD△OC ,∵OC 是半径,∴CD 是△O 的切线;(2)解:设OA =OC =r ,设AE 交OC 于点J .∵AB 是直径,∴△AEB =90°,∵OC△DC ,CD△DB ,∴△D =△DCJ =△DEJ =90°,∴四边形CDEJ 是矩形,∴△CJE =90°,CD =EJ ,CJ =DE ,∴OC△AE ,∴AJ =EJ ,∵sin△ECD =DE CE =35,CE =5, ∴DE =3,CD =4,∴AJ =EJ =CD =4,CJ =DE =3,在Rt△AJO 中,r 2=(r ﹣3)2+42,∴r =256, ∴△O 的半径为256. 5.【答案】(1)解:连接OC .如图1所示:∵OA=OC,∴△1=△2.又∵△3=△1+△2,∴△3=2△1.又∵△4=2△1,∴△4=△3,∴OC△DB.∵CE△DB,∴OC△CF.又∵OC为△O的半径,∴CF为△O的切线;(2)解:连接AD.如图2所示:∵AB是直径,∴△D=90°,∴CF△AD,∴△BAD=△F,∴sin△BAD=sinF=BDAB=35,∴AB=53BD=6,∴OB=OC=3,∵OC△CF,∴△OCF=90°,∴sinF=OCOF=35,解得:OF=5.6.【答案】(1)证明:∵△ADO=△BAD=30°,∴△DOB=60°∵△ABD=30°,∴△ODB=90°∴OD△BD.∵点D为△O上一点,∴BD是△O的切线.(2)解:∵△DOB=60°,∴△AOD=120°.∵OA=5,∴OA、OD与AD围成的扇形的面积为120·π·52360=253π.7.【答案】(1)解:∵ △O 的半径为52,则CD=5,AB=10,BC=√AB2−AC2=√100−36=8CD为直径,得DN△BC,D为AB的中点,则BD=CD,则△BDC为等腰三角形,由三线合一知,BN=NC=12BC=4。
初三数学圆的切线练习题

初三数学圆的切线练习题圆的切线是数学中的一个基本概念,对于初三学生来说,掌握圆的切线的性质和求解方法十分重要。
下面将给出几道关于圆的切线的练习题,帮助初三学生更好地理解和掌握圆的切线的知识。
题1:已知圆C的半径为r,点A是圆上的一个定点,过点A作圆C的一条切线,切线与圆C的切点为B。
设点M是切点B关于点A的对称点,连接AM。
证明:AM的中垂线与BM重合。
解析:首先,我们可以明确题目中给出的条件:一条过点A的切线与圆C的切点为B。
根据切线的性质,切线与半径所构成的角是直角。
因此,在三角形ABO(O为圆C的圆心)中,BO与AO垂直。
由于点M是切点B关于点A的对称点,所以AM与AB互相垂直。
因此,AM的中垂线与BM重合,即AM的中垂线也与AO重合。
题2:已知圆C的半径为r,点P是圆外一点,用直尺和铅笔求圆C的切线。
解析:根据圆的性质,过一点外一点的切线只有两条。
为了求得切线,我们可以使用以下的方法:步骤1:用直尺连接点P和圆心O,并延长直线PO交圆C于点A。
步骤2:以点O为圆心,OP为半径画一个圆,与圆C交于点B和点C。
步骤3:连接点P与点B,并延长线段PB。
步骤4:线段PB即为所求的切线。
题3:已知圆C内接于正方形ABCD,正方形的边长为a,求圆C 的半径和正方形边长的关系。
解析:首先,由于圆C内接于正方形ABCD,所以图形的中心点O 即为圆心。
连接圆心O与圆上的任意一点,得到半径r。
连接正方形的对角线,则线段一半的长度为圆C的半径r。
由于线段的长度等于正方形的边长的一半,所以有r = a/2。
题4:已知直径为20cm的圆C,过圆心O作一条与圆C相交于点A和点B的直径为d的弦。
求弦AB的长度。
解析:根据题意可知,弦AB的长度等于圆C的直径d的长度。
由于直径为20cm,所以弦AB的长度也为20cm。
题5:已知点A在圆C上,圆C的半径为r。
点A与圆心O之间的距离为d。
若点A到切点B的距离为m,求切线的长度。
人教版九年级初中数学上册第二十四章圆切线的性质定理

判定定理的表述
圆切线的判定定理:过圆外一点有且只有一条直线与圆切于一点。
证明方法:利用反证法,假设过圆外一点有两条直线与圆切于一点,则这两条直线重合,这 与已知条件矛盾,因此假设不成立,故原命题成立。
应用:在解题过程中,可以利用圆切线的判定定理来判断某一直线是否为圆的切线。
注意事项:在应用圆切线的判定定理时,需要注意前提条件是“过圆外一点”,否则结论可 能不成立。
性质定理的证明
定义:圆切线的定义是过半径的外端且垂直于这条半径的直线 性质定理:从圆外一点引圆的两条切线,它们的切线长相等 证明方法:利用相似三角形的性质进行证明 定理的应用:在解题中,可以利用这个定理来证明一些与圆有关的题目
求解与圆切线相关的问题
圆切线的定义和性质 圆切线的判定方法 圆切线的应用举例 圆切线与其他几何图形的联系
判定定理的应用
判定圆内接四边形的对角是否互补 判定一个四边形是否为圆外切四边形 判定一个四边形是否为圆内接四边形 判定一个四边形是否为圆外切四边形
性质定理的表述
圆切线的定义:过半径的外端,并且垂直于这条半径的直线是圆的切线。 性质定理:从圆外一点引圆的两条切线,它们的切线长相等。 性质定理的证明:利用勾股定理和切线的定义进行证明。 性质定理的应用:在解题中利用此定理进行证明和计算。
注意事项:注意题 目中的隐含条件, 避免出现错误
拓展:通过练习和 巩固,提高解题能 力和思维水平
与圆切线相关的其他知识点
圆切线的定义和性质
圆切线的判定定理
圆切线的应用
圆切线与其他几何图形的联系
拓展知识的应用领域
几何学:圆切线在几 何学中有着广泛的应 用,如圆内接四边形、 圆与圆的位置关系等
物理学:圆切线在 物理学中也有着重 要的应用,如圆周 运动、弹性力学等
人教版数学中考专题复习:圆的切线证明题专项训练

人教版数学中考专题复习:圆的切线证明题专项训练1.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC交BC于点D,点E在AC上,以AE为直径的∠O经过点D.(1)求证:BC是∠O的切线;(2)若∠C=30°,且CD=2.如图,在Rt∠ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A.D的∠O分别交AB,AC于点E,F.(1)求证:BC是∠O的切线;(2)若BE=8,sin B≈513,求∠O的半径;(3)求证:AD2=AB•AF.3.如图,AB 是O 的直径,D 为O 上一点,点E 为BD 的中点,点C 在BA 的延长线上,且CDA B ∠=∠.(1)求证:CD 是O 的切线;(2)若2DE =,30BDE ∠=︒,求OC 的长.4.如图,∠O 的弦AB 、CD 交于点E ,点A 是CD 的中点,连接AC 、BC ,延长DC 到点P ,连接PB .(1)若PB =PE ,判断PB 与∠O 的位置关系,并说明理由.(2)若AC 2=2AE 2,求证:点E 是AB 的中点.5.如图,在Rt ABC 中,∠BAC =90°,以AD 为直径的∠O 与边BC 有公共点E ,且AB =BE .(1)求证:BC是∠O的切线;(2)若BE=3,BC=7,求∠O的半径.⊥于点C,交O于点E,CD与BA的延长线交于点6.如图,AB为O直径,D为O上一点,BC CDF,BD平分ABC∠.(1)求证:CD是O的切线;BC=,求BD的长.(2)若3AB=,27.如图,四边形ABCD内接于∠O,AB是∠O的直径,点P为CA的延长线上一点,∠CAD=45°.(1)若AB=8,求图中阴影部分的面积;(2)若BC=AD,AD=AP,求证:PD是∠O的切线.8.如图,在∠ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE∠AC,垂足为E,∠O经过A,B,D三点.(1)证明:AB是∠O的直径(2)试判断DE与∠O的位置关系,并说明理由;(3)若DE的长为3,∠BAC=60°,求∠O的半径.9.如图,在Rt∠ABC中,∠ACB=90°,E是BC的中点,以AC为直径的∠O与AB边交于点D,连接DE.(1)求证:DE是∠O的切线;(2)若CD=3cm,5cm2DE ,求∠O直径的长.10.如图,点D在∠O的直径AB的延长线上,点C在∠O上,且AC=CD,∠ACD=120°.(1)求证:CD是∠O的切线;(2)若∠O的半径为2,求图中阴影部分的面积.11.如图,在∠ABC中,AB=AC,以AB为直径的∠O与BC相交于点D,DE∠AC于E.(1)求证:DE是∠O的切线;(2)若∠O的半径为5,BC=16,求DE的长.12.如图,AB是∠O的直径,C、D是∠O上的点,BD平分∠ABC,DE∠BE,DE交BC的延长线于点E.(1)求证:DE是∠O的切线;(2)如果CE=1,AC=∠O的半径r.13.如图,AB是O的直径,点C、G为圆上的两点,当点C是弧BG的中点时,CD垂直直线AG,垂足为D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分ACB ∠,交AB 于点F ,连接BE .(1)求证:DC 与O 相切;(2)求证:PC PF =;(3)若1tan 3E =,BE =PF 的长.14.如图,∠O 是四边形ABCD 的外接圆,AC 是∠O 的直径,BE ∠DC ,交DC 的延长线于点E ,CB 平分∠ACE .(1)求证:BE 是∠O 的切线.(2)若AC =4,CE =1,求tan∠BAD .15.如图,AB 为∠O 的直径,射线AD 交∠O 于点F ,C 为BF 的中点,过点C 作CE ∠AD ,连接AC .(1)求证:CE是∠O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.16.如图,∠O是△ABC的外接圆,且AB=AC,四边形ABCD是平行四边形,边CD与∠O交于点E,连接AE.(1)求证△ABC∠∠ADE;(2)求证:AD是∠O的切线..以AB为直径的O交BC于点D,过点D作DE∠AC于点17.已知:如图,在∠ABC中,AB ACE.(1)求证:DE与O相切;AB ,sin B,求线段AF的长.(2)延长DE交BA的延长线于点F,若618.如图,Rt∠ABC中,∠ABC=90°,点E为BC的中点,连接DE.(1)求证:DE是半圆∠O的切线;(2)若∠BAC=30°,DE=2,求AD的长.19.如图,AB是∠O的直径,点E是劣弧AD上一点,∠PBD=∠BED,且DEBE平分∠ABD,BE与AD交于点F.(1)求证:BP是∠O的切线;(2)若tan∠DBE EF的长;(3)延长DE,BA交于点C,若CA=AO,求∠O的半径.20.如图,在Rt△OAB中,∠AOB=90°,OA=OB=4,以点O为圆心、2为半径画圆,过点A作∠O的切线,切点为P,连接OP.将OP绕点O按逆时针方向旋转到OH时,连接AH,BH.设旋转角为α(0°<α<360°).(1)当α=90°时,求证:BH是∠O的切线;(2)当BH与∠O相切时,求旋转角α和点H运动路径的长;(3)当△AHB面积最小时,请直接写出此时点H到AB的距离.参考答案:1.(1)连接OD,∠AD是∠BAC的平分线,∠∠DAB=∠DAO,∠OD=OA,∠∠DAO=∠ODA,则∠DAB=∠ODA,∠DO∠AB,而∠B=90°,∠∠ODB=90°,∠BC是∠O的切线;(2)连接DE、OD、DF、OF,设圆的半径为R,∠∠C=30°,CD=∠OD=CD•tan30°=3,∠∠DAB=∠DAE=30°,∠DE=DF,∠∠DOE=60°,∠∠DOF=60°,∠∠FOA=60°,∠∠OFD、△OF A是等边三角形,∠DF∠AC,∠S阴影=S扇形DFO=2603360π⨯⨯=32π.2.(1)证明: 如图,连接OD ,∠OA =OD ,∠∠ODA =∠OAD ,∠AD 平分∠BAC ,∠∠OAD =∠CAD ,∠∠ODA =∠CAD∠OD AC ∥,∠∠C =90°,∠ ∠ODB =∠C =90°,又∠OD 是∠O 的半径,∠BC 是∠O 的切线;(2)解:90BDO ∠=︒,∴在Rt∠BDO 中,5sin 813OD OD OD B BO BE OD OD ====++, 解得5OD =,故∠O 的半径为5;(3)证明:如图:连接EF ,∠AE 是直径,∠90AFE ACB ∠=︒=∠,∠EF BC ∥,∠AEF B ∠=∠,又∠AEF ADF ∠=∠,∠B ADF ∠=∠,又∠OAD CAD ∠=∠,∠∠DAB ∠∠F AD , ∠AD AF AB AD=, ∠2AD AB AF =⋅.3.(1)解:连接OD ,∠OD OB =,∠B ODB ∠=∠,又∠B CDA ∠=∠,∠ODB CDA ∠=∠,∠AB 是圆O 的直径,∠∠ADB =90°,∠90ODB ODA ∠+∠=︒,∠90CDA ODA ∠+∠=︒即90ODC ∠=︒, ∠CD 是O 的切线;(2)解:连接BE 、OE∠E 是BD 的中点,∠2BE DE ==,OE BD ⊥,260BOE BDE ∠=∠=︒, ∠OBE △是等边三角形,∠2OB BE ==,60BOE ∠=︒∠OB OD =,OE BD ⊥,∠60BOE DOE ∠=∠=︒,∠60DOC ∠=︒在Rt ODC ,60DOC ∠=︒,∠∠C =30°,∠24OC OD ==.4.(1)PB 与∠O 相切,理由是:连接OA 、OB ,OA 交CD 于F ,∠点A 是CD 的中点,∠OA ∠CD ,∠∠AFE =90°,∠∠OAE +∠AED =90°,∠OA=OB,PB=PE,∠∠OAE=∠OBA,∠PEB=∠PBE,∠∠AED=∠PEB,∠∠OBA+∠PBE=90°,即∠OBP=90°,∠OB∠PB,∠PB与∠O相切;(2)∠AC=AD,∠∠ACE=∠ABC,∠∠CAE=∠BAC,∠∠ACE∠∠ABC,∠ACAE=ABAC,∠AC2=AE•AB,∠AC2=2AE2,∠AE•AB=2AE2,∠AB=2AE,∠E为AB的中点.5.(1)证明:连接OB,OE,如图所示,在ABO和EBO△中,AB BE OA OE OB OB =⎧⎪=⎨⎪=⎩,∠()SSS ABO EBO △△≌, ∠90BEO BAO ∠=∠=︒,即OE BC ⊥,∠BC 是O 的切线;(2)解:∠3BE =,7BC =,∠3AB BE ==,4CE =,∠AC == ∠OE BC ⊥,∠222OE EC OC +=,即()2224OE OE +=,解得:OE = ∠O6.(1)连接OD ,如图,∠BD 平分ABC ∠,∠ABD DBC ∠=∠,∠OB OD =,∠OBD ODB ∠=∠∠DBC ODB ∠=∠,∠∥OD BC ,∠ODF C ∠=∠∠BC CD ⊥,∠90C ∠=︒,∠90ODF C ∠=∠=︒,即OD DC ⊥,∠CD 是O 的切线(2)连接AD ,如图,∠AB 为O 直径,∠90ADB ∠=︒∠90C ∠=︒,∠90ADB C ∠=∠=︒∠ABD DBC ∠=∠,∠ABD DBC △△∽ ∠BC BD BD AB =,即23BD BD =, ∠BD =∠BD .7.(1)解:如图,连接OC ,OD ,∠∠COD=2∠CAD,∠CAD=45°,∠∠COD=90°,∠AB=8,∠OC=12AB=4,∠S扇形COD=2904360π⨯⨯=4π,S△OCD=12×OC×OD=12×4×4=8,∠S阴影= S扇形COD- S△OCD =4π﹣8.(2)证明:∠BC=AD,∠BC AD=,∠∠BOC=∠AOD,∠∠COD=90°,∠∠AOD=45°,∠OA=OD,∠∠ODA=∠OAD,∠∠AOD+∠ODA+∠OAD=180°,∠∠ODA=67.5°,∠AD=AP,∠∠ADP=∠APD,∠∠CAD=∠ADP+∠APD,∠CAD=45°,∠∠ADP=12∠CAD=22.5°,∠∠ODP=∠ODA+∠ADP=90°,∠PD是∠O的切线.8.(1)解:如图所示,连接AD∠AB=AC,BD=DC,∠AD∠BC即∠ADB=90°,∠AB是∠O的直径.(2)解:DE与∠O相切,理由如下:如图所示,连接OD,∠OB=OA,BD=DC,∠OD是∠ABC的中位线,∥.∠OD AC∠DE∠AC,∠DE∠OD即∠ODE=90°,∠DE与∠O相切.(3)解:∠AB=AC,AD∠BC,∠BAC=60°,∠∠BAD=∠DAE=30°.∠DE∠AC,AD∠BD,∠AD=2DE=6,AB=2BD.在∠ABD 中,222BD AD AB +=, ∠()22262BD BD +=,解得BD =∠2AB BD ==,∠∠O 的半径为9.(1)连接OD∠AC 为圆O 的直径 ∠∠ADC =90°∠OD =OC∠∠ODC =∠OCD在Rt ∠BCD 中,∠E 为BC 中点 ∠12DE BC CE == ∠∠EDC =∠ECD∠∠ODC +∠EDC =∠OCD +ECD =90° 即∠ODE =90°∠OD ∠DE∠DE 是圆O 的切线(2)在Rt∠BCD中,∠E为BC中点∠BC=2DE=5∠CD=3∠BD=4∠AC为直径,∠∠ADC=∠ACB=∠BDC=90°,又∠∠B=∠B∠∠ABC∠∠CBD,∠AC BC CD BD=∠5 34 AC=∠154=AC cm10.(1)证明:如图,连接OC,∠CD=AC,∠∠CAD=∠D,又∠∠ACD=120°,∠∠CAD=∠D=12(180°﹣∠ACD)=30°,∠OC=OA,∠∠A=∠2=30°,∠∠COD=60°,又∠∠D=30°,∠∠OCD=180°﹣∠COD﹣∠D=90°,∠OC∠CD∠OC是∠ O的半径∠CD是∠ O的切线;(2)解:∠∠A =30°,∠∠1=2∠A =60°. ∠260223603OBC S ππ⨯==扇形 ,在Rt ∠OCD 中,tan 60CD OC ==•︒=∠11222Rt OCD S OC CD =⨯=⨯⨯=△.∠图中阴影部分的面积为23π.11.(1)证明:如图:连接OD .∠AB =AC ,∠∠B =∠C ,又∠OD =OB ,∠∠ODB =∠OBD .∠∠ODB =∠ACB .∠OD AC ∥,∠DE ∠AC .∠OD ∠DE .∠OD 是圆的半径,∠DE 是∠O 的切线;(2)解:如图:连接AD ,∠AB为∠O的直径,∠∠ADB=90°,即AD∠BC,又∠AB=AC,BC=16,∠BD=CD=8,∠∠O的半径为5,∠AC=AB=10,∠6 AD=,∠S△ADC11••22AC DE CD AD ==,∠10DE=8×6,∠DE=4.8.12.(1)解:连接OD,如下图所示:∠OB=OD,∠∠OBD=∠ODB,∠BD平分∠ABC,∠∠OBD=∠DBE,∠∠ODB=∠DBE,∠OD∥BE,∠DE∠BE于点E,∠∠E=90°,∠∠ODE=180°-∠E=180°-90°=90°,∠OD∠DE;∠DE是∠O的切线.(2)解:设OD交AC于点M,如下图:∠AB为∠O的直径,∠∠ACB=∠ACE=90°,由(1)知,∠ODE=90°,∠∠ACE=∠E=∠ODE=90°,∠四边形DECM为矩形,∠EC=DM=1,∠MO∥CB,O为AC的中点,∠MO为∠ABC的中位线,且∠AMO=∠ACB=90°,AC∠AM=MC=12设圆的半径为r,则MO=DO-DM=r-1,在Rt∠AMO中,由勾股定理可知:AO²=AM²+MO²,代入数据:222=+-,r r(1)解出:4r=,故圆∠O的半径为4.13.(1)解:(1)CD AD ⊥,90D ∴∠=︒,∠∠DAC +∠DCA =90°,点c 是弧BG 的中点,∠CG BC =DAC BAC ∴∠=∠,OA OC =,OCA BAC ∴∠=∠,OCA DAC ∠=∠∴,//∴AD OC ,∠∠D =∠OCP =90°, OC 是圆O 的半径,DC ∴与O 相切,(2) AB 是O 的直径,90ACB ∴∠=︒,90PCB ACD ∴∠+∠=︒,由(1)得:90DAC DCA ∠+∠=︒,PCB DAC ∴∠=∠,DAC BAC ∠=∠,PCB BAC ∴∠=∠, CE 平分ACB ∠,ACF BCF ∴∠=∠,∠∠PFC =∠BAC +∠ACF ,∠PCF =∠PCB +∠BCF ,PFC PCF ∴∠=∠,PC PF ∴=;(3)连接AE ,CE 平分ACB ∠,∴AE BE =,AE BE ∴=, AB 是O 的直径,90AEB ∴∠=︒,AEB ∴∆为等腰直角三角形,∠AB ,∠OB =OC ∠1tan 3E = ∠1tan 3BC CAB AC ==∠, ∠∠PCB =∠BAC ,∠P =∠P ,∠△PCB ∠△P AC , ∠13BC PB AC PC ==, ∴设PB x =,3=PC x ,在Rt OCP ∆中,222OC PC OP +=,∠222(3))x x +=,∠x =x =0(舍去),∠PC∠PF 14.(1)证明:如图,连接OB,∠CB平分∠ACE.∠∠ACB=∠ECB,∠OB=OC,∠∠BCO=∠CBO,∠∠BCE=∠CBO,∠OB∠ED.∠BE∠ED,∠EB∠BO.∠BE是∠O的切线;(2)解:∠AC是∠O的直径,∠∠ABC=90°,∠BE∠ED,∠∠E=90°,∠∠E=∠ABC,∠∠BCE=∠ACB,∠∠BCE∠∠ACB,∠BC CE AC BC=,∠AC=4,CE=1,∠2BC==,∠BE,∠∠BCD+∠BAD=∠BCD+∠BCE=180°,∠∠BCE=∠BAD,∠tan tan BE BAD BCE CE∠=∠== 15.(1) 解:(1)连接BF ,OC ,∠AB 是∠O 的直径,∠∠AFB =90°,即BF ∠AD ,∠CE ∠AD ,∠BF ∠CE ,∠点C 为劣弧BF 的中点,∠OC ∠BF ,又BF ∠CE ,∠OC ∠CE ,∠OC 是∠O 的半径,∠CE 是∠O 的切线;(2)解:连接OF ,CF ,∠OA =OC ,∴∠OCA =∠BAC =30°,∠∠BOC =60°,∠点C 为劣弧BF 的中点,∠FC BC =,∠∠FOC =∠BOC =60°,∠OF =OC ,∴△FOC为等边三角形,∠∠OCF=∠COB=60°,∠CF∠AB,∠S△ACF=S△OCF,∠阴影部分的面积等于S扇形COF,∠AB=4,∠FO=OC=OB=2,∠S扇形FOC=260223603ππ⋅⨯=,即阴影部分的面积为23π.16.(1)解:∠四边形ABCD是平行四边形,∠∠B=∠D.∠四边形ABCE为∠O的内接四边形,∠∠B+∠AEC=180°.∠∠AED+∠AEC=180°.∠∠B=∠AED.∠AB=AC,∠AB=∠ACB∠∠ACB=∠AED.∠∠ABC∠∠ADE.(2)解:如图,连接AO并延长,交BC于点M,连接OB、OC.∠AB=AC,OB=OC,∠AM垂直平分BC.∠∠AMC=90°.∠四边形ABCD是平行四边形,∠AD∠BC.∠∠DAO=90°.∠点A在∠O上,∠AD是∠O的切线.17.(1)证明:连接OD,∠AB=AC,∠=∠,∠B C=,又∠OB OD∠1∠=∠,B∠C1∠=∠,∥,∠OD AC∠DE∠AC于E,∠DE∠OD,∠OD是O的半径,∠DE与O相切;(2)解:如图:连接AD,∠AB为O的直径,∠∠ADB=90°,∠AB =6,sin B∠sin AD AB B =⋅ ∠123290∠+∠=∠+∠=︒, ∠13∠=∠,∠3B ∠=∠,在∠AED 中,∠AED =90°,∠sin 3AE AD ∠==∠65AE AD ===. 又∠OD AE ∥, ∠∠FAE ∠∠FOD , ∠FA AE FO OD=, ∠6AB =,∠3OD AO ==, ∠235FA FA =+, ∠2AF =.18.(1)连接OD ,BD ,如图,AB 是直径,90ADB ∴∠=︒, 90BDC ∴∠=︒,E 是BC 的中点,12DE BE EC BC ∴=== EBD EDB ∠∠∴=,OB OD =OBD ODB ∠∠∴=OBD EBD ODB EDB ∠∠∠∠∴+=+即90ODE ABC ∠=∠=︒OD DE ∴⊥ OD 是半径,∴DE 是半圆∠O 的切线.(2)2DE =24BC ED ∴==30BAC ∠=︒28AC BC ∴==AB ∴==12BD AB ∴==6AD ∴=.19.(1) 证明:∠AB 是∠O 的直径,∠∠ADB =90︒,∠∠DAB +∠ABD =90︒,∠∠BED =∠DAB ,∠PBD =∠BED ,∠∠DAB =∠PBD ,∠∠PBD +∠ABD =90︒,∠∠ABP =90︒,∠AB ∠PB ,∠BP 是∠O 的切线;(2)解:连接AE ,∠AB 是直径∠∠AEB =90︒,∠BE 平分∠ABD ,∠∠ABE =∠DBE ,∠AE DE =,∠AE =DE∠∠ABE =∠DBE =∠DAE ,∠tan tan tan EF DBE ABE DAE EA ∠∠∠====,∠EF (3)解:连接OE ,∠OE =OB ,∠∠ABE =∠OEB ,∠∠ABE =∠DBE ,∠∠DBE =∠OEB ,∠//OE BD ∠CE OC DE OB=, ∠CA =AO ,设CA =AO =BO =R , ∠22CE R DE R==,2=, ∠CE∠DC = CE +DE∠∠ADC =∠ABE ,∠C =∠C ,∠CAD CEB △∽△, ∠CD AC CB CE=,= ∠R,∠∠O20.(1)证明:∠α=90°,∠AOB =90°,∠∠AOP =∠BOH ,在∠AOP 和∠BOH 中,OA OB AOP BOH OP OH =⎧⎪∠=∠⎨⎪=⎩∠∠AOP ∠∠BOH (SAS ),∠∠OP A=∠OHB,∠AP是∠O的切线,∠∠OP A=90°,∠OHB=90°,即OH∠BH于点H,∠BH是∠O的切线;(2)如图,过点B作∠O的切线BC,BD,切点分别为C,D,连接OC,OD,则有OC∠BC,OD∠BD,∠OC=2,OB=4,∠cos2142OCBOCOB===∠∠∠BOC=60°,同理∠BOD=60°,当点H与点C重合时,由(1)知:α=90°,∠∠OHB=90°.∠圆弧PH的长为902180ππ⨯=;当点H与点D重合时,α=∠POC+∠BOC+∠BOD=90°+2×60°=210°,∠圆弧PH的长为21027 1803ππ⨯=,∠当BH与∠O相切时,旋转角α=90°或210°,点H运动路径的长为π或73π;(3)设h表示点H到直线AB的距离,作ON∠AB于点N,H在圆O上,在Rt∠ONB中,∠OBN=45°,OB=4,∠ON=4cos45°=∠h的最小值为=ON﹣r=2∠当∠AHB面积最小时,点H到AB的距离为2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明圆的切线专题
证明一条直线是圆的切线,主要有两个思路:
1是证这条直线到圆心的距离等于这个圆的半径:
2,是利用切线的判判定定理,证明这条直线经过一条半径的外端,并且和这条半径垂直.
1不常用,一般常用2.
1. 如图,在Rt ABC ∆中,
90C ︒∠=,点D 是AC 的中点,且90A CDB ︒∠+∠=,过点,A D 作O ,使圆心O 在AB 上,O 与AB 交于点E .
(1)求证:直线BD 与O 相切;
(2)若:4:5,6AD AE BC ==,求O 的直径.
2.如图,在Rt △ABC 中,∠C=90º,O 、D 分别为AB 、BC 上的点,经过A 、D 两点的⊙O 分别交AB 、AC 于点E 、F ,且D 为EF 的中点。
(1)(4分)求证:BC 与⊙O 相切
(2)(4分)当AD=23,∠CAD=30º时,求AD 的长。
3. 如图,已知CD 是ΘO 的直径,AC ⊥CD ,垂足为C ,弦DE ∥OA ,直线AE 、CD 相交于点B .
(1)求证:直线AB 是OO 的切线;
(2)如果AC =1,BE =2,求tan ∠OAC 的值.
4. 如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。
(1)求证:DE 是⊙O 的切线;
(2)如果BC =8,AB =5,求CE 的长。
5.如图,在△ABC 中,∠C=90°,∠ACB 的平分线交AB 于点O ,以O 为圆心的⊙O 与AC 相切于点D .
(1)求证:⊙O 与BC 相切;
(2)当AC=3,BC=6时,求⊙O 的半径
6. 如图,AB 是⊙O 的直径,AM ,BN 分别切⊙O 于点A ,B ,CD 交AM ,BN 于点D ,C ,DO 平分∠A DC .
(1)求证:CD 是⊙O 的切线;
(2)若AD=4,BC=9,求⊙O 的半径R .
7.如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接P A ,PB ,PC .
(1)如图①,若∠BPC =60°,求证:
AP AC 3=; (2)如图②,若2524sin =
∠BPC ,求PAB ∠tan 的值.
O
P
C
B A O P C
B A
8.如图,AB为⊙O的直径,弦CD与AB相交于E,DE=EC,过点B的切线与AD的延长线交于F,过E 作EG⊥BC于G,延长GE交AD于H.
(1)求证:AH=HD;
(2)若cos∠C= 4/5,,DF=9,求⊙O的半径
9.如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,
BE交⊙O于点F,连接AF,AF的延长线交DE于点P.
(1)求证:DE是⊙O的切线;
(2)求tan∠ABE的值;
(3)若OA=2,求线段AP的长.
10如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直
径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;
(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.
11.如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .
(1)求证:CF 是⊙O 的切线;
(2)求证:△ACM ∽△DCN ;
(3)若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=4
1,求BN 的长.
12、如图,PA 为⊙O 的切线,A 为切点,直线PO 交⊙O 与点E ,F 过点A 作PO 的垂线AB 垂足为D ,交⊙O 与点B ,延长BO 与⊙O 交与点C ,连接AC ,BF .
(1)求证:PB 与⊙O 相切;
(2)试探究线段EF ,OD ,OP 之间的数量关系,并加以证明;
(3)若AC=12,tan ∠F=,求cos ∠ACB 的值.。