构造法求数列通项公式专题讲座
专题04 构造法求数列通项的八种技巧(一)(解析版)

专题04构造法求数列通项的八种技巧(一)【必备知识点】◆构造一:待定系数之1n n a Aa B +=+型构造等比数列求关于1n n a Aa B +=+(其中,A B 均为常数,(1)0AB A -≠)类型的通项公式时,先把原递推公式转化为()1n n a M A a M ++=+,再利用待定系数法求出M 的值,再用换元法转化为等比数列求解.其实对于这类式子,我们只需要记住在等式两侧加上一个常数M ,构造成等比数列.常数M 的值并不需要背诵,我们可以通过待定系数法推导出来.【经典例题1】已知{}n a 满足13a =,121n n a a +=+求数列{}n a 的通项公式.【解析】根据原式,设()12n n a m a m ++=+,整理得12n n a a m +=+,题干中121n n a a +=+,根据对应项系数相等得1m =.()1121n n a a +∴+=+,令11n n b a +=+,111314b a =+=+=,所以{}1n a +是4为首项,2为公比的等比数列.即1142n n a -+=⋅,121n n a +=-.【经典例题2】已知数列{}n a 中,11a =,123n n a a +=+,求数列{}n a 的通项公式.【解析】设()12n n a t a t ++=+,整理得12n n a a t +=+,题干中123n n a a +=+,根据对应项系数相等,解得3t =,故()1323.n n a a ++=+令3n n b a =+,则1134b a =+=,且11323n n n n b a b a +++==+.所以{}n b 是4为首项,2为公比的等比数列.所以11422n n n b -+=⨯=,即12 3.n n a +=-【经典例题3】已知数列{}n a 中,11a =,134n n a a +=+,求数列{}n a 的通项公式.【解析】设13()n n a t a t ++=+,即132n n a a t +=+,题干中134n n a a +=+,根据对应项系数相等,解得2t =,故()1232.n n a a ++=+令2n n b a =+,则1123b a =+=,且11232n n n n b a b a +++==+.所以{}n b 是3为首项,3为公比的等比数列.所以1333n n n b -=⨯=,即3 2.n n a =-【练习1】数列{}n a 中,1321,2n n a a a +=-=,设其前n 项和为n S ,则6()S =A.874B.634C.15D.27【答案】A 【解析】1321,2n n a a a +=-= ,可得2221a =-,解得232a =,同理可得:154a =变形为()111121,14n n a a a +-=--=.∴数列{}1n a -为等比数列,首项为14,公比为2.()6136121187412, 2 1.6.4214n n n n a a S ---∴-=⨯=+∴=+=-故选:A .【练习2】已知数列{}n a 的前n 项和为n S ,若323n n S a n =-,则2018()a =A.201821- B.201826- C.20181722⎛⎫- ⎪⎝⎭D.201811033⎛⎫-⎪⎝⎭【答案】A 【解析】数列{}n a 的前n 项和为n S ,()1111323,23,3n n S a n a S a =-∴==-解得13a =-,()()111123, (1), 2 , 233, 33n n n n S a n n S a n --=-=-+ (2),(1) (2),-得122133n n n a a a -=--,11123,2, 1n n n n a a a a --+∴=--∴=-+112a +=- ,{}1n a ∴+是以2-为首项,以2-为公比的等比数列,1(2),(2)1, n n n n a a ∴+=-∴=--201820182018(2)121a ∴=--=-.故选:A .【练习3】在数列{}n a 中,112,21n n a a a +==+,则5a =_______.【答案】47【解析】数列{}n a 中,112,21n n a a a +==+,变形为:()1121n n a a ++=+,113a +=,∴数列{}1n a +为等比数列,首项为3,公比为2,1132n n a -∴+=⨯,即1321n n a -=⨯-则4532147a =⨯-=.故答案为:47.【练习4】已知数列{}n a 满足113,21n n a a a +==+,则数列{}n a 的通项公式n a =______.【答案】21n n a =-【解析】()(){}*1121,121,1n n n n n a a n a a a ++=+∈∴+=+∴+N 是以112a +=为首项,2为公比的等比数列.12nn a ∴+=,故21nn a =-.【练习5】已知数列{}n a 的首项12a =,且()*11122n n a a n +=+∈N ,则数列11n a ⎧⎫⎨⎬-⎩⎭的前10项的和为______.【答案】1023【解析】数列{}n a 的首项12a =,且111(*)22n n a a n N +=+∈,则:()()11112n n a a +-=-,整理得:11112n n a a +-=-(常数),所以:数列{}1n a -是以11211a -=-=为首项,12为公比的等比数列,所以:1111*2n n a -⎛⎫-= ⎪⎝⎭,当1n =时,符合通项.故:1121n n a -=-,所以:01212222n n S -=++++ 21n =-所以:101021102411023S =-=-=.【练习6】已知数列{}n a 中,111,32n n a a a +==+,则n a =_______.【答案】1231n n a -=⨯-【解析】因为132n n a a +=+,所以()1131n n a a ++=+,因为112a +=,所以数列{}1n a +是以2为首项,以3为公比的等比数列,所以1123n n a -+=⨯,故答案为:1231n n a -=⨯-.◆构造二:待定系数之1n n a Aa Bn C +=++型构造等比数列求关于1(1,0,0)n n a Aa Bn C A C B +=++≠≠≠类型的通项公式时,与上面讲述的构造一的方法很相似,只不过等式中多了一项Bn ,在构造时我们也保持跟题干一样的结构,加一项pn 再构造等比数列就可以,即令()1(1)n n a p n q A a pn q ++++=++,然后与已知递推式各项的系数对应相等,解,p q ,从而得到{}n a pn q ++是公比为A 的等比数列.【经典例题1】设数列{}n a 满足14a =,1321(2)n n a a n n -=+-,求数列{}n a 的通项公式.【解析】将递推公式转化为[]13(1)n n a pn q a p n q -++=+-+,化简后得()13223n n a a pn q p -=++-,与原递推式比较,对应项的系数相等,得22231p q p =⎧⎨-=-⎩,解得11p q =⎧⎨=⎩,令1n n b a n =++,则13n n b b -=,又16b =,故16323n n n b -=⋅=⋅,1n n b a n =++,得231n n a n =⋅--.【经典例题2】已知:11a =,2n 时,11212n n a a n -=+-,求{}n a 的通项公式.【解析】设[]1111111(1),.22222n n n n a pn q a p n q a a pn p q --++=+-+=---与题干原式比较,对应项系数相等得12211122p p q ⎧-=⎪⎪⎨⎪--=-⎪⎩,解得46p q =-⎧⎨=⎩,首项146 3.a -+=所以{}46na n -+是3为首项,12为公比的等比数列.所以114632n n a n -⎛⎫-+=⋅ ⎪⎝⎭,即134 6.2n n a n -=+-【练习1】已知数列{}n a 是首项为11152,233n n a a a n +==++.(1)求{}n a 通项公式;(2)求数列{}n a 的前n 项和n S .【解析】因为(113(1)233n n a n a n +-++=-+2),且1321a -+=,所以数列{}32n a n -+是以1为首项,13为公比的等比数列,则3n a n -1123n -+=,即11323n n a n -=+-.【练习2】已知数列{}n a 和{}{},n n b a 的前n 项和n S ,对于任意的*,,n n n a S ∈N 是二次方程223x n x -+0n b =的两根.(1)求{}n a 和{}n b 通项公式;(2){}n a 的前n 项和n S .【解析】因为,n n a S 是一元二次方程223x n x -0n b +=的两个根,所以23n n n n na S n a Sb ⎧+=⎨=⎩,由n a 23n S n +=得2113(1)n n a S n +++=+,两式相减得1163n n n n a a S S n ++-+-=+,所以1n a +=11(63)22n a n ++,令1(1)n a A n B ++++=()12n a An B ++,则1111222n n a a An B +=--A -,比较以上两式的系数,得1321322A B A ⎧-=⎪⎪⎨⎪--=⎪⎩,解得69A B =-⎧⎨=⎩.所以1n a +-()16(1)9692n n a n ++=-+.又113a S +=,132a =,所以数列{}69n a n -+是以92为首项、12为公比的等比数列.所以69n a n -+=12919,69,3222n n n n n a n S n a -⎛⎫=++=-= ⎪⎝⎭293692n n n --+,所以9692n n b n ⎛⎫=+- ⎪⎝⎭293692n n n ⎛⎫--+ ⎪⎝⎭【练习3】设数列{}n a 是首项为11a =,满足2123(1,2,)n n a a n n n +=-+= .问是否存在,λμ,使得数列{}2nan n λμ++成等比数列?若存在,求出,λμ的值,若不存在,说明理由;【解析】依题意,令21(1)(n a n n λμ++++()21)2n a n n γλμγ++=+++所以12n na a +=22n n n λμλγλμ++-+--,即123,0λμλγλμ=-⎧⎪-=⎨⎪--=⎩解得110λμγ=-⎧⎪=⎨⎪=⎩.所以数列{}2n a n n -+是以2为公比、1111a -+=为首项等比数列.所以na 21212,2n n n n n a n n ---+==+-,即存在λ=1,1μ-=,使得数列{}2n a n n -+成等比数列.◆构造三:待定系数之1n n n a pa q +=+型构造数列求关于1nn n a pa q +=+(其中,p q 均为常数,(1)0pq p -≠)类型的通项公式时,共有3种方法.方法一:先用待定系数法把原递推公式转化为()11n n n n a q p a q λλ+++=+,根据对应项系数相等求出λ的值,再利用换元法转化为等比数列求解.方法二:先在递推公式两边同除以1n q+,得111n n n n a a p q q q q ++=⋅+,引入辅助数列{}n b (其中n b nna q=),得11n n p b b q q+=⋅+,再利用待定系数法解决;方法二:也可以在原递推公式两边同除以1n p +,得111nnn n n a a q p p p p ++⎛⎫=+⋅ ⎪⎝⎭,引入辅助数列{}n b (其中n n n a b p =),得11n n b b p +-=⋅.nq p ⎛⎫⎪⎝⎭,再利用叠加法(逐差相加法)求解.【经典例题1】已知数列{}n a 中111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求{}n a 的通项公式.【解析】解法一:构造数列11111232n n n n a a λλ++⎡⎤⎛⎫⎛⎫=+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎣⎦+⎥,化简成题干结构得11111332n n n a a λ++⎛⎫=- ⎪⎝⎭,对应项系数相等得3λ=-,设123nn n b a ⎛⎫= ⎪⎝⎭-,11112233b a ⎛⎫==- ⎪⎝⎭-,所以数列{}n b 是以23-为首项,13为公比的等比数列,12133n n b -⎛⎫=- ⎪⎝⎭,所以3223n nn a =-.解法二:将111132n n n a a ++⎛⎫=+ ⎪⎝⎭两边分别除112n +⎛⎫⎪⎝⎭,也就是乘12n +,为方便计算,我们等式两边同乘12n +,得()11222 1.3n nn n a a ++⋅=⋅+令2n n n b a =⋅,则1213n n b b +=+,这又回到了构造一的方法,根据待定系数法,得()12333n n b b +-=-,所以数列{}3n b -是首项为15432363b -=⨯-=-,公比为23的等比数列.所以142333n n b -⎛⎫-=-⋅ ⎪⎝⎭即2323nn b ⎛⎫=-⋅ ⎪⎝⎭.所以32223n n n nn b a ==-.解法三:将111132n n n a a ++⎛⎫=+ ⎪⎝⎭两边分别除113n +⎛⎫⎪⎝⎭,也就是乘13n +,得1113332n n nn n a a +++⎛⎫=+⋅ ⎪⎝⎭令3n n n b a =⋅,则1132n n n b b ++⎛⎫=+ ⎪⎝⎭,所以111233,22...nn n n n n b b b b ----⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,,22132b b ⎛⎫-=⋅ ⎪⎝⎭将以上各式叠加,得211333222n nn b b -⎛⎫⎛⎫⎛⎫-=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,又113b a =55331622=⨯==+,所以1213112333313222212n n n n b +-⎡⎤⎛⎫⋅-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦=+++++= ⎪ ⎪ ⎝⎭⎝⎭⎝⎭- 13222n +⎛⎫=⋅- ⎪⎝⎭,即132 2.2n n b +⎛⎫=⋅- ⎪⎝⎭所以32323n n n n n b a ==-.【经典例题2】已知数列{}n a 满足111243,1n n n a a a -+=+⋅=-,求数列{}n a 的通项公式.【解析】解法一:设()11323n n n n a a λλ-++⋅=+⋅,待定系数法得4λ=-,则数列{}143n n a --⋅是首项为111435a --⋅=-,公比为2的等比数列,所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅.解法二:(两边同除以1n q +)两边同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略.解法三:(两边同除以1n p+)两边同时除以12n +得:1113222n n n n n a a -++⎛⎫=+ ⎪⎝⎭,下面解法略.【练习1】已知数列{}n a 满足()*1111,32,nn n n nna a a a n ba ++==+∈=N .设t ∈Z ,若对于*n ∀∈N ,都有n b t >恒成立,则t 的最大值为()A.3B.4C.7D.9【答案】A 【解析】解法一:因为132n n n a a +=+,所以13122n n n n a a +=+,所以11312222n n n n a a ++=⋅+,所以11311222n n n na a ++⎛⎫+=+ ⎪⎝⎭,因为11a =,所以1112a +32=,所以数列12n n a ⎧⎫+⎨⎬⎩⎭是以32为首相以32为公比的等比数列,所以3122nn na ⎛⎫+= ⎪⎝⎭,所以n a 32n n =-,故选A.解法二:令()11232n n n n a A a A +++⋅=+⋅,因为132nn n a a +=+,对比系数得:1A =,所以数列{}2nna+是以3为首项,3为公比的等比数列,所以23n n n a +=,所以32n n n a =-,所以111332322332312nn n n n n nnn na b a +++⎛⎫⋅- ⎪-⎝⎭====+-⎛⎫- ⎪⎝⎭1312n⎛⎫- ⎪⎝⎭,因为*n ∀∈N ,所以312n⎛⎫- ⎪⎝⎭ 12.所以102312n<⎛⎫- ⎪⎝⎭,所以35n b <,对于*n ∀∈N ,都有n b t >恒成立,所以3t ,所以t 的最大值为3,故选A.【练习2】已知数列{}n a 满足()*112,22n n n a a a n +==++∈N .(1)判断数列{}2n n a -是否为等差数列,并说明理由;(2)记n S 为数列{}n a 的前n 项和,求n S .【解析】(1)数列{}n a 满足112,2nn n a a a +==+()*2n +∈N ,所以()()1122n n n n a a ++---=2.120a -=,所以数列{}2nn a -为等差数列,首项为0,公差为2.(2)由(1)可得:202(1)nn a n -=+-,可得:22(1)nn a n =+-,所以()221221n n S -=+⨯-12(01)222n n n n n ++-=-+-【过关检测】一、单选题1.已知n S 为数列{}n a 的前n 项和,若1222,10n n a a S +=-=,则{}n a 的通项公式为()A .34n n a =-B .22nn a =+C .2n a n n=+D .231n a n =-【答案】B 【解析】令1n =可得2122a a =-,又21210S a a =+=,解得14a =,又12242(2)n n n a a a +-=-=-,则122a -=,1222n n a a +-=-,即{}2n a -是以2为首项,2为公比的等比数列,则1222n n a --=⋅,22n n a =+.故选:B.2.已知数列{}n a 中,11a =,121n n a a +=+,则数列{}n a 的通项公式为()A .n a n =B .1n a n =+C .2nn a =D .21nn a =-【答案】D 【解析】121n n a a +=+ ,112(1),n n a a +∴+=+又11a =,112a +=,所以数列{}1n a +是首项为2,公比为2的等比数列,所以1122n n a -+=⨯,2 1.n n a ∴=-故选:D.3.已知数列{}n a 满足13a =,158n n a a +=-,则2022a 的值为()A .202152-B .202152+C .202252+D .202252-【答案】B 【解析】因为158n n a a +=-,所以125(2)n n a a +-=-,又121a -=,所以{2}n a -是等比数列,公比为5,首项是1,所以125n n a --=,152n n a -=+,所以2021202252a =+.故选:B .4.设数列{}n a 的前n 项和为n S ,若221n n S a n =-+,则10S =()A .11223-B .10219-C .103223⨯-D .93219⨯-【答案】C 【解析】当1n =时,111221S a a ==-+,解得11a =.当2n ≥时,11223n n S a n --=-+,所()11221223n n n n n a S S a n a n --=-=-+--+,即122n n a a -=+,所以()1222n n a a -+=+,即1222n n a a -+=+,所以数列{}2n a +是首项为3,公比为2的等比数列,则1232n n a -+=⨯,从而3223nn S n =⨯--,故10103223S =⨯-.故选:C5.在数列{}n a 中,11a =,且121n n a a +=+,则{}n a 的通项为()A .21nn a =-B .2n n a =C .21n n a =+D .12n n a +=【答案】A 【解析】解:∵121n n a a +=+,∴()1121n n a a ++=+,由11a =,得112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,∴11222n n n a -+=⋅=,即21nn a =-.故选:A6.数列{}n a 中,121n n a a +=+,11a =,则100a =()A .10021+B .1012C .10021-D .1002【答案】C 【解析】数列{}n a 中,121n n a a +=+,故()1121n n a a ++=+,故10n a +≠,所以1121n n a a ++=+,因为11a =,所以1120a +=≠,所以{}1n a +是首项为2,公比为2的等比数列,所以12nn a +=,即21n n a =-,故10010021a =-,故选:C.7.数列{}n a 满足111122n n n a a ++⎛⎫=- ⎪⎝⎭,且112a =,若13n a <,则n 的最小值为()A .3B .4C .5D .6【答案】B 【解析】因为111122n n n a a ++⎛⎫=- ⎪⎝⎭,等式两边同时乘以12n +可得11221n n n n a a ++=-,所以,11221n n n n a a ++-=且121a =,所以,数列{}2n n a 是等差数列,且首项和公差都为1,则211nn a n n =+-=,所以,2n nn a =,因为111111212222n n n n n n n n n n na a ++++++---=-==.当1n =时,1212a a ==;当2n ≥时,1n n a a +<,即数列{}n a 从第二项开始单调递减,因为33183a =>,41143a =<,故当3n ≤时,13n a >;当4n ≥时,13n a <.所以,13n a <,则n 的最小值为4.故选:B.8.已知数列{}n a 中,11a =,134n n a a -=+(n *∈N 且2n ≥),则数列{}n a 通项公式n a 为()A .13n -B .132n +-C .32n -D .3n【答案】C 【解析】由已知得27a =,1232n n a a -+=+进而确定数列{2}n a +的通项公式,即可求n a .由11a =,134n n a a -=+知:27a =且1232n n a a -+=+(2n ≥),而123a +=,229a +=,∴{2}n a +是首项、公比都为3的等比数列,即32nn a =-,故选:C9.数列{}n a 满足()1432n n a a n -=+≥且10a =,则此数列第5项是()A .15B .255C .16D .63【答案】B 【解析】∵()1432n n a a n -=+≥,∴()()11412n n a a n -+=+≥,∴{}1n a +是以1为首项,4为公比的等比数列,则114n n a -+=.∴141n n a -=-,∴4541255a =-=.故选:B .10.在数列{}n a 中,已知11a =,121n n a a +=+,则n a =()A .12n -B .21n -C .nD .21n -【答案】B 【解析】由121n n a a +=+,得()112221n n n a a a ++=+=+,故数列{}1n a +为等比数列,首项为112a +=,公比为2,所以12nn a +=,21n n a =-,故选:B.11.在数列{}n a 中,13a =,()1222,N n n a a n n n -+=-+≥∈,若980n a >,则n 的最小值是()A .8B .9C .10D .11【答案】C 【解析】因为()1222,N n n a a n n n -+=-+≥∈,所以()()1212,N n n a n a n n n -+-=--≥∈⎡⎤⎣⎦.因为13a =,所以112a -=,所以数列{}n a n -是首项和公比都是2的等比数列,则2n n a n -=,即2nn a n =+,因为11210n n n a a ---=+>,所以数列{}n a 是递增数列,因为9521980a =<,101034980a =>,所以满足980n a >的n 的最小值是10,故选:C12.设数列{an }中,a 1=2,an +1=2an +3,则通项an 可能是()A .5-3n B .3·2n -1-1C .5-3n 2D .5·2n -1-3【答案】D 【解析】设()12n n a x a x ++=+,则12n n a a x +=+,因为an +1=2an +3,所以3x =,所以{}3n a +是以13a +为首项,2为公比的等比数列,1352n n a -+=⨯,所以1523n n a ⋅=--故选:D13.在数列{}n a 中,若12a =,1132n n n a a ++=+,则n a =()A .2nn ⋅B .5122n-C .1232n n +⋅-D .11432n n -+⋅-【答案】C 【解析】令22n n n a b =+,则11111322232222222n n n n n n n n n n n a a b a a b ++++++++===++,又11232a b =+=,所以{}n b 是以3为首项,32为公比的等比数列,所以132322n n n n a b -⎛⎫=+=⨯ ⎪⎝⎭,得1232n n n a +=⋅-.故选:C .14.已知在数列{}n a 中,156a =,111132n n n a a ++⎛⎫=+ ⎪⎝⎭,则n a =()A .3223n n-B .2332n n-C .1223n n-D .2132n n-【答案】A 【解析】解:因为156a =,111132n n n a a ++⎛⎫=+ ⎪⎝⎭,所以1122213n n n n a a ++⋅=⋅+,整理得()11223233n n n n a a ++⋅-=⋅-,所以数列{}23nn a -是以14233a -=-为首项,23为公比的等比数列.所以1422333n n n a -⎛⎫-=- ⎪⎝⎭,解得3223n n na =-.故选:A15.数列{}n a 满足*123,n n a a n N +=+∈,若20171a a ≥,则1a 的取值范围为()A .(,3]-∞-B .{3}-C .(3,)-+∞D .[3,)-+∞【答案】D 【解析】由123n n a a +=+可得()1323n n a a ++=+,所以()11332n n a a -+=+⨯所以()11323n n a a -=+⨯-,所以()2016201711323a a a =+⨯-≥所以()201611323a a +⨯≥+,所以130a +≥,所以13a ≥-故选:D 二、填空题16.设数列{}n a 满足11a =,且()1342n n a a n -=+≥,则数列{}n a 的通项公式为n a =___________.【答案】32n -##23n -+【解析】解:因为()1342n n a a n -=+≥,()1232n n a a -∴+=+,1232n n a a -+∴=+,11a = ,则123a +=,∴数列{}2n a +是以3为首项,3为公比的等比数列.12333n n n a -∴+=⋅=,所以32nn a =-,故答案为:32n -17.已知数列{}n a 中,11a =,121n n a a +=+,则{}n a 通项n a =______;【答案】21n -【解析】因为121n n a a +=+,所以11112(1),21++++=+∴=+n n n n a a a a ,所以{}+1n a 是一个以1+1=2a 为首项,以2为公比的等比数列,所以1+1=222,21-⨯=∴=-n n n n n a a .故答案为:21n -18.数列{an }满足a 1=1,an +1=2an +1.(n ∈N *).数列{an }的通项公式为______.【答案】()*21n n a n N -=∈.【解析】∵*121n n a a n N +=+∈(),∴1121n n a a ++=+(),又112a +=∴{}1n a +是以2为首项,2为公比的等比数列.∴12nn a +=.即*21nn a n N =-∈().故答案为:()*21n n a n N =∈-.19.数列{}n a 满足143n n a a -=+,且10a =,则6a =_________.【答案】1023【解析】由题意知:111444(1)n n n a a a --+=+=+,又111a +=,故{}1n a +是1为首项,4为公比的等比数列,故()5611141024a a +=+⨯=,故6a =1023.故答案为:1023.20.已知数列{}n a 满足1122n n a a +=+,且{}n a 前8项和为761,则1a =______.【答案】52##2.5【解析】解:数列{}n a 满足1122n n a a +=+,整理得1112()22n n a a ++=+,若112a =-,则12n a =-,显然不符合题意,所以12n a ≠-,则121212n n a a +++=(常数);所以数列12n a ⎧⎫+⎨⎬⎩⎭是以112a +为首项,2为公比的等比数列;所以1111222n n a a -⎛⎫+=+⋅ ⎪⎝⎭,整理得1111222n n a a -⎛⎫=+⋅- ⎪⎝⎭;由于前8项和为761,所以187811111121((12...2)842554761222122S a a a -⎛⎫⎛⎫=+⋅+++-⨯=+⨯-=+-= ⎪ ⎪-⎝⎭⎝⎭,解得152a =.故答案为:52.三、解答题21.已知数列{}n a 满足111,32n n a a a +==+.(1)证明{}1n a +为等比数列,并求{}n a 的通项公式;(2)记数列11n a ⎧⎫⎨⎬+⎩⎭的前n 项和为n S ,证明34n S <.【答案】(1)证明见解析,1231n n a -=⋅-(2)见解析【解析】(1)证明:因为132n n a a +=+,所以()1131n n a a ++=+,又112a +=,所以数列{}1n a +是以2为首项,3为公比的等比数列,则1123n n a -+=⋅,所以1231n n a -=⋅-;(2)证明:由(1)得111123n n a -=+⋅,因为11111123113123n n n n a a +-+⋅==+⋅,11112a =+,所以数列11n a ⎧⎫⎨+⎩⎭是以12为首项,13为公比的等比数列,则1113123114313n n nS ⎛⎫⨯- ⎪⎛⎫⎝⎭==- ⎪⎝⎭-,因为1113n -<,所以34n S <.22.已知数列{}n a 满足113,22+==-n n a a a .(1)求{}n a 的通项公式;(2)求{}n a 的前n 项和n S .【答案】(1)122n n a -=+;(2)221nn S n =+-.【解析】(1)122n n a a +=- ,()1222n n a a +∴-=-即1222n n a a +-∴=-∴数列{}2n a -是以首相为1,公比为2的等比数列,122n n a -∴-=122n n a -∴=+(2)由(1)知122n n a -=+()()()()()()123012101212222222222222112212221n nn n n n S a a a a n nn --∴=++++=++++++++=+++++⨯-=+-=+- 23.已知数列{}n a 的首项11a =,且1121n na a +=+.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足n n a b n ⋅=,求数列{}n b 的前n 项和n S .【答案】(1)121n n a =-(2)()()111222n n n n S n ++=-+-【解析】(1)∵1121n n a a +=+,等式两边同时加1整理得111121n n a a +⎛⎫+=+ ⎪⎝⎭又∵11a =,∴1112a +=∴11n a ⎧⎫+⎨⎬⎩⎭是首项为2,公比为2的等比数列.∴112n na +=,∴121n na =-(2)∵n n a b n ⋅=,∴2n n nnb n n a ==⋅-.记{}2⋅nn 的前n 项和为nT 则()1231122232122n nn T n n -=⋅+⋅+⋅+⋅⋅⋅⋅⋅⋅+-⋅+⋅所以()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅⋅⋅⋅+-⋅+⋅相减得12341222222n n n T n +-=++++⋅⋅⋅⋅⋅⋅+-⋅整理得()1122n n T n +=-+.所以()()111222n n n n S n ++=-+-24.在数列{}n a 中,15a =,且()*121n n a a n N +=-∈.(1)证明:{}1n a -为等比数列,并求{}n a 的通项公式;(2)令(1)nn n b a =-⋅,求数列{}n b 的前n 项和n S .【答案】(1)证明见解析,121n n a +=+(2)()*2*421,2,,327,21,.3nn n n k k S n k k +⎧-=∈⎪⎪=⎨+⎪-=-∈⎪⎩N N 【解析】(1)解:因为121n n a a +=-,所以()1121n n a a +-=-,又114a -=,所以1121n n a a +-=-,所以{}1n a -是以4为首项,2为公比的等比数列.故1142n n a --=⨯,即121n n a +=+.(2)解:由(1)得()1(1)21n n n b +=-⋅+,则()1*1*21,2,21,21,n n n n k k N b n k k N ++⎧+=∈⎪=⎨-+=-∈⎪⎩,①当*2,n k k =∈N 时,()()()()()23412121212121n n n S +=--++-+++--++ ()2345124422222222221;3n n n n+=-+-++-+=+++=- ②当*21,n k k =-∈N 时,()()21211427212133n n n n n n S S b ++++++=-=--+=-,综上所述,()*2*421,2,327,21,3n n n n k k N S n k k N +⎧-=∈⎪⎪=⎨+⎪-=-∈⎪⎩25.已知数列{}n a 的前n 项和为n S ,12a =,且122n n a a +=+.(1)求数列{}n a 的通项公式;(2)令()212n n n b a +=+,记数列{}n b 的前n 项和为n T ,求证:3n T <.【答案】(1)122n n a +=-(2)证明见解析【解析】(1)解:因为12a =,122n n a a +=+,所以()1222n n a a ++=+,所以{}2n a +是以4为首项,2为公比的等比数列,所以112422n n n a -++=⨯=,所以122n n a +=-;(2)解:由(1)可知()()121211222n n n n n n n b a ++++===+,所以12323412222n n n T +=++++ ①,所以23411234122222n n n T ++=++++ ②;①-②得212311111111111133221112222222212n n n n n n n n n T -+++⎛⎫- ⎪+++⎝⎭=++++-=+-=-- 所以3332n nn T +=-<;。
构造新数列求通项公式(共17张PPT)

(3) 小组合作交流,从题型、方法思路、构造的数列类型 、关键点等方面与标杆题做对比,找到异同?
活动二:类比训练题
反思1、:形如
an1
Can Aan
B
的数列的递推式,通过两边取倒的方式,
转化为 an1=pan +q(p≠1,pq≠0)的结构,再构造新的
等差、等比数列求解{a n}的通项公式。
(1)a =1, a =2a +1; (2)a =2, a -2a =2 . 根据下列条件,求数列{an}的通项公式
n+1 n 1 13、 、观小察组递讨推论公,式递的推结式构 转特化征为,我与们之熟前知学的过结的构递后推,式用比什较么;方法和步骤来求通项公式。1
n n+1 n
反思: 构造新数列求通项公式(1)
B
的数列的递推式,通过两边取倒的方式,
转化为 an1=pan +q(p≠1,pq≠0)的结构,再构造新的
等差、等比数列求解{a n}的通项公式。
活动二:类比训练题
(1)已知数列an 中, a1
2 , an
an1 (n 2an1 1
2) ,求通项公式 an
(2)已知数列
an
中
a1
o,
an1
2
1 an
(1)a1=1, an+1=2an+1;
2、如何把数列的递推公式转化为我能学过的结构,你用什么方法?
(a +X)= a +X) 你用 2、如何把数列(1)的递推公式变型为 (1)a1=1, an+1=2an+1;
3、小组讨论,递推式转化为我们熟知的结构后,用什么方法和步骤来求通项公式。
构造法求数列通项公式专题讲座ppt课件

令 1 1 ( 1 ), 则 3 , 3
an1
2 an
22
1 3 1 ( 1 3), 又 1 3 5
an1
2 an
a1
2
1 an
3
是首项为 5
2
1 公比为 2 的等比数列
1 3 5 ( 1 )n1, 1 3 5 ( 1 )n1
an an
3
22 1 5 (1)n1
1 2
,
1 an
是首项为
1 2
公差3的等差数列。
1 an
1 (n 1) 3 3n 5
2
2
6n 2
5
,
a
n
2 6n 5
例6数列 an
中,a1
2, an1
2an 1 3an
,求 an
解: an1
2an 1 3an
1 ,
an1
1 3an 2an
3 11
2 2 an
构造法的定义
• 所谓构造法就是在解决某些数学问题中 通过对条件和结论的充分剖析,有时会 联想出一些适当的辅助模型,以促成命 题的转换,产生新的解题方法。下面就 构造法求数列的通项公式的分类和解题 方法分别进行论述。
类型1形如 an1 pa nq p 1, p 0,q 0 的递推式
• 基本思路:可用待定系数法,设an1 pan
•bn p(an An2 Bn C) ;
• (2)本题也可由 an 3an1 2n 1 • , an1 3an2 2(n 1) 1
• ( n 3 )两式相减得
an an 1 3(an 1 an 2 ) 2
• 转化为 bn2 pbn1 qbn 求之.
练习1 数列 an 前 n 项和为 Sn
构造法求数列的通项公式课件-2025届高三数学一轮复习

+an+1=4×4n-1=4n.所以a9+a10=49.故选C.
题型三 形如an+1=qpanan+r
例5 (多选)已知数列{an}满足a1=35,an+1=1+3a2nan(n∈N*),则(
)
A.数列{a1n-1}为等比数列
B.an<1
C.∃k∈N*,ak>ak+1
D.a11 + a12+…+a1n<n+1
∴an+1− n+1
an−n
=2,
∴数列{an-n}是以a1-1=2为首项,2为公比的等比数列,
∴an-n=2·2n-1=2n,∴an=2n+n.
题后师说
形如an+1=pan+qn+c(p≠0,1,q≠0) 求an的一般步骤
角度三 an+1=pan+qn(p≠0,1,q≠0,1)
例3 [2024·江西宜春模拟]已知正项数列{an}中,a1=2,an+1=2an+
答案:ABD
题后师说
形如an+1=qpana+n r求an的一般步骤
巩固训练3 已知数列{an}满足a1=1,an+1=3−anan
(n∈N*),则an=_3_n−_21_+_1(_n_∈__N_*)_.
解析:由an+1=3−anan得an1+1=3−anan=a3n-1,
即1
an+1
−
12=3(a1n
题后师说
形如an+1=pan+q(p≠0,1,q≠0) 求an的一般步骤
角度二 an+1=pan+qn+c(p≠0,1,q≠0) 例2 已知数列{an}满足an+1=2an-n+1(n∈N*),a1=3,求数列{an} 的通项公式.
解析:∵an+1=2an-n+1,
用构造法求数列通项公式

用构造法求数列通项公式
一、构造法的原理
构造法是一种求解数列通项公式的方法,它依赖于对数列数据的分析,其基本原理是通过分析数列前几项的关系,推出数列的规律,从而确定数
列的通项公式。
二、构造法的步骤
1、根据给定的数列,找出相邻两项的关系;
2、根据求出的关系,确定该数列的类型,即数列的递推公式;
3、根据确定的递推公式,从第一项开始,逐步求出数列中的其它项;
4、推出数列的规律,并将其表示为数列的通项公式;
5、利用确定的通项公式,验证数列中的其它项。
三、构造法的应用
1、举例:
给出一个数列:1,2,4,8,16,32
(1)根据给定的数列,找出相邻两项的关系:
由数列可以看出,数列中相邻两项的关系是:an = 2 * an-1
(2)根据求出的关系,确定该数列的类型,即数列的递推公式:
an = 2 * an-1
递推公式:an+1 = 2 * an
(3)根据确定的递推公式,从第一项开始,逐步求出数列中的其它项:
a1=1
a2=2*a1=2
a3=2*a2=4
a4=2*a3=8
a5=2*a4=16
a6=2*a5=32
(4)推出数列的规律,并将其表示为数列的通项公式:
由所求得的数列可以看出,数列中每一项都是前一项的2倍,因此可
得数列的通项公式为:an=2^(n-1)。
(5)利用确定的通项公式。
巧用构造法求数列的通项公式

谈学论教高中数学中十分常见.推式的形式多样,且较为复杂,据递推关系式的特点构造出形如等差、项公式的式子,将问题转化为等差、公式问题来求解.这样才能化繁为简.活,造出合适的辅助数列,一、已知a n +1=qa n+p ,求a n对于形如a n +1=qa n +p (p ≠0,q ≠0且q 关系式,在运用构造法求数列{}a n 引入参数λ,设a n +1+λ=q ()a n +λ,关系式列出式子,求出q 、λ的值,列{}a n +λ,求得其首项和公比,通项公式,或运用累乘法求得数列{}a n 例1.在数列{}a n 中,a 1=5,a n +1=3a n -{}a n 的通项公式.分析:首先根据已知递推关系式a n +1=a n +1-λ=q ()a n -λ,通过对比系数求出q 、λ构造出等比数列{}a n -λ,便能求出数列{}a n 的通项公式.解:由a n +1=3a n -4,可得a n +1-2=3(a n ∵a 1=5,∴数列{}a n -2是以a 1-2=3为首项,等比数列,∴a n -2=3n,a n =3n +2,∴数列{}a n 的通项公式为a n =3n+2.二、已知a n +1=qa n +c n,求a n由形如a n +1=qa n +c n的通项公式,需先将递推关系式设为p æèçöø÷a n c n +λ,并求出p 、λ的值,再根据等比数列的通项公式,法,就便能得到数列{}a n 的通项公式.例2.在数列{}a n 中,a 1=32,a n +1=2a n +3n ,求数列{}a n 的通项公式.解:由a n +1=2a n +3n,可设a n +13n +1+λ=p æèçöø÷a n 3n +λ,可得p =23,λ=-1,∴数列{}a n 3n -1是首项为a 13-1=-12,公比为23的等比数列,∵a n 3n -1=-12∙æèöø23n -1=-2n -23n -1,∴a n =-3∙2n -2+3n ,∴数列{}a n 通项公式为a n =-3∙2n -2+3n.解答本题,需首先根据递推关系式的特点,在其左右同时除以3n ,并设递推关系式为a n +13n+1+λ=p æèçöø÷a n 3n +λ,求出p 、λ的值,即可构造出等比数列{}a n3n-1.三、已知a n +1=g ()n a n +f (n ),求a n对于形如a n +1=g ()n a n +f ()n 的递推关系式,也需采用构造法来求数列的通项公式,其解题思路为:①根据g ()n 的特点,在已知递推关系式的两边同除以ϕ()n ,使其变形为形如a n +1ϕ()n +1-an ϕ()n =f ()n ϕ()n 的式子,②令n =1,2,3,…,n -1,将这n -1个式子累加,并进行化简,或根据等差数列的通项公式即可求得数列的通项公式.例3.在数列{}a n 中,a 1=1,a n +1=æèöø1+1n a n +(n +1)∙2n .若b n =an n,求数列{}a n 和{}b n 的通项公式.分析:在已知递推关系式a n +1=n +1n a n +()n +1∙2n的两边同除以n +1,将其变形为a n +1n +1-an n=2n ,构造出等比数列,再运用累加法即可解题.龚海亮谈学论教。
巧妙构造新数列,顺利求解数列的通项公式

方法集锦由递推式求数列的通项公式问题在数列问题中比较常见,此类问题的命题方式多种多样,很多同学在解题时往往找不到正确的解题方法,导致无法得出正确的答案.事实上,对于较为复杂的递推式,我们一般采用构造法来求数列的通项公式,下面介绍两个构造数列的技巧,以帮助同学们破解此类难题.一、借助待定系数构造新数列当遇到形如a n+1=pa n+q的递推式时,我们常常需引入待定系数,借助待定系数来构造新数列.在求数列的通项公式时,需先引入待定系数λ,设数列的递推式为a n+1+λ=p()a n+λ,然后将其与已知递推式进行比较,建立关于系数λ的关系式,求得λ的值,便可构造出等比数列{}an+λ,再根据等比数列的通项公式即可求数列的通项公式.例题:已知数列{}a n满足a n+1=2a n+4∙3n-1,a1=1,求数列{}a n的通项公式.解:设a n+1+λ3n=2()an+λ3n-1,由an+1=2a n+4∙3n-1可得λ=-4,令bn=a n-4∙3n-1,则b1=-5,q=2,∴数列{}b n是首项为-5,公比q=2的等比数列,即bn=-5∙2n-1,∴数列{}a n的通项公式为a n=4∙3n-1-5∙2n-1.在引入待定系数后,便可构造出等比数列{}b n,再根据等比数列的通项公式就能快速求出数列的通项公式.二、通过取倒数构造新数列对于an+1=pa n+q n的递推式,我们一般通过取倒数来构造新的等差、等比数列,以便根据等差、等比数列的通项公式来求得原数列的通项公式.在变形递推式时,可在递推式的两边同除以p n+1或q n+1,得到an+1p n+1=a nq n+1pæèçöø÷pqn或an+1q n+1=p q∙a nq n+1q,然后设b n=a np n,就能得到新数列bn+1-b n=1pæèçöø÷pqn或b n+1=p q b n+1q,便可利用等比数列的通项公式、累加法、借助待定系数来求出数列的通项公式.以上述例题为例.解法一:在an+1=2a n+4∙3n-1的两边同时除以2n+1,可得a n+12n+1=a n2n+43∙æèöø32n,令bn=an2n,则b n+1-b n=43∙æèöø32n()n≥2,而()bn+1-b n+()b n-b n-1+⋯+()b2-b1=b n+1-b1,则bn=43∙æèöø32n+43∙æèöø32n-1+⋯+43∙æèöø32=3n-12n-2-3,所以数列{}a n的通项公式为a n=4∙3n-1-5∙2n-1.我们先在递推式的左右两边同除以2n+1,这样便构造出新数列{}b n,然后运用累加法,将新数列的第1,2,3,⋯,n项相加,从而构造出等比数列,再根据等比数列的通项公式就可以求得数列{}b n和{}a n的通项公式.解法二:在an+1=2a n+4∙3n-1的两边同时除以3n+1,可得a n+13n+1=23∙a n3n+49,令b n=a n3n,∵bn+1=23b n+49,b n=23b n-1+49,∴bn+1-b n=23()bn-b n-1()n≥2,而()bn+1-b n+()b n-b n-1+⋯+()b2-b1=b n+1-b1,∴bn+1=2-2n3n,b n=2-2n-13n-1,∴数列{}a n的通项公式为a n=4∙3n-1-5∙2n-1.我们在递推式的两边同时除以3n+1,从而构造出新数列,再运用累加法即可求得数列的通项公式.通过上述分析同学们应该发现,对于较为复杂的递推式,采用构造法来求数列的通项公式往往更有效.因此,同学们要善于观察递推式,将其进行合理变形,如取倒数、引入待定系数,以便构造出新数列,借助新数列来求得原数列的通项公式.(作者单位:江苏省大丰高级中学)47。
高考数学微专题3 数列的通项课件(共41张PPT)

内容索引
目标1 根据规律找通项公式
1 (2023吉林三模)大衍数列,来源于《乾坤谱》中对易传“大
衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,
数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总
和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项
依 次 是 0,2,4,8,12,18,24,32,40,50 , 则 此 数 列 的 第 25 项 与 第 24 项 的 差 为
高考命题方向: 1. 根据前几项来寻找序号 n 与项之间的关系. 2. 根据前几项所呈现的周期性规律,猜想通项. 3. 抓住相邻项的关系转化为熟悉问题.
内容索引
内容索引
说明: 1. 解决方案及流程 (1) 归纳猜想法: ①确定数列的前几项; ②分析序号 n 与项有何关系,初步确定分类标准; ③研究数列整体或部分规律; ④归纳数列的项用序号 n 表示的规律; ⑤证明归纳的正确性.
内容索引
内容索引
1. (2022泰安三模)已知数列{an}满足:对任意的m,n∈N*,都有aman
=am+n,且a2=3,则a20的值为( )
A. 320
B. 315
C. 310
D. 35
【解析】 因为对任意的 m,n∈N*,都有 aman=am+n,所以 a1a1=a2, a1an=a1+n.又 a2=3,所以 a1=± 3,所以aan+n 1=a1,所以数列{an}是首项 为 a1,公比为 a1 的等比数列,所以 an=a1·an1-1=an1,所以 a20=a210=310.
重复循环,2 022=674×3,恰好能被3整除,且a3为偶数,所以a2 022也 为偶数,故B错误;对于C,若C正确,又a2 022=a2 021+a2 020,则a2 021= a1+a2+…+a2 019,同理a2 020=a1+a2+…+a2 018,a2 019=a1+a2+…+ a2 017,依次类推,可得a4=a1+a2,显然错误,故C错误;对于D,因为 a2 024=a2 023+a2 022=2a2 022+a2 021,所以a2 020+a2 024=a2 020+2a2 022+a2 021=2a2 022+(a2 020+a2 021)=3a2 022,故D正确.故选AD.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 (n 1) 3 3n 3
2
2
an
2 2n1
(3n
3) 2
(6n 3) 2n1
练习2:已知a1 5, an 5an1 5n1, (n 2)求an
答案:an (5n 4) 5n
练习3:已知a1
1, an
1 2
an1
21n , (n
2)求an
答案:an
2n
1 2
的通项公式。
3an 2 an 4
, 求数列 an
解:由于
an1
3an 2 an 4
的特征方程 x 3x 2 x4
的两根为 x1 2, x2 1 ,所以
an1
1
2an 2 an 4
, an1
2
5an an
10 4
,两式相除得
an1 1 2 an 1 an1 2 5 an 2
an
n 2n1
• 练习1、数列 满足a1 3, an1 2an 3 2n1 ,
• 则 an
解: an1
2an
3 2n1, an1 2 n 1
an 2n
3
an1 an 3, 又 a1 3
2n1 2n
22
an 2n
构成了一个以
3 2
首项 ,公差为3的等差数列,
an 2n
构造法的定义
• 所谓构造法就是在解决某些数学问题中 通过对条件和结论的充分剖析,有时会 联想出一些适当的辅助模型,以促成命 题的转换,产生新的解题方法。下面就 构造法求数列的通项公式的分类和解题 方法分别进行论述。
类型1形如 an1 pa nq p 1, p 0,q 0 的递推式
• 基本思路:可用待定系数法,设an1 pan
构造法求数列通项公式专题讲座
高中数学教师欧阳文丰制作
引言
• 求数列的通项公式是数列的难点和重点内 容,两类特殊数列等差数列和等比数列可 以根据公式直接求解,还有些特殊数列可 用累加法、累乘法等来直接求解,但有些 数列却不能直接求解,它们往往要转化为 等差、等比数列和其他数列后再运用各自 的通项公式求解,从而体现化归思想在数 列中的运用,此时可用构造法求解。
类型2形如 an1 pan f n 的递推式
a a 例2、已知数列
n
中,a1
5 6
an1
1 3
an
( 1 )n1 2
,求
n
2 解:在
an1
1 3
an
( 1 )n1 2
两边乘以
n1
得:
2n1
• an1
2 3
(2n
• an ) 1
令 bn 2n • an
,则
bn1
2 3 bn
1
,解之得:
3bn1 (3A 2)n (3B 1 B 1
取bn an n 1 …(1)则 bn 3bn1
b 6 ,又 1
,故 bn 6 3n1 2 3n
代入(1)得 an 2 3n n 1
• 说明:(1)若 f (n)为 n 的二次式,则可设
类型4补充形如
an1
aan can
b d
c
0,
ad
bc
的递推式
0
基本思路:一般的,设 ,
是递推关系bn
an an
的特征方程
ax b
x
.
cx d
的两个根.
(1)当
时,可令 bn
an an
,则
bn
为等比数列; (2) 当
bn 为等差数列。.
时,可令
bn
an
1
,则
例7
在数列 an 中, a1 4, an1
令 1 1 ( 1 ), 则 3 , 3
an1
2 an
22
1 3 1 ( 1 3), 又 1 3 5
an1
2 an
a1
2
1 an
3
是首项为 5
2
1 公比为 2 的等比数列
1 3 5 ( 1 )n1, 1 3 5 ( 1 )n1
an an
3
22 1 5 (1)n1
2
1
n2
1 2n1 )
所以
an1
an
an1
1 2 n1
an1
1 2
an
1 2n
2 上式两边同乘以 n1 得: 2n1 an1 2n an 2
1
由
a1 S1 4 a1 212 a1 1
.于是数列 2n an 是以2为首项,2为公差的等差数列, 所以
2n an 2 2(n 1) 2n
分析:取倒数,1 dan1 p 1 d
an
pan1
an1 p
1 an
是以
1 a1
为首项,以d p
为公差的等差数列。
a 2 例, 5:数列 an 中,若 1
a ,则 n
a n 1
an 1 3an
解: an1
an , 1 1 3an an1
1 3an an
1 an
3
又
1 a1
an
22
22
练习1:已知 a1
3, an
an1 , n 3an1 1
2, 求通项an
答案:an
3 9n 8
练习2:已知a1 3, an 2anan1 an1 0 ,
求通项an
答案:an
3 6n
5
练习3:已知a1
1, an
2sn2 , n 2sn 1
2, 求前n项和sn
答案:sn
1 2n 1
类型2形如 an1 pan f n 的递推式
b 解法:只需构造数列 n ,消去 f n 带来的差异.
一般地,要先在原递推公式两边同除以 q n1
,得:
an1 p • an 1
q n1 q q n q
引入辅助数列
bn
(其中
bn
an qn
),得:
bn1
p q bn
1 q
再用待定系数法解决。
解:作特征方程 x 13x 25. 变形得 x 2 10 x 25 0,
x3
a1 6, 5, ∴ a1 .
bn
1
a1
(n 1)
r
p r
1
n 1,n N. 8
令 bn 0, 则 n 7 n.
∴对于 n N, bn 0.
an
1 bn
1
1 n 1
5
5n 43 , n N. n7
n
n
1 2
n1
n 21n
an1 pan An2 Bn C
类型3形如 an1 pan an b
的递推式
• 解法:这种类型一般利用待定系数法构造等比数 列,即令 an1 x(n 1) y p(an xn y)
• ,与已知递推式比较,解出 x, y ,从而转化
• 为an xn y是公比为p 的等比数列。
,所以
log3
,
xn1 xn1
1 3
2 log3
xn xn
1 3
.
. 又
log3
x1 x1
1 3
1
,令
an
log3
xn xn
1 3
,则数列{an }
2 是首项为 1,公比为 的等比数列.所以
.
an
2n1
.由 an
log3
xn 1 xn 3
, 得
xn 1 3an xn 3
所以
xn
3an 1 1 3an 1
答案:an 3 2n 3
练习2:已知a1 9, 3an an1 4, (n 2)求an
答案:an
1
8 (
1 ) n 1 3
类型1形如 an1 pa nq p 1, p 0,q 0 的递推式
• 练习3、已知数列an的前 n 项和为 Sn ,且 • Sn n 5a n 85
• 求数列 an 的通项公式。
的通项公式. ,令
,求出不动点x1 1, x2 3 ;由定理知:
xn1
1
xn2 3 2xn 4
1
(xn 1)2 2xn 4
xn1
3
xn2 3 2xn 4
3
(xn 3)2 2xn 4
,
2
,
所以
xn1 xn1
1 3
xn xn
1 3
,又
x1 1 4 1 3 x1 3 4 3
• ,与已知式子相比较得 q
1 p
•
,从而数列
an
1
q
p
成等比数列,易得
• .an
a1
1
q
p
pn1 q 1 p
类型1形如 an1 pa nq p 1, p 0,q 0 的递推式
.
• 例1、已知数列 满足,求数列a1 1,an1 2an 1n N*
• 的通项公式。
3 1 2n1 1 32n1 1
补充例题 设数列 an 的前项和为 Sn , 若2an 2n Sn
成立,(1)求证: an n 2n1 是等比数列。
(2) 求这个数列的通项公式
,且 a1 1, an1 2Sn n2 n 1 n N*
,求数列an 的通项公式。
练习2 在数列{an}中,a1=1,an+1=4an+3n+1, 求数列{an}通项。 练习an1 2an 3n2 4n 5 a1=1 求数列{an}通项。
类型四:已知 (利用取倒数法,构造等差数列)。
8
类型5形如 f (x) ax2 b (a 0) 的递推式 2ax d
定理 设 f (x) ax2 b (a 0) ,且 x1、x2 是 f ( x)