初中数学八年级教案

合集下载

八年级等腰三角形数学教案【优秀6篇】

八年级等腰三角形数学教案【优秀6篇】

八年级等腰三角形数学教案【优秀6篇】作为一名专为他人授业解惑的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

来参考自己需要的教案吧!小编为您精心收集了6篇《八年级等腰三角形数学教案》,如果能帮助到您,小编将不胜荣幸。

等腰三角形篇一9.3章等腰三角形教案(一)、温故知新,激发情趣:1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。

)(二) 、构设悬念,创设情境:3、一般三角形有哪些特征?(三条边、三个内角、高、中线、角平分线)4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?(把问题3作为教学的出发点,激发学生的学习兴趣。

问题4给学生留下悬念。

)(三)、目标导向,自然引入:本节课我们一起研究——9.3 等腰三角形(板书课题) 9.3 等腰三角形(了解本节课的学习内容)(四)、设问质疑,探究尝试:结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。

[问题]通过观察,你发现了什么结论?(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)[结论]等腰三角形的两个底角相等。

(板书学生发现的结论)等腰三角形特征1:等腰三角形的两个底角相等在△ ABC中,△AB=AC()△△B=△C()[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

例1:已知:在△ABC中,AB=AC,△B=80°,求△C和△A的度数。

〔学生思考,教师分析,板书〕练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。

华师大版初中八年级数学上册全套教案

华师大版初中八年级数学上册全套教案

华师大版初中八年级数学上册全套教案一、教学内容1. 数据的收集与整理2. 分式与分式方程3. 几何图形的镶嵌4. 一次函数与反比例函数5. 三角形的判定与性质6. 图形的变换与位似二、教学目标1. 让学生掌握数据的收集与整理方法,学会用统计学方法分析数据。

2. 使学生熟练运用分式与分式方程解决实际问题,提高学生的数学思维能力。

3. 让学生了解几何图形的镶嵌方法,培养学生的空间想象力。

4. 使学生掌握一次函数与反比例函数的性质,并能运用其解决实际问题。

5. 让学生掌握三角形的判定与性质,提高学生的几何推理能力。

6. 让学生掌握图形的变换与位似,培养学生的观察能力和创新意识。

三、教学难点与重点1. 教学难点:(1)数据的收集与整理方法的选择与应用。

(2)分式与分式方程在实际问题中的运用。

(3)几何图形的镶嵌方法与空间想象力的培养。

(4)一次函数与反比例函数的性质及其应用。

(5)三角形的判定与性质的推理和应用。

(6)图形的变换与位似的实际操作。

2. 教学重点:(1)掌握数据的收集与整理方法,提高数据分析能力。

(2)熟练运用分式与分式方程解决实际问题。

(3)培养几何图形的镶嵌方法和空间想象力。

(4)掌握一次函数与反比例函数的性质,并能运用其解决实际问题。

(5)掌握三角形的判定与性质,提高几何推理能力。

(6)学会图形的变换与位似,增强观察能力和创新意识。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型等。

2. 学具:直尺、圆规、量角器、三角板、计算器等。

五、教学过程1. 实践情景引入:(1)通过实际生活中的例子,引出数据的收集与整理。

(2)通过实际问题的提出,引导学生运用分式与分式方程解决问题。

(3)通过观察生活中的几何图形,引入几何图形的镶嵌。

(4)通过实际案例,让学生感受一次函数与反比例函数的应用。

(5)通过观察和操作,引导学生探索三角形的判定与性质。

(6)通过实际操作,让学生体验图形的变换与位似。

2024年浙教版数学八年级上册全册教案

2024年浙教版数学八年级上册全册教案

2024年浙教版数学八年级上册全册教案一、教学内容1. 第一单元:实数第1节:平方根与立方根第2节:实数及其运算2. 第二单元:一元二次方程第1节:一元二次方程的概念与解法第2节:一元二次方程的配方法第3节:一元二次方程的公式法第4节:一元二次方程的判别式3. 第三单元:不等式与不等式组第1节:不等式的性质与解法第2节:不等式组的概念与解法4. 第四单元:函数及其性质第1节:函数的概念与表示方法第2节:函数的性质第3节:一次函数与反比例函数二、教学目标1. 让学生掌握实数的概念、性质与运算,提高数学运算能力。

2. 使学生掌握一元二次方程的解法,并能运用解决实际问题。

3. 培养学生熟练运用不等式与不等式组解决实际问题的能力。

4. 让学生理解函数的概念,掌握函数的性质,并学会一次函数与反比例函数的应用。

三、教学难点与重点1. 教学难点:实数的运算与性质一元二次方程的解法与判别式不等式与不等式组的解法函数的性质及其应用2. 教学重点:实数的概念与运算一元二次方程的解法与应用不等式的性质与解法函数的概念及其性质四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、教学课件2. 学具:教材、练习本、草稿纸、计算器五、教学过程1. 实数引入:通过生活实例,让学生感受实数的概念。

例题讲解:讲解平方根、立方根的性质与运算方法。

随堂练习:完成教材第1节与第2节练习题。

2. 一元二次方程引入:通过实际问题,引导学生理解一元二次方程的概念。

例题讲解:分别讲解一元二次方程的配方法、公式法与判别式。

随堂练习:完成教材第1节至第4节练习题。

3. 不等式与不等式组引入:通过实际情景,让学生理解不等式的意义。

例题讲解:讲解不等式的性质与解法,以及不等式组的解法。

随堂练习:完成教材第1节与第2节练习题。

4. 函数及其性质引入:让学生了解函数在实际生活中的应用。

例题讲解:讲解函数的概念、表示方法及其性质。

随堂练习:完成教材第1节至第3节练习题。

2024八年级数学详细教案(通用十篇)

2024八年级数学详细教案(通用十篇)

2024八年级数学详细教案(通用十篇)2024八年级数学详细教案(通用十篇)。

2024八年级数学详细教案篇1一、学生基本情况本学期我所带的两个班学生人数为:八(1)47人,八(2)46人,数学基础不是很好,尤其是八(1)班学生的成绩相对其他三个班有一定的差距,从上学期期末数学测试成绩可以看出。

总的来看,两个班的学生经过七年级的数学学习,基本形成数学思维模式,具备一定的应用数学知识解决实际问题的能力,但在知识灵活应用上还是有所欠缺,同时作答也比较粗心。

在学生所学知识的掌握程度上,已经开始出现两极分化,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,在几何中,学生在推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。

在学习能力上,学生课外主动获取知识的能力较差,学生自主拓展知识面,向深处学习知识的能力没有得到培养,在以后的教学中,培养学生课外主动获取知识的能力。

学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点帮扶和教育对象,课堂作业、家庭作业,学生完成的质量也不是太好;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正错误(考试、作业后)的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

二、指导思想以全日制义务教育《数学新课程标准》为指导,贯彻党的教育方针,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。

2024年华师大版初中八年级数学上册全套教案

2024年华师大版初中八年级数学上册全套教案

2024年华师大版初中八年级数学上册全套教案一、教学内容1. 第五章:一元二次方程5.1 一元二次方程及其解法5.2 一元二次方程的判别式5.3 一元二次方程的根与系数的关系2. 第六章:二次函数6.1 二次函数及其图像6.2 二次函数的性质6.3 二次函数的应用二、教学目标1. 理解一元二次方程的概念,掌握解一元二次方程的几种常用方法。

2. 了解一元二次方程的判别式,掌握根与系数的关系。

3. 掌握二次函数的定义、图像、性质,并能解决实际问题。

三、教学难点与重点1. 教学难点:一元二次方程的解法、二次函数图像的性质。

2. 教学重点:一元二次方程的判别式、根与系数的关系、二次函数的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 导入:通过实际情景引入,如“一块长方形的地,面积为100平方米,长比宽多5米,求长和宽”。

2. 知识讲解:(1)一元二次方程的概念、解法。

(2)一元二次方程的判别式、根与系数的关系。

(3)二次函数的定义、图像、性质。

3. 例题讲解:(1)解一元二次方程:x^2 5x + 6 = 0。

(2)求一元二次方程2x^2 4x 6 = 0的判别式和根与系数的关系。

(3)二次函数y = x^2 2x 3的图像和性质。

4. 随堂练习:(1)解一元二次方程:x^2 3x 4 = 0。

(2)求一元二次方程x^2 2x + 1 = 0的判别式和根与系数的关系。

(3)分析二次函数y = x^2 + 2x + 1的图像和性质。

六、板书设计1. 一元二次方程及其解法。

2. 一元二次方程的判别式、根与系数的关系。

3. 二次函数的定义、图像、性质。

七、作业设计1. 作业题目:(1)解一元二次方程:x^2 + 5x + 6 = 0。

(2)求一元二次方程3x^2 6x + 2 = 0的判别式和根与系数的关系。

(3)分析二次函数y = x^2 + 4x 5的图像和性质。

初中数学教案(优秀8篇)

初中数学教案(优秀8篇)

初中数学教案(优秀8篇)初中数学优秀教案篇一一、教学目标:1、知识目标:①能准确理解绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2、能力目标:①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3、情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

三、教学方法启发引导式、讨论式和谈话法四、教学过程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?(二)新授1、引入结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

2、数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。

数a的绝对值记作|a|。

举例说明数a的绝对值的几何意义。

(按教材P63的倒数第二段进行讲解。

)强调:表示0的点与原点的距离是0,所以|0|=0.指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的`相反数,0的绝对值是0.用字母a表示数,则绝对值的代数意义可以表示为:指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

3、例题精讲例1.求8,-8的绝对值。

按教材方法讲解。

例2.计算:|2.5|+|-3|-|-3|。

解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3例3.已知一个数的绝对值等于2,求这个数。

八年级数学教案

八年级数学教案

八年级数学教案八年级数学教案模板汇总六篇八年级数学教案篇1一、教材分析1.教材的地位与作用平行四边形是最基本的几何图形,也是“空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用.2.教学目标:知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力.数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.3.教学重点、难点:重点:理解并掌握平行四边形的概念及其性质.难点:运用平移、旋转的图形变换思想探究平行四边形的性质.4.教材处理:基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合.首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性.然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的探索者、知识的构建者、愉快的收获者.最后,把一道命题证明的练习题改编成实验操作型问题.学生利用课前准备好的教具制作成模型,让图形动起来.这样设计有利于学生在图形运动变化的过程中去发现其中不变的关系,从而发现图形的性质.总之,教材处理力求在深挖概念内涵;拓展性质外延;深化练习效用的过程中达到培养学生创新意识和实践能力的教学目的.二.教学方法与手段本节课在教法上体现教师的“启发引导”,帮助学生实现认识上与态度上的跨越;在学法上突出学生的“探索发现”,在教学过程中立足于让学生自己去观察、去发现、去创造.利用多媒体、自制教具辅助教学,增强教学的直观性、实效性.八年级数学教案篇2一、回顾交流,合作学习【活动方略】活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本P87•的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.【问题探究1】(投影显示)飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△ABC 中的∠C=90°,AC=4000米,AB=5000米,•要求出飞机这时飞行多少千米,•就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,•斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.(3000千米)【活动方略】教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.【问题探究2】(投影显示)一个零件的形状如右图,按规定这个零件中∠A与∠BDC都应为直角,•工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?•为什么?思路点拨:要检验这个零件是否符合要求,只要判断△ADB和△DBA是否为直角三角形,这样可以通过勾股定理的逆定理予以解决:AB2+AD2=32+42=9+16=25=BD2,得∠A= 90°,同理可得∠CDB=90°,因此,这个零件符合要求.【活动方略】教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.学生活动:思考后,完成“问题探究2”,小结方法.解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,∴△ABD为直角三角形,∠A=90°.在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.∴△BDC是直角三角形,∠CDB=90°因此这个零件符合要求.【问题探究3】甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6•千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,•甲、乙两人相距多远?思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)【活动方略】教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.学生活动:课堂练习,与同伴交流或举手争取上台演示八年级数学教案篇3教材分析因式分解是代数式的一种重要恒等变形。

初中数学八年级教案

初中数学八年级教案

初中数学八年级教案一教材分析本节课选自人教版数学八年级上册第十五章第四节第一个内容(P165-167)。

因式分解是进行代数恒等变形的重要手段之一,它在以后的代数学习中有着重要的应用,如:多项式除法的简便运算,分式的运算,解方程(组)以及二次函数的恒等变形等,因此学好因式分解对于代数知识的后继学习具有相当重要的意义。

本节是因式分解的第1小节,占一个课时,它主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,让学生了解分解因式与整式的乘法运算之间的互逆关系,感受分解因式在解决相关问题中的作用。

学情分析基于学生在小学已经接触过因数分解的经验,但对于因式分解的概念还完全陌生,因此,本课时在让学生重点理解因式分解概念的基础上,应有意识地培养学生知识迁移的数学能力,如:类比思想,逆向运算能力等。

学生的技能基础的分析:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础。

学生活动经验基础的分析:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法是一个难点。

教学目标㈠、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

㈡、过程与方法:(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

㈢、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学八年级教案教材分析本节课选自人教版数学八年级上册第十五章第四节第一个内容P165-167。

因式分解是进行代数恒等变形的重要手段之一,它在以后的代数学习中有着重要的应用,如:多项式除法的简便运算,分式的运算,解方程组以及二次函数的恒等变形等,因此学好因式分解对于代数知识的后继学习具有相当重要的意义。

本节是因式分解的第1小节,占一个课时,它主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,让学生了解分解因式与整式的乘法运算之间的互逆关系,感受分解因式在解决相关问题中的作用。

学情分析基于学生在小学已经接触过因数分解的经验,但对于因式分解的概念还完全陌生,因此,本课时在让学生重点理解因式分解概念的基础上,应有意识地培养学生知识迁移的数学能力,如:类比思想,逆向运算能力等。

学生的技能基础的分析:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础。

学生活动经验基础的分析:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法是一个难点。

教学目标㈠、知识与技能:1使学生了解因式分解的意义,理解因式分解的概念。

2认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

㈡、过程与方法:1由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

2由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

3通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

㈢、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

教学重点和难点教学重点:因式分解的概念及提公因式法。

教学难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

教学过程教学环节教师活动预设学生行为设计意图活动1:复习引入看谁算得快:用简便方法计算:17/9 ×13-7/9 ×6+7/9 ×2= ;2-2.67×132+25×2.67+7×2.67= ;3992–1= 。

学生在计算是分为两类:一是正确应用因数分解的办法进行简便计算;二是不懂正确应用因数分解的办法进行简便计算,而采取实实在在计算办法进行计算。

如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.注意事项:学生对于12两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第3小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

活动2:导入课题1. P165的探究略;2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?学生思考:从以上问题的解决中,你知道解决这些问题的关键是什么?引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

活动3:探究新知看谁算得准:计算下列式子:13xx-1= ;2ma+b+c= ;3m+4m-4= ;4y-32= ;5aa+1a-1= ;根据上面的算式填空:1ma+mb+mc= ;23x2-3x= ;3m2-16= ;4a3-a= ;5y2-6y+9= 。

学生由整式的乘法的计算逆向得到因式分解提公因式法。

在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

活动4:归纳、得出新知比较以下两种运算的联系与区别:1 aa+1a-1= a3-a2 a3-a= aa+1a-1在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?结论:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

其中,把多项式中各项的公因式提取出来做为积的一个因式,多项式各项剩下部分做为积的另一个因式这种因式分解的方法叫做提公因式法。

辨一辨:下列变形是因式分解吗?为什么?1a+b=b+a24x2y–8xy2+1=4xyx–y+13aa–b=a2–ab4a2–2ab+b2=a–b2学生讨论、发言对因式分解,特别是提公因式法的认识、理解、看法,并总结出因式分解、提公因式法的定义。

通过学生的讨论,使学生更清楚以下事实:1分解因式与整式的乘法是一种互逆关系;2分解因式的结果要以积的形式表示;3每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;4必须分解到每个多项式不能再分解为止。

活动5:应用新知例题学习:P166例1、例2略在教师的引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习1.P167练习;2. 看谁连得准x2-y2 x+129-25 x 2 yx -yx 2+2x+1 3-5 x3+5 xxy-y2 x+yx-y3.下列哪些变形是因式分解,为什么?1a+3a -3= a 2-92a 2-4= a +2 a -23a 2-b2+1= a +b a -b+142πR+2πr=2πR+r学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

活动8:课后作业课本P170习题的第1、4大题。

学生自主完成通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计需要一直留在黑板上主板书15.4.1提公因式法例题1.因式分解的定义2.提公因式法平方差公式一、学习目标:1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,灵活应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?12001×1999 2998×1002导入新课:计算下列多项式的积.1x+1x-1 2m+2m-232x+12x-1 4x+5yx-5y结论:两个数的和与这两个数的差的积,等于这两个数的平方差.即:a+ba-b=a2-b2四、精讲精练例1:运用平方差公式计算:13x+23x-2 2b+2a2a-b 3-x+2y-x-2y例2:计算:1102×98 2y+2y-2-y-1y+5随堂练习计算:1a+b-b+a 2-a-ba-b 33a+2b3a-2b4a5-b2a5+b2 5a+2b+2ca+2b-2c 6a-ba+ba2+b2五、小结:a+ba-b=a2-b2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母或分子,乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子或分母乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗? 与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.补充例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.,,,,。

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.解: = , = , = , = , = 。

六、随堂练习1.填空:1 =2 =3 =4 =2.约分:1 2 3 43.通分:1 和2 和3 和4 和4.不改变分式的值,使下列分式的分子和分母都不含“-”号.1 2 3 4七、课后练习1.判断下列约分是否正确:1 =2 =3 =02.通分:1 和2 和3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.1 2八、答案:六、1.12x 2 4b 3 bn+n 4x+y2.1 2 3 4-2x-y23.通分:1 = , =2 = , =3 = =4 = =4.1 2 3 41.八年级数学上册优秀教案2.八年级数学教案设计范文3篇3.2021年八年级上册数学教学计划4.新人教版八年级上册数学教案5.八年级数学上教学设计感谢您的阅读,祝您生活愉快。

相关文档
最新文档