新能源汽车电池包关键连接技术

新能源汽车电池包关键连接技术
新能源汽车电池包关键连接技术

新能源汽车电池包关键连接技术

1 序言

近年来,受益于国家优惠政策,新能源汽车行业得到了蓬勃发展,其销量也在逐年递增。为了适应并扩大市场需求,解决“里程焦虑”的问题,新能源汽车正不断地追求着轻量化。电池包作为新能源汽车开发中十分重要的部件,其趋同的技术与生产水平备受人们的关注[1]。目前,行业内普遍使用的电池包箱体有:铝型材电池包箱体、铸铝电池包箱体和钣金电池包箱体等。钣金电池包箱体安全性、可靠性高,多数使用在公共交通工具上,如公交车。对于小型轿车而言,多数使用的是铝制电池包箱体。

铝制电池包箱体承载结构主要分为两种:底板承载式结构和框架承载式结构。大众公司在研究中发现框架承载式结构更容易实现轻量化以及满足不同结构下的强度要求,并将此结构应用于奥迪A6EV车型上[2]。依据承载结构的不同,其对应的生产工艺流程、方法也存在一定的差别。本文针对电池包箱体制造的关键连接技术:钨极氩弧焊、熔化极气体保护焊、搅拌摩擦焊、激光焊以及新兴的螺栓自拧紧技术(FDS)和胶接技术等分别进行介绍。

2 传统熔化焊

2.1交流钨极氩弧焊

钨极氩弧焊(TIG焊)属于非熔化极惰性气体保护焊的一种,是在惰性气体的保护下,利用钨极与焊件间产生的电弧热熔化母材和填充焊丝(也可以不加焊丝),从而形成优质焊缝的焊接方法[3]。交流TIG焊在焊接时具

有电弧与熔池的可见性好、操作简单、焊缝外观无焊灰及不需清洁等优点,并且具有清理氧化膜的作用,因此非常适合铝制电池包箱体的焊接。此外,对于空间狭小的短焊缝焊接以及密封性要求高的焊缝也尤为合适。例如,比亚迪和吉利旗下多款混动车型的电池包箱体,在生产制造过程中均大量采用交流TIG焊,实现壳体的连接,保证工件气密性,其TIG焊缝约占箱体总焊缝量的80%。某车型电池包下箱体焊缝如图1所示,箱体结构紧凑,型材刚度大,可以选择交流TIG焊。然而,随着箱体结构的演变,箱体尺寸在变大、型材结构在变薄、焊接结构在优化以及焊后尺寸精度要求在提高,因此交流TIG焊的优势并不凸显。相反,其缺点:焊接速度慢、焊接热输入大、焊后变形大、不易控制等,限制了箱体的高效生产。因此,热输入小、变形小、工作效率高的熔化极气体保护焊开始渐渐取代TIG焊。

图1 某车型电池包下箱体焊缝

2.2CMT焊

CMT(Cold Metal Transfer)是一种全新的MIG/MAG焊接工艺,它是利用一个较大的脉冲电流使得焊丝顺利起弧,并在焊丝端部熔化长大,在熔滴即将发生脱落的时刻,电流急剧衰减至几乎为零,利用熔滴与熔池的表面张力、熔滴自身重力和焊丝的机械回抽作用,实现熔滴的完美过渡,从而形成连续的焊缝[4]。相比传统MIG焊,CMT技术具有热输入小、无飞溅、电弧稳定以及焊接速度快等优点,可用于多种材料的焊接,在铝制电池托盘的生产制造中占据着举足轻重的地位。例如,比亚迪、北汽旗下多款车型所使用的电池包下箱体结构,多采用CMT焊接技术,其焊缝约占箱体焊缝的70%。箱体简易结构如图2所示,边框与底板(采用间断

焊或整圈满焊)以及横梁与底板之间的焊接均采用CMT焊接工艺,只有底板背部为搅拌摩擦焊。多数电池包箱体供应商在生产制造过程中,为了保证焊接质量(见图3),引用机器手自动化焊接取代人工焊接,提高了生产效率,保证了焊缝的一致性及工件精度。

图2 电池包下箱体熔化焊简易结构

图3 铝制电池包箱体CMT焊缝

虽然随着自动化程度的提高,MIG焊在电池包箱体焊接中占据的比重越来越高,但是其仍难摆脱铝合金传统熔化焊的焊接问题,如热输入大引起的变形、气孔、焊接接头系数低等。因此,高效绿色、焊接质量更高的搅拌摩擦焊技术走进了人们的视野。

3 搅拌摩擦焊

搅拌摩擦焊(FSW)是英国剑桥焊接研究所发明的一种固相连接技术。与传统熔化焊焊接原理不同,FSW是以旋转的搅拌针以及轴肩与母材摩擦产生的热为热源,通过搅拌针的旋转搅拌和轴肩的轴向力实现对母材的塑化流动,最终得到区别于熔化焊铸造组织的精细锻造组织的焊接接头[5]。FSW具有焊接变形小、无裂纹及气孔等缺陷,且焊接接头强度高、密封性好等优点,被广泛应用于电池包箱体焊接领域。例如,吉利、小鹏旗下多款车型的电池包箱体均采用双面搅拌摩擦焊结构。其简易结构如图4所示,此结构主体部分使用FSW,只有边梁以及小件等少量焊缝采用熔化焊,提高了生产效率以及箱体的整体安全性能。常规的单轴肩FSW后会产生飞边,增加了焊缝打磨的工作量(见图5)。为了减少甚至解决飞边问题,催生了恒压力FSW、静止轴肩FSW等技术。

图4 电池包箱体FSW简易结构

图5 铝制电池包箱体FSW焊缝

常规电池包箱体生产工艺流程为边框与底板的独立焊接,之后进行组装焊接。单独的底板模块进行单轴肩FSW,其焊接作业效率低,底板变形调控较难。目前,国内外均开始研究该结构的双机头焊接(见图6),通过双面同时焊接,降低底板变形量,同时缩短单工序作业时间。图7所示为双机头FSW焊接打样产品,其整体平面度控制在2mm以内。

图6 双机头FSW模拟

图7 双机头FSW焊接产品

4 激光焊

激光焊是属于高能束焊的一种,是利用能量密度极高的激光束照射在待焊材料表面,使材料熔化并形成可靠的连接接头[6]。随着激光技术的成熟,激光焊接在车身制造中被广泛应用(见图8),主要用于汽车车门、前后盖、顶盖、流水槽和侧围外板等零部件的焊接[7,8]。在新能源汽车电池包领域,激光焊也有应用实例,如2018年上海凌云科技股份有限公司为大众汽车制造的一款电池包,已经顺利交付生产。但是,由于激光焊设备前期投资成本高、回报周期长,以及铝合金激光焊接困难等原因,激光焊并没有得到广泛应用。

图8 激光焊接铝合金焊缝

5 其他焊接工艺

随着新能源汽车电池包箱体结构的演变,其相应的生产制造技术也在不断地更新。为了缓解焊接变形对箱体尺寸精度的影响,出现了螺栓自拧紧技术(FDS)和胶接技术等,其中比较出名的企业有德国WEBER公司和美国3M公司。

5.1螺栓自拧紧技术(FDS)

FDS连接技术是一种通过设备中心拧紧轴将电动机的高速旋转传导至待连接板料摩擦生热产生塑性形变后,自攻螺丝并螺栓连接的冷成形工艺[9],如图9所示。通常配合机器人使用,自动化程度高。在新能源电池包制造领域,该工艺主要应用于框架式结构箱体,配合胶接工艺,在保证足够连接强度的同时实现箱体的密封性能。例如,蔚来某款车型的电池包箱体就采用了FDS技术,并已经量化生产。虽然FDS技术优势明显,但是也有其缺点:设备成本高、焊后凸起以及螺钉造价昂贵等,另外使用工况也限制了自身的应用。

图9 FDS技术连接效果

5.2胶接技术

胶接技术是一种利用胶粘剂在连接面上产生机械结合力、物理吸附力和化学键合力而使材料连接起来的工艺方法[10]。胶接技术不需要高温高压环境,因此它具有不易变形、结合应力分布均匀的优点。据3M公司介绍,胶接技术在新能源汽车电池包上已经开始应用,如底板的拼接使用胶接技术,其结构胶的最大抗剪力可以达到40MPa。综合分析,胶接技术可以

电动汽车用锂离子动力蓄电池包和系统测试规程完整

电动汽车用锂离子动力电池包和系统测试规程 1 范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 2 规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db 交变湿热(12h+12h循环)(IEC 60068-2-30:2005,IDT) GB/T 2423.43-2008 电工电子产品环境试验第2部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006 电工电子产品环境试验第2部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置(ISO/DIS 6469-1:2000,EQV)GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护(ISO/DIS 6469-3:2000,EQV)GB/T 19596-2004 电动汽车术语(ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 1: General,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 3: Mechanical loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条件和试验第4部分:气候负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 4: Climatic loads,MOD) 3 术语和定义 3.1 蓄电池电子部件 采集或者同时监测蓄电池单体或模块的电和热数据的电子装置,必要时可以包括用于蓄电池单体均衡的电子部件。 注:蓄电池电子部件可以包括单体控制器。单体电池间的均衡可以由蓄电池电子部件控制,或者通过蓄电池控制单元控制。 3.2 蓄电池控制单元 battery control unit (BCU) 控制、管理、检测或计算电池系统的电和热相关的参数,并提供电池系统和其他车辆控制器通讯的电子装置。

动力电池pack生产工艺流程

动力电池pack生产工艺流程_动力电池PACK四大工艺介绍 2018-04-17 17:13 ? 885次阅读 动力电池PACK四大工艺 1、装配工艺 动力电池PACK一般都由五大系统构成。 那这五大系统是如何组装到一起,构成一个完整的且机械强度可靠的电池PACK呢?靠的就是装配工艺。 PACK的装配工艺其实是有点类似传统燃油汽车的发动机装配工艺。 通过螺栓、螺帽、扎带、卡箍、线束抛钉等连接件将五大系统连接到一起,构成一个总成。

2、气密性检测工艺 动力电池PACK一般安装在新能源汽车座椅下方或者后备箱下方,直接是与外界接触的。当高压电一旦与水接触,通过常识你就可以想象事情的后果。因此当新能源汽车涉水时,就需要电池PACK有很好的密封性。 动力电池PACK制造过程中的气密性检测分为两个环节: 1)热管理系统级的气密性检测; 2)PACK级的气密性检测; 国际电工委员会(IEC)起草的防护等级系统中规定,动力电池PACK 必须要达到IP67等级。

2017年4月份的上海车展,上汽乘用车就秀出了自己牛逼的高等级气密性防护技术。将充电状态下的整个PACK放到金鱼缸中浸泡7天,金鱼完好无损,且PACK内未进水。 3、软件刷写工艺 没有软件的动力电池PACK,是没有灵魂的。 软件刷写也叫软件烧录,或者软件灌装。 软件刷写工艺就是将BMS控制策略以代码的形式刷入到BMS中的CMU和BMU中,以在电池测试和使用过程中将采集的电池状态信息数据,由电子控制单元进行数据处理和分析,然后根据分析结果对系统内的相关功能模块发出控制指令,最终向外界传递信息。

4、电性能检测工艺 电性能检测工艺是在上述三个工艺完成后,即产品下线之前必做的检测工艺。 电性能检测分三个环节: 1)静态测试: 绝缘检测、充电状态检测、快慢充测试等; 2)动态测试; 通过恒定的大电流实现动力电池容量、能量、电池组一致性等参数的评价。 3)SOC调整; 将电池PACK的SOC调整到出厂的SOC SOC:StateOfCharge,通俗的将就是电池的剩余电量。 关于电池PACK的电性能检测参数,每个公司其实都有自己定义的标准,都不一样。但是国家对于新能源汽车动力的电性能要求是有规定的,国标如下: 《GB/T31484-2015电动汽车用动力蓄电池循环寿命要求及试验方法》《GB/T31486-2015电动汽车用动力蓄电池电性能要求及试验方法》

新能源汽车核心技术详解:电池包和BMS、VCU、-MCU

新能源汽车核心技术详解:电池包和BMS、VCU、 MCU 电子创新网| 2001-15-20 11:54 2014年国内新能源汽车产销突破8万辆,发展态势喜人。为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。 1 新能源汽车分类 在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。 1.1消费者角度 消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。表中“-”表示无此功能或较弱、“+”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。 1.2技术角度

图1 技术角度分类 技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。 2 新能源汽车模块规划 尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制

新能源汽车核心技术详解:电池包和BMS、VCU、-MCU

新能源汽车核心技术详解:电池包和BMS、VCU、MCU 导读:为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,北汽福田新能源系统开发部部长杨伟斌结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。 2014年国内新能源汽车产销突破8万辆,发展态势喜人。为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。 1 新能源汽车分类 在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。 1.1消费者角度 消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。表中“-”表示无此功能或较弱、“+”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。 表1 消费者角度分类 1.2技术角度

图1 技术角度分类 技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。 2 新能源汽车模块规划 尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制

新能源汽车动力电池及其管理系统试卷A

新能源汽车动力电池及其管理系统试卷A 汽运19-301(26人) 一、【单选题】(每题2分共20分) 【单选题】 1、可逆电池的定义是:外接电源电压(A)电池装置电动势。(2分) A.大于 B.等于 C.小于 D.不一定 【单选题】 2、以下电池中不作为电动汽车动力电池的是(D)。(2分) A.铅酸电池 B.锂离子电池 C.镍氢电池 D.锌银电池 【单选题】 3、关于蓄电池的检测,下列说法正确的是(D)。(2分) A.外观检查时,只检查蓄电池接线柱、电缆和托架固定架是否有腐蚀即可。 B.外观检查时,只检查蓄电池周围无漏液,壳体和桩柱无破损裂纹即可。 C.用万用表检测蓄电池电压,只要在12.6V以上就一定可以用。 D.万用表检测的蓄电池端电压,只能作为检测的参考因素。 【单选题】 4、(B)电池性能比较高,可以快速充电、高功率放电、能量密度高,且循环寿命长,但高温下安全性能差。(2分) A.镍氢电池 B.锂离子电池 C.铅酸电池 D.锌银电池 【单选题】 5、动力电池包衰减诊断故障代码在下列(B)情况下可能出现。(2分) A.电池组已经退化到需要进行更换 B.电池组已经退化到只有原电池容量的20%左右 C.车辆的动力电池包电压为0伏 D.这些诊断故障代码是根据汽车的行驶里程设定的 【单选题】 6、动力电池的能量储存与输出都需要模块来进行管理,即动力电池能量管理模块,也称为动力电池管理系统,或动力电池能量管理系统,简称(C) 。(2分) A.BBC B.ABS C.BMS D.EPS 【单选题】 7、集中式动力电池管理系统的特征是(D)。(2分) A.电池管理系统与电池包分开 B.电池信息采集器与电池管理控制器分开 C.电池信息采集器与电池模组分开 D.信息采集器和管理器集合在一起

未来新能源汽车电池行业研究分析(精)

未来新能源汽车电池行业分析(精)

————————————————————————————————作者:————————————————————————————————日期: 2

新能源电动汽车最主要的部件是动力电池、电动机和能量转换控制系统,而动力电池要实现快速充电、安全等高性能,是技术门槛最高、也是利润最集中的部分。中投顾问新能源汽车行业部指出,新能源汽车对电池要求很高,必须具有高比能量、高比功率、快速充电和深度放电的性能,而且要求成本尽量低、使用寿尽量长。 据发布的《2009-2012年中国电池行业投资分析及前景预测报告》显示,新能源汽车将朝着“镍氢——锂电——燃料电池”产业化路径发展。短期能够兑现业绩的只有镍氢动力电池,磷酸铁锂电池的不成熟,以及工信部出台的新能源汽车准入新标准也让镍氢电池生产商看到了中短期的希望。不过,3-5年内在锂电池技术成熟后,镍氢电池市场将被锂电池逐渐蚕食。 再者,近年来燃料电池(FC技术的突飞猛进使得氢能的梦想在21世纪开始变成现实。而以氢为动力的燃料电池汽车(FCV得到了世界各国政府和企业的高度重视,并且取得了重大进展,预计在未来的5--10年内FCV将正式进人市场,以加氢站、输氢管道建设为标志的“氢经济”初露端倪。 研究发现,日本的锂电池供应商占有较大的优势地位,并已开始着手制定统一的锂电池规格、安全标准、充电方式。而美国为了不让自己由对进口石油的依赖变成对外国锂电池的依赖,也在扶持电动车和锂电池制造企业,美国能源部也于2009年批准了250亿美元的贷款。相比较之下,欧洲的汽车企业虽然在绿色节能环保方面非常激进,甚至更为激进,但他们在改进传统的发动机(如使其“小型化”,利用汽/柴油直喷技术等方面,或者氢动力车方面,优势更为明显。 1. 政策利好镍氢电池迎来投资盛宴 产业研究中心获悉,2010年6月25日工信部对外公布了《新能源汽车生产企业及产品准入管理规则》,并于7月1日起施行,到2010年12 月31日前适用。根据工信部出台的新标准,以镍氢电池生产的混合动力乘用车被归类为成熟产品,允许在全国范围内销售使用,对镍氢电池产业是一大利好。 1.1. 镍氢电池发展现状分析 3

电动汽车电池包项目研究报告

电动汽车电池包研究报告 随着国家对新能源汽车的扶持和推广力度不断加大,行业规范也越来越完善,一些不符合要求的电池pack厂也逐渐被淘汰。未来要想在新能源汽车领域有所斩获,必须了解并适应国家对此行业的发展规划和发展方向。 根据国家对《锂离子电池行业规范条件》。首先是电池pack要进行公告申报,只有通过公告的电动汽车电池厂家,才能够进行电池的生产。 一、必要性 1、是对工厂的产能及实力的要求,《规范条件》对企业产能提出了量化的要求,锂离子动力蓄电池单体企业年产能力不得低于2亿瓦时,金属氢化物镍动力蓄电池单体企业年产能力不得低于1千万瓦时,超级电容器单体企业年产能力不得低于5百万瓦时。系统企业年产能力不得低于10000套或2亿瓦时。生产多种类型的动力蓄电池单体企业、系统企业,其年产能力需分别满足上述要求。 2、为推动企业的技术进步,《规范条件》对企业研发机构、人员、设计规范文件体系和具体的设计研发能力提出了要求,企业应建立产品设计研发机构,应配备占企业员工总数比例不得少于10%或总数不得少于100人的研究开发人员,应建立与汽车研发相适应的产品设计开发流程和技术管理体系,建立汽车动力蓄电池产品设计规范,建立产品开发信息数据库。 3、为保证企业产品的安全性和一致性,《规范条件》对企业产品和质量保证能力提出了要求,企业应通过IATF:16949质量体系认证,应建立从原材料、部件到成品出厂完整的检验和可追溯体系。 4、为推动新能源汽车市场的形成和发展,对动力蓄电池产品提供质量保证等售后服务,《规范条件》要求企业应建立完善的售后服务体系,会同汽车整车企业研究制定可操作的废旧动力蓄电池回收处理、再利用的方案。 而根据2017-3-1日,工业和信息化部发展改革委科技部财政部关于印发《促进汽车动力电池产业发展行动方案》的通知, 1、产品性能大幅提升。到2020年,新型锂离子动力电池单体比能量超过300瓦时/公斤;系统比能量力争达到260瓦时/公斤、成本降至1元/瓦时以下,使用环境达-30℃到55℃,可具备3C充电能力。到2025年,新体系动力电池技术取得突破性进展,单体比能量达500瓦时/公斤。 2、鼓励动力电池龙头企业协同上下游优势资源,集中力量突破材料及零部件、电池单体和系统关键技术,大幅度提升动力电池产品性能和安全性,力争实现单体350瓦时/公斤、系统260瓦时/公斤的新型锂离子产品产业化和整车应用。 第二、是对产品的要求,工信部于2017年1月6日发布《新能源汽车生产企业及产品准入管理规定》,自2017年7月1日起施行。通过审查的新能源汽车生产企业及产品,由工信部通过《道路机动车辆生产企业及产品公告》(以下简称《公告》)发布。根据准入新规,申请准入的新能源汽车产品,应符合《新能源汽车产品专项检验项目及依据标准》。

纯电动汽车动力电池包结构静力分析及优化设计

纯电动汽车动力电池包结构静力分析及优化设计 摘要:动力电池包作为纯电动汽车的唯一动力源,承受着电池组等模块的质量,因此其强度、刚度必须满足使用要求才可以保证行驶的安全性。在建立其有限元模型的基础上,分析了电池包结构在弯曲工况、紧急制动工况、高速转弯工况、垂直极限工况以及扭转工况下的强度、刚度。分析结果显示,在垂直极限工况下,电池包底板的受力情况最为恶劣,因此对原有模型做出了改进,改变底板加强筋的布置形式。经过相同工况的模拟,发现在力学性能提升的基础上,整体质量得以减轻,实现了轻量化的目标。 关键词:动力电池包有限元法静力分析优化设计 Abstract:As the only power source of pure electrical vehicle,the power battery pack bears the weight of several models such as the battery model. To ensure the safety,the pack’s strength and stiffness must meet the fundamental requirements. This paper mainly analyzed the strength and stiffness under different working conditons on the base of a finite element model. The rsult shows that and the corresponding stress and deformation graphs are obtained.The structure of the battery pack is improved after analyzing the causes of the stress concentration.Also, the performance of the new model is compared with the original one.The results show that the weight of the structure is reduced while the performance of the structure is improved, and the lightweight of the vehicle is realized. Keywords:power battery pack finite element method static structural analysis optimal design

新能源汽车之动力电池(2020)市场拐点将至

新能源汽车之动力电池(2020)市场拐点将至 新能源汽车之动力电池(2020)报告,重点分析了动力电池领域最新的技术路线革新和政策变迁对行业竞争格局的新变化。 ■动力电池市场规模有望达860亿,未来拥有一定的增量空间。动力电池市场规模的三大核心因素是新能源汽车销量、单车带电量、动力电池售价。关于新能源汽车销量,随着补贴退坡平缓、产品力显著提升、配套设施持续完善和C 端用户需求释放,2021年有望迎来拐点。预计2022年销量有望达到160万,未来2年的年复合增长率约为22.57%。关于单车带电量,在技术、政策、用户需求驱动下,续航里程逐年提升,助力单车带电量持续攀升,预计未来2年的年复合增长率约为10.02%;关于动力电池售价,在下游整车平价需求、上游原材料成本下降和自身制造成本下降三维度助力之下,动力电池售价逐年下降,预计未来2年的年复合增长率约为-9.93%。单车带电量的提升有望对冲掉动力电池售价的下降,动力电池市场规模随销量的增加而呈上升的趋势,预计2022年有望达860亿,约为2019规模的1.2倍。 ■技术路线:磷酸铁锂有望回暖至40%,模组技术有所革新。目前动力电池技术路线有所波动,在材料层面:动力电池领域形成了三元(69.96%)为主、磷酸铁锂为辅(28.18%)的产品结构。随着补贴退坡、新国标5 min热扩散要求、能量密度边际改善,磷酸铁锂呈现回暖趋势,预计2021年有望回暖至35~40%。而高镍三元由于能量密度优势凸出,成本和安全边际逐渐改善,未来仍将是动力电池的主流方向。在工艺层面:推出了具有革新性的无模组技术(CTP和刀片电池),在高镍电芯的基础上,新能源汽车续航里程有望达到接近800km,助力新能源汽车渗透率进一步提升,利好拥有无模组技术的龙头企业。 ■竞争格局:外资有望重回前列,二线企业有望崛起。动力电池白名单取消,外资企业强势进入,2020 Q1 LG(10.7%)和松下(4.7%)分别位列第三、第四,未来随着原材料国产化进程、客户资源增加、现有车型放量,其市场份额呈上升趋势,外资企业有望重回前列;外资车企对供应商的新一轮选择和车企二供的开发,有望孕育新的微巨头,优质二线电池企业仍有望崛起。

浅论新能源汽车电池包装配生产技术

浅论新能源汽车电池包装配生产技术 新能源汽车的核心技术是电池包,电池包生产装配的质量对新能源汽车的性能有着较大影响,因此,电池包的研发和装配生产技术备受业内关注。文章对新能源汽车电池包装配生产技术进行了分析探讨。 标签:新能源汽车;电池包;装配 一、新能源汽车电池概述 我国新能源汽车行业发展迅猛,新能源汽车核心技术是电池包,其生产装配质量直接影响新能源汽车的性能。当前我国新能源汽车主要应用的是蓄电池,主要特点如下。 (1)铅酸蓄电池。其电极材料由铅及其氧化物构成,电解液是硫酸溶液,具有电压稳定、价格底的优点,但缺点是比能低、使用周期短、日常维护较为频繁。目前,铅酸蓄电池已经广泛应用于低速电动汽车领域。 (2)镍氢电池。镍氢电池有阳极材料和阴极材料构成,前者主要是氢氧化镍,后者主要是钒、锰、镍等金属合成材料构成,镍氢电池的能量体积密度比铅酸电池高3倍左右,比功率却是铅酸电池的10倍。但是低温环境下容量会减小,高温环境下充电的耐受性差,镍等部分原材料价格昂贵,过度放电会损伤电池的性能,在一定程度上限制其荷电状态。 (3)锂离子电池。锂离子电池性能高、成本低,是新能源汽车应用的大势所趋。新型锂离子电池采用高电压/高容量正负极材料和高压电解液代替,电池成本、比能量和能量密度比传统锂离子电池优势明显,应用于新能源汽车动力系统中,经济性和便利性得到大幅提升。 二、新能源汽车常见电池包的结构分类 (1)油电混合动力汽车电池包。油电混合动力汽车是指同时具备热动力源与电动力源两种动力来源的汽车。电机不能直接驱动车轮,而是辅助发动机进行车轮驱动。电池包也不需要外接电源,需通过发动机将其多余的能量转化为电能储存在电池包内,当发动机再次需要电动机辅助驱动时,电池包内的电能转化为动能传输给电机,由电机辅助发动机驱动汽车。也就是说,电池包只是在起步、加速、制动等环节辅助发动机工作,具有较小的体积和较轻的质量。目前,油电混合动力汽车多使用镍氢电池,一般通过自然通风冷却装置冷却,较为简单,电池包体积小,一般设置在座椅后面的后备厢,便于车内空间的布置,不仅方便电池包的生产装配,也便于日常维护和保养。 (2)插电混合动力汽车电池包。插电混合动力汽车也同时具备热动力源与电动力源两种动力来源,与油电混合动力汽车相比电机能单独直接驱动,电池包

新能源汽车动力电池行业研究报告

新能源汽车动力电池行业研究报告

目录 1 汽车动力电池行业总体概况 (1) 2 汽车动力电池的分类及发展现状 (1) 2.1 铅酸电池 (2) 2.1.1 铅酸电池的特点 (2) 2.1.2 铅酸电池在中国的发展现状 (3) 2.2 镍氢电池发展现状分析 (3) 2.2.1 国内政策的有利支持 (3) 2.2.2 镍氢电池在汽车生产方面的应用 (4) 2.2.3 镍氢电池与锂电池的对比 (4) 2.3 锂电池发展现状分析 (4) 2.3.1 锂电池的特点 (4) 2.3.2 开发锂电池汽车的主要厂商 (5) 2.3.3 锂电池在我国的发展 (5) 2.3.4 锂离子电池发展的瓶颈 (6) 2.3.5 日本在锂电池标准化方面的发展 (6) 3 世界主要动力电池生产国的发展现状 (6) 3.1日本 (7) 3.2 中国 (8) 3.3 韩国 (10) 3.4 美国 (11) 3.5 电池厂商供应对照表 (11) 4 中国新能源汽车的发展分析 (12) 4.1 政策的支撑下的行业发展 (12) 4.2 目前面临的问题 (14) 4.2.1 价格仍然偏高 (14) 4.2.2 尚无完备的充电站等配套设施 (14) 4.3 新能源汽车在中国市场的主要车型 (14) 4.3.1 在售车型 (14) 4.3.2 即将上市的车型 (15) 4.4 动力电池的检测机构 (15)

1 汽车动力电池行业总体概况 新能源汽车是指采用汽油、柴油之外的动力作为动力源的汽车的总称,按动力源的不同,主要有三种:混合动力汽车(Hybrid Electric Vehicle, HEV)、纯电动汽车(Electric Vehicle,EV)和燃料电池电动汽车(Fuel Cell Electric Vehicle,FCEV)。按照是否依赖外部充电,混合动力汽车又可分为普通HEV和插电式混合动力汽车PHEV(Plug-in hybrid)。 新能源电动汽车最主要的部件是动力电池、电动机和能量转换控制系统,而动力电池要实现快速充电、安全等高性能,是技术门槛最高,也是利润最集中的部分。新能源汽车对电池的要求很高, 必须具有高比能量、高比功率、快速充电和深度放电的性能,而且要求成本尽量低,使用寿命尽量长。 从世界范围来看,新能源汽车将朝着“镍氢——锂电——燃料电池”产业化路径发展,短期能够大范围使用的只有镍氢动力电池,不过,未来3-5年,在锂电池技术成熟后,镍氢电池市场将被锂电池逐渐蚕食。再者,近年来燃料电池技术的突飞猛进使得氢能的梦想21 世纪开始变成现实,而以氢为动力的燃料电池汽车得到了世界各国政府和企业的高度重视,并且取得了重大进展,预计在未来的5-10年内燃料电池汽车将正式进入市场。 2 汽车动力电池的分类及发展现状 当前在电动汽车上得到应用的有铅酸电池、镍镉电池、镍氢电池和锂电池。具体分类如下:

新能源汽车、电动汽车整车装配流程、报告

电动汽车电动汽车整车装配工艺流程卡 车辆型号出厂编号/VIN代码 电机编号控制器编号 调速踏板编号充电器编号 组合仪表编号车身颜色 蓄电池编号 1 2 3 4 5 6 7 8 工序号工序名称力矩控制项目责任人 1-1 1.车门门锁、车门限位器 2.充电器、充电器座、电喇叭 3.车门流水条 1-2 1.线卡热塑管 2.车架线束,连接控制器和后蓄电池电缆4根 3.接前桥制动软管组件、通后桥制动管 4.驻车软轴1 1-3 1.前减震器(左/右) 2.横摆臂和转向臂(左/右) 3.平衡杆、平衡杆胶套 4.前制动器(左/右) 5.接制动毂油管 6.室内制动管路两通转向器 7.转向球头、转向拉杆、转向防尘套 1.固定减震器螺母 2.连接横摆臂、转向臂螺母螺栓 3.固定转向器螺母螺栓 4.固定平衡杆螺母螺栓 5.固定制动器螺栓 6.固定制动鼓螺母 1-4 1.后桥总成组件 2.后悬限位块 3.后减震弹簧 4.接前地板制动管路 1-5 1.制动踏板组件 2.室内接制动泵油管1/2 3.制动油壶,加制动液 4.驻车制动器 5.粗调刹车 6.装前车轮 7.粗调前束 1.固定制动踏板螺栓 2.固定前轮螺母 2-1 1.顶蓬密封条 2.顶蓬线束 3.后尾翼组件 4.粘前轮包左右装饰件 2-2 1.车身线束、手刹继电器、闪光器、制动开关 2.加速踏板、刮水电机、喷水嘴、 3.暖风机、喷水壶 4.转换器、扩音机 2-3 1.蓄电池、蓄电池减震垫 2.前、后组合灯,密封塞 2-4 1.蓄电池布线和固定 2.后蓄电池压板 word文档可自由复制编辑

2-5 1.玻璃升降器(左/右)、玻璃导轨胶条 2.车门玻璃(左/右) 3.车门玻璃挡水条(左/右) 4.电动门窗(选装)、中控锁(选装) 工序号工序名称力矩控制项目责任人 2-6 1.内饰 2.内后视镜、遮阳板、内把手 3.外后视镜、前后侧风窗胶条 4.天线 2-7 1.方向柱 2.仪表板研配 3.前后风挡玻璃和胶条 4.粘侧围前/后风窗玻璃、雨刷 5.粘顶盖密封条 1.固定转向柱螺母螺栓 2-8 1.仪表板组件 2.点火开关、组合开关 3.组合开关罩、方向盘 1.固定方向盘螺母 2-9 1.地板皮、中蓄电池罩 2.车门密封条 3.安全带、倒顺开关 4.前后保险杠组件、密封塞、后轮包装饰件 5.车门内护板、前格栅 1.固定安全带的螺栓 2-10 1.下线调试 2.座椅安装,踏板胶块、轮辋装饰件 3.粘标示、入库 整车下线日期: 整车下线检验卡 检验项目实测数据结论检验员 速度表示值标称值(30km/h) 制动性能制动距离(30km/h) 前照灯发光强度 (cd) 左右 前轮定位 前束角(o) 车轮外倾角(o) 其它检验项目 检验项目结论检验项目结论 外观检验车身、装配检验风挡、门窗使用安全玻璃全车灯光齐全有效 方向盘最大自由转向量符合要求后视镜齐全有效 转向系工作可靠雨刮器齐全有效制动踏板自由行程符合要求轮胎符合标准 轮胎螺母紧固可靠制动系无渗油漏气 后桥无漏油驱动、变速系统 紧固件检查3~10km行驶试验 雨淋试验 word文档可自由复制编辑

新能源汽车的核心部件大剖析:电池系统篇

新能源汽车的核心部件大剖析:电池系统篇电池系统的选择和设计 如前文所介绍的情况,各家车厂面临油耗和排放的挑战,不断推出新能源汽车的情况,电池系统成了当前汽车电子电气系统中,一个最为昂贵也最为受人重视的子系统。本文将从电池系统的需求、车用电池的状态,以及当前车厂和电池厂的关系角度来介绍电池系统。 电池系统是在混合动力、插入式混合动力和纯电动汽车中用来存储电能,并提供给电驱动系统的需要的能量。电池中的电能,其来源主要有三种,电池处在较低的荷电状态(SOC)时,车辆利用发动机带动高压发电机给电池供电;刹车的时候,能量回收的时候的电能以及充电模式下,从电网得来的能量,如图1所示,在电池的不同的状态,相应的车辆也处在不同的工作模式下。 图1 电池状态vs 车辆模式 电池系统的选择和设计,很大一部分的参数来自于设计什么样的车型,不同

的车型的规范,将直接决定电池系统和电驱动系统的参数,如下图2所示,根据所需要开发的新能源车的具体参数,其电池系统的基本规范也可以确定下来。而电池系统的基本构成,粗略的来说是从电池单体开始,构建电池模组,配置合适电子和电气系统,在电池包层面进行布置和安全分析。 图2 车型规范对电池系统规范的转化 电池单体的选择 1)电池单体的选择 从基本来看,电池单体选择是考虑电池容量、化学体系和单体形状。 ? 单体类型:可选的有铅酸、镍镉(NiCd)、镍氢(NiMH)、高温电池(NaS 和NaNiCl2)、液流电池和锂离子电池,从综合来看,目前只能依靠锂离子电池来作为储能单元。而离子电池内的化学体系,其参数差异也很大。 ? 密度:对电池来说,两个比较重要的参数是能量密度(决定存储电能)和功率密度(决定放电能力),这两者往往不可兼得。值得注意的是,从电极材料理论密度到单体密度再到电池包密度,由于其他不储能的部分,这两个参数往往递减迅速。 ? 寿命:可分为循环寿命和使用寿命两个参数。循环寿命取决于充放电深度、电压、温度和电流(负荷);使用寿命包括不使用的时间,与温度和电压有

电动汽车电池包散热加热设计

万方数据

?电动汽车电池包散热加热设计? 被动冷却/加热电池包。尽管空气是经过汽车空调(交流)或供暖系统冷却和加热的,但它仍然被 认为是一种被动系统(如图2)。运用这种被动系统,环境空气必须在一定温度范围(10℃~35℃)中才能正常进行热管理,在环境极冷或极热条件 下运行电池包可能会产生更大的不均匀。相关实 验也证明被动系统中,由于引入环境空气的温度不一致性,冷却加热电池包会导致电池包更大的不均匀性。 下面为空冷和液冷主被动系统示意图。 ?6? 图I被动冷却一外部空气流通 图2被动加热和冷却一内部空气流通 图3主动加热和冷却一外部和内部空气流通 图4被动冷却一液体循环 图5主动冷却/加热一液体循环 图6主动冷却/加热一液体循环 1.2散热系统 根据传热学理论,固体与气体,固体与液体接 触产生传热现象。气体的对流换热系数远远没有 液体的对流换热系数大,液体和固体接触对流换热能力更强。传热系数越大所交换的热量越多,换 热效果就越明显,因此要选择合适的传热介质。各 种传热现象的传热系数范围如表l所示。 表I表面传热系数的一般范围 对流换热问题的类型 h/[w/(m2k)】 自然对流换热:气体 2.25液体 50.1000强迫对流换热:气体 25.250液体 50.25000相变对流换热:沸腾 2000.50000凝结 2000.100000 使用液体作为传热介质,需要考虑导电性,安全性,还有密封性,以及以后的维修方便性,还要考虑到电池包整体的重量。相变材料(例如液 体石蜡)的传热蓄热能力最强,且在达到相变温 度时可以大量吸热或放热而不升温降温。通过选用合适的相变材料能够使电池单体有效地达到热平衡,很好地控制电池温度上下限,避免产生温度过高过低现象。但是考虑到材料的研发、制造成本等问题,目前最有效且最常用的还是采用空气作为散热介质。 目前多采用的空冷主要有并行和串行两种通风方式,如图7~图8所示。这就要求在电池包结构上设计相应导风口,尽量减小空气流动阻 力,保证气流的均匀性。 图7串行通风 图8并行通风 .—(蜷)20 1 0.No.1. 万方数据

新能源汽车之动力电池

动力电池产业深度研究报告 一、动力电池产业简介 动力电池是电动汽车的动力源,是车载能量的存贮装置。动力电池在纯电动汽车、燃料电池汽车、非插电式混合动力汽车和插电式混合动力汽车上作为驱动力能源,同时向空调系统、动力转向系统、照明、信号系统、刮水器和喷淋器以及车载娱乐和通信设备等设施提供电能。在新能源汽车中其还作为驱动电机的动力源,为新能源汽车提供动力。 随着近两年新能源汽车行业的快速发展,动力电池作为在新能源汽车占比高达50%的动力系统的核心部件未来将随着行业的发展呈现爆发式的增长。 2. 行业产业链

3.技术发展趋势 由于目前动力电池的主要应用方是新能源汽车,并且由于续航里程一直是该行业的主要限制因素,因此高能量密度的三元锂电池将逐步成为行业趋势(在没有其他技术颠覆的情况下)。对于磷酸铁锂电池,目前主要应用于新能源客车行业,由于新能源客车行业目前主要的替代方是公交车,因此安全问题的考虑反而大于续航问题,伴随着城市公交替代的逐步完成,磷酸铁锂电池的行业天花板也逐渐显现,未来的发展空间有可能在储能领域的渗透(因为储能领域的安全考虑大于能量密度考虑) 二、动力电池产业全球现状分析 1.全球产销分析 动力锂电池属于锂电池行业的一个分支,因此对于锂电池行业的研究十分必要。全球锂电池行业近5年来发展迅速,在2014年之前主要得益于消费电子的快速增长,随着消费电子的增速放缓,2014年之后新能源汽车行业异军突起,继续带动整个锂电池行业的发展。全球的锂电池出货量从2011年的26.64GWH增长到2016年的118.7GWH,年复合增长率达到34.83%,可谓是增长迅速。

新能源汽车用电池包支架结构设计

新能源汽车用电池包支架结构设计 发表时间:2019-09-19T15:24:14.913Z 来源:《中国西部科技》2019年第11期作者:刘争光 [导读] 本文主要对新能源汽车用电池包使用过程中容易出现的问题进行了分析,并介绍了电池包支架结构的设计与试验过程。通过在设计过程中有针对性的解决电池包散热与强度问题,最终使本次设计满足了新能源汽车的使用要求。 惠州亿纬锂能股份有限公司 引言 汽车作为人类重要的交通工具,给人类的生产和生活带来了极大了便利,但其对能源的消耗也十分巨大,对环境的污染也较为严重,因此,随着科学技术的不断发展,人类开始探索采用新能源为汽车提供动力。尤其是近几年新能源汽车技术的不断成熟,新能源汽车已经随处可见,而且已经成为汽车领域未来发展的必然趋势。现阶段新能源汽车所采用的动力能源主要是依靠电池包提供的电能。电池包是新能源汽车的主要储能部件,其直接关系到新能源汽车的性能。目前,新能源汽车的电池主要使用的是镍氢动力电池,由于其本身具有比能量高、比功率高、无污染以及使用寿命长等优势,已经在新能源汽车中得到了广泛应用。但同是镍氢电池特别是汽车所使用的高功率镍氢电池对温度变化较为敏感,需要在稳定的、特定温度范围的环境下才能发挥出最佳效能,这就需要我们对电池包的结构进行科学合理的设计,以保证电池包的正常使用。 一、电池包易发生的问题 (一)电池发热快 由于电池的放电倍率会因车辆低速、高速、加速、减速等行驶状态的变换而产生变化,这就会导致电池放电倍率在变化过程中产生不同的生热速率,从而造成大量热能的产生,给电池的性能造成严重影响。 (二)电池包不易散热 新能源汽车和传统汽车一样,本身重量较大,带动汽车运动的动力能源需求很高,这就需要较多的电池数量来达到相应的指标。但由于汽车本身装载空间有限,这就使得这些电池必须紧密排列连接才能满足要求。因此,在实际行驶过程中,除了会出现电池发热快的问题以外,还会因电池排列紧密引起电池包中间温度过高,而边缘热量较少,造成每个单体电池之间的温度不均衡,并且不利于电池的均匀散热。而这种镍氢电池发热快、散热不均匀的问题,造成电池包在运行中的环境温度更为复杂多变,使得各单体电池、电池模块内组与容量的不一致性问题更加严重。此外,热量的长时间积累所导致的部分电池过分放电与部分电池过分充电,会严重影响电池的寿命与性能,同时还会带来安全隐患。如果电池在高温下不能及时得到散热通风,会使整个电池包系统温度过高或分布不均匀,进而降低整个电池包的电循环效率,使电池包的功率与能量无法得到充分发挥,严重时还会造成热失控,最终降低整个电池包的安全可靠性。 (三)电池之间的连接容易受损 汽车在行驶过程中会因路况不同产生各种震动,这就使电池包必须能经受得住震动考验。特别是各个电池之间相互连接的部位较为脆弱,过度震动会对其造成损坏,从而使电池包的性能与使用寿命受到影响。这就使得电池包的结构在设计的时候不但要充分考虑到如何帮助镍氢动力电池包散热,还要考虑到如何减震才能充分发挥出电池性最佳性能,延长电池的使用寿命。此外,电池包的结构设计也要尽可能的增强其本身强度,从而通过自身强度与减震方面来保证电池包的安全可靠性。 二、电池包支架结构设计 电池数量以及单体电池的连接方式通常是电池包结构设计时需要参考的因素。在本次设计中,电池包中电池的数量为126只,平均分成18支8.4V的电池棒并以串联形式组合起来。在电池支架材料选择上,选用具有优良耐热性、强度高、耐化学药品性以及加工方便等优点的尼龙66型号支架。电池支架分上中下三层设计,中间留出的两层空隙用于放置电池模块,在排列上每层有9支电池模块。这种设计将电池包整体体积减到最小,最大程度上节省了车内的装载空间。 电池包支架内部电池模块安放位置采用圆弧设计,能够有效提升电池模块在支架内部的稳定性。同时依据电池模块端的样式将支架两端做镶嵌式密合设计,使电池模块在支架内的可能发生的转动概率减到最校此外,将正负极符号标于支架两端,能够避免电池模块正负极反接而导致电池损坏。最后,通过在接线盒两端装设接线盒,可以防止外界金属与连接片接触引起电池包短路。 三、电池包散热系统设计 在传热学理论中,固体与液体、气体接触都会产生传热现象。在换热系数方面,液体的对流换热系数相较气体的对流换热系数要更高,因此,液体与固体接触时具有更强的对流换热能力。由于传热系数的大小能够反映出交换热量的多少,因此换热效果随着传热系数的增大而增强。这就要求在散热系统设计时要选择合适的传热介质。 虽然液体换热能力强,作为传热介质时的效果更明显,但如果选用液体来充当传热介质,就必须对液体的导电性、密封性、安全性以及后续维修的便捷性进行充分的考虑。此外,电池包的整体重量也是需要重视的问题。在变相材料的选择上,如液体石蜡的传热能力最强,并且在达到变相温度时会因吸收或释放大量热量而保持温度恒定,因此,液体石蜡可以作为首眩合适的选用变相材料不仅可以确保电池顺利的达到热平衡,更能对电池温度上下限进行很好的控制,从而防止温度的过高或过低现象的出现。但目前来说,变相材料在研发和制造成本上较高,因此其在电池包散热领域的应用还不能得到广泛普及。 由于本电池包结构受限,在散热设计上运用的是强制风散热模式,通过让空气沿电池包内预留的风道从一侧流往另外一侧的串行式通风来实现带走热量的效果。 另外,本设计中还运用了两只散热风扇并将其安装在电池包的一端来实现强制风冷。电池包内部留有6个位置用来放置温度传感器,当电池包内部温度超过一定值后会被温度传感器检测到,进而启动散热风扇来对电池包进行散热,而当电池包温度降低到合理范围时,则会自动停止散热风扇。这种设计可以通过让电池包在合适的温度下进行工作来达到最佳效果,同时散热风扇依据电池包温度自动启停还能够减少对能源的消耗。总体来说,这种散热模式具有质量轻、结构简单、散热效果好以及性价比高的优点。 四、电池包散热性和结构强度测试结果 (一)散热性能 将电池包放置在(20±5)℃的环境温度条件下,依据QC/T744-2006标准对电池包进行连续测试,最终得出电池包内温度小于30℃,属于电

相关文档
最新文档