换热器壁温计算
热管换热器计算

热管换热器计算(2009-02-20 22:50:45)转载标签:热管换热器计算德天热管亚洲热管网热管换热器计算可用热平衡方程式进行计算,对于常温下使用的通风系统中的热管换热器的换热后温度,回收的冷热量也可用下列公式计算,由于公式采用的是显热计算,但实际热回收过程也发生潜热回收,因此计算值较实测值偏小,其发生的潜热回收可作为余量或保险系数考虑。
本文选自【亚洲热管网】热管换热器的计算:1. 热管换热器的效率定义η=t1-t2/t1- t3 (1-1)式t1、t2——新风的进、出口温度(℃)t3——排风的入口温度(℃)2.热管换热器的设计计算一般已知热管换热器的新风和排风的入口温度t1和t3,取新风量L x 与排风量L P相等。
即L x = L P,新风和排风的出口温度按下列公式计算:t2=t1-η(t1-t3) (1-2)t4=t3+η(t1-t3) (1-3)t4——排风出口温度(℃)回收的热量Q (kW), 负值时为冷量:Q(kW)= L xρX C x(t2-t1)/3600 (1-4)式中L x——新风量(m3/h )ρx——新风的密度(kg/m3)(一般取1.2 kg/m3)C x——新风的比热容,一般可取1.01kJ/ (kg ·℃)。
3.选用热管换热器时,应注意:1)换热器既可以垂直也可以水平安装,可以几个并联,也可以几个串联;当水平安装时,低温侧上倾5℃~7℃。
2)表面风速宜采用1.5 m/s~3.5m/s。
3)当出风温度低于露点温度或热气流的含湿量较大时,应设计冷凝水排除装置。
4)冷却端为湿工况时,加热端的效率η值应增加,即回收的热量增加。
但仍可按上述公式计算(增加的热量作为安全因素)。
需要确定冷却端(热气流)的终参数时,可按下式确定处理后的焓值,并按处理后的相对湿度为90%左右考虑。
h2=h1- 36Q/ L×ρ (1-5)式中h1, h2——热气流处理前、后的焓值(kJ/kg);Q ——按冷气流计算出的回收热量(W);L ——热气流的风量(m3/h );ρ——热气流的密度(kg/m3)。
换热器平均金属壁温-概述说明以及解释

换热器平均金属壁温-概述说明以及解释1.引言1.1 概述换热器是一种用于传递热量的设备,广泛应用于工业生产中的热能转换过程中。
在换热器中,金属壁面的温度是影响换热效果的重要因素之一。
因此,研究换热器金属壁温的分布规律对于提高换热效率具有重要意义。
本文旨在探讨换热器金属壁温的分布规律,重点介绍计算平均金属壁温的方法。
通过对金属壁温的影响因素进行分析,可以更好地了解换热器的工作原理和性能特点,为实际工程应用提供参考依据。
文章将从换热器的作用、金属壁温的影响因素和计算平均金属壁温的方法等方面展开讨论,旨在帮助读者深入了解换热器金属壁温的重要性及其对换热效果的影响,为相关领域的研究和工程实践提供指导和参考。
1.2 文章结构本文将首先介绍换热器的作用,包括其在工业生产中的重要性和应用领域。
接着将探讨影响金属壁温的因素,如流体性质、热流量、壁材料等。
最后,将详细介绍计算换热器平均金属壁温的方法,包括理论分析和实验测试等方面。
通过全面的论述,旨在帮助读者更好地理解换热器中平均金属壁温的重要性和计算方法,为相关工程实践提供参考依据。
1.3 目的本文的目的旨在探讨换热器的平均金属壁温,通过分析换热器工作原理和金属壁温的影响因素,深入了解如何计算换热器的平均金属壁温,并讨论其在工程实践中的应用。
通过本文的研究,可以帮助工程师和设计者更好地理解换热器的热传导特性,提高换热器的效率和性能,为工程实践提供有益的参考和指导。
同时,本文还有助于促进换热器领域的研究与发展,推动换热器技术的不断创新和进步。
2.正文2.1 换热器的作用换热器是一种用于传热的设备,其主要作用是将热能从一个流体传递到另一个流体。
在工业生产中,换热器被广泛应用于加热、冷却和蒸发等过程中。
换热器可以根据传热方式的不同分为接触式和间接式两种类型。
在接触式换热器中,传热介质之间直接接触传热,例如冷凝器和蒸发器。
这种换热器的优点是传热效率高,但也存在传热介质混合和腐蚀的问题。
换热器的计算举例

换热器的计算举例换热器的计算举例条件:1.空气量4100m3/h2.空气预热温度t空=300 0C (冷空气为20 0C)3.烟气量V''烟=6500m3/h (烟气温度为7000C)4.烟气成分(体积%)CO2 H2o O2N219.4 7.5 2.1 71.05.换热器的型式及材质型式:直管形平滑钢管换热器材质:换热管采用Ф 60*3.5毫米无缝钢管材质16Mn钢最高使用温度小于4500C计算举例:一. 主要热之参数的确定1.入换热器空气的温度t'空=200C出换热器空气的温度t''空=3000C2.入换热器空气量取换热器本身的漏损及管道漏损 3%则V真实=1.03 V'空=1.03×4100=4223m/h或 V空=1.03V'空/3600=4223/3600=1.17m/s3.入换热器烟气的温度考虑16Mn铜的最高温度不大于450℃。
初步确定入换热器的烟气温度t′烟=550℃,稀释导数确定如下:烟气700℃的比热为:C烟(700)=0.01(0.501×19.4+0.392×7.5+0.342×2.1+0.325×71)=0.365KJ/m3℃烟气在550℃的比热为:C烟(500)=0.01(0.484×19.4+0.383×7.5+0.337×2.1+0.321×71)=0.358 KJ/m3℃20℃空气的比热为0.311 KJ/m3℃则φ=(i1-i2)/(i2-i0)=(0.365×700-0.385×550)/(0.358×550-0.311×20)=0.3094.入换热器的烟气量V烟=(1+φ)V′烟=(1+0.309)×6500=8508.5m3/h或V烟=8508.5/3600=2.36m3/s5.烟气成分(%)V CO2= V′CO2(V′烟/V烟)=19.4×6500/8508.5=14.82 V H20=V′H2O(V′烟/V烟)=7.5×6500/8508.5=5.73V O2=(V′O2+21φ)V′烟/V烟=(2.1+21×0.309)×6500/8508.5=6.56V N2=(V′N2+79φ)V′烟/V烟=(71+79×0.309)×6500/8508.5=72.89Σ=1006.计算换热气的烟气温度取换热气绝热效率η换=0.90.先假定烟气出口温度为400℃。
换热器、热网加热器计算示例

管壳式换热器选型计算书编写:张景富西安协力动力科技有限公司二零一零年九月十三日一、换热器的工艺计算及工艺条件现在从一台管壳式换热器工艺计算过程来体现工艺条件内容: 1.设计参数 壳程:工作介质:蒸汽、水 Ps=0.2Mpa 蒸汽流量135m 3/h 进口温度:135℃ 出口温度:90℃ 管程:工作介质:含碱水 Pt=0.3Mpa 水流量300m 3/h 进口温度:80℃ 出口温度:110℃ 液体比重:1.25 比热:0.85~0.86 2.工艺计算冷源:q=300m 3 比重:γ=1.25g/cm 3 比热c=0.86J/kg ·℃ T1=135℃ T2=135℃ t1=80℃ t2=110℃ 取a c =2000kcal/㎡·h ·℃ a h =10000kcal/㎡·h ·℃ 换热管规格:φ19×1 其内径d1=0.017m 外径d2=0.019m 中径dm=0.018m 壁厚δ=0.001m金属导热系数λ=17.0 w/m ·h ·℃=17.0/1.16222=14.6 kcal/㎡·h ·℃ (1)传热系数K取传热系数K=1400kcal/㎡·h ·℃ (2)平均温差Δt m (按逆流状态计算)(3)传热面积FC 4.1680-90110-135ln 80)-90(110)-135(1221ln )12()21(lnt 2121︒=-=-----=∆∆∆-∆=∆t T t T t T t T t t t t m 2m 42116.4140080)-(11086.01250300tm K t1)-(t2c q F =⨯⨯⨯⨯=∆⨯⨯⨯⨯=γC h m kcal d dm d dm K h c ︒=+⨯+⨯=++=2/7.14436.14001.010000019.0018.02000017.0018.012111λδαα(4)管子根数n (管长L=6m )(5)程数N 单程流速管壳换热器中换热管内水的流速为0.7~1.5m/s N=1.5/0.313=4.79,可以选择Ⅳ程标准DN1000 Ⅳ程换热器,φ19×1的管子,n=1186根,L=6000mm 传热面积F=425㎡推荐设备材质:管程316L 壳程16MnR (6)换热器壁温的计算a.壳程的壁温:由于有保温,可以取蒸汽的平均温度 Tm=1/2(135+90)=112.5℃b.换热管的壁温估算:热流侧Tm=112.5℃ 冷流侧tm=1/2(80+110)=95℃ 换热管的壁温:(7)换热器接管的计算 (a )壳程蒸汽进口 蒸汽流速一般取15~20m/s进蒸汽截面A=135/(15×3600)=2.5×10-3㎡ 接管内径进汽管取φ76×4(DN65) (b )管程进出管管程流动的是含微量碱的水溶液,当P ≤0.6Mpa 时,其流速为1.5~2.5m/s11736019.04212F n =⨯⨯=⨯⨯=ππL d sm nd /313.01173017.04300/36004q221=⨯⨯=⨯⨯=ππωCa a t t c c m t ︒=+⨯+⨯=++=6.10920001000020009510000112.5a a T n n m mAd 564.0105.2443=⨯⨯==-ππ进出管流通截面A=300/(2.5×3600)=0.0333㎡ 接管内径取φ219×6(DN200) 3.提条件设计参数表及管口表设计数据注:管程材质为不锈钢316L ,管板材质为16MnR/316L ,φ1130,b=52。
换热器壁温计算

换热器壁温计算
1.工艺参数:
热流体进口温度Ti(0C)
120 热流体出口温度To(0C)
冷流体进口温度ti(0C)
31 冷流体出口温度to(0C)
热流体侧污垢热阻rdh(m2。0C/W)
0.00172 冷流体侧污垢热阻rdc(m2。0C/W)
热流体侧给热系数α h(W/m2。0C)
309.358 热流体侧给热系数α c(W/m2。0C)
总传热系数K(W/m2。0C)
146.6776 热强度q(W/m2)
2.计算结果:
换热器大温差端的流体温差△t1(0C)
89 换热器小温差端的流体温差△t2(0C)
换热管管壁温度tt(0C)
53.42
壳壁温度ts(0C)
本表的计算适用于传热系数K值固定不变时△tM的计算
40 39 0.00172 2513.243 2875.62
1
35 41.09
流体有效平均温差△tM(0C)
19.61
热流体平均温度Tm(0C)ቤተ መጻሕፍቲ ባይዱ
80 冷流体平均温度tm(0C)
热流体侧的壁温tth(0C)
65.76 冷流体侧的壁温ttc(0C)
一般情况下换热管管壁温度tt(0C)
53.42
管壁热阻小且管壁很薄温度tt(0C)
48.48
估算换热管管壁温度tt(0C)
39.93
3.结论:
换热器壁温计算(按GBT151-2014)

℃ Байду номын сангаас•K/w×
893
冷流体给热系数 w/㎡•℃
18.3
计算结果
169
冷流体平均温度 ℃
160.5465476 冷流体侧壁温 ℃
一般情况下换热管壁平均温度
侧壁温计算(参考GB/T151-2014)20160812编制
物料为气体 工艺参数
185
热流体进口温度 ℃
145
热流体出口温度 ℃
191.2 0.0002
194.2558828 热流体侧壁温 ℃
94.35422545 冷流体侧壁温 ℃
177.4
一般情况下换热管壁平均温度
90 80.88 0.0003
2486
81.125 81.82781442
88.091
热流体进口温度 ℃ 冷流体进口温度 ℃ 热流体污垢系数 ㎡•K/w× 10^4 传热系数 w/㎡•K 热流体给热系数 w/㎡•℃ 平均温差 ℃
热流体平均温度 ℃
热流体侧壁温 ℃
换热器管侧壁温计算(参考GB/
物料为液体 工艺参数
145
热流体出口温度 ℃
180 0.0002
350
冷流体出口温度
冷流体污垢系数 10^4
冷流体进口温度 ℃
热流体污垢系数 ㎡•K/w× 10^4
传热系数 w/㎡•K
81.37 0.0004
36
冷流体出口温度
冷流体污垢系数 10^4
℃ ㎡•K/w×
1024
热流体给热系数 w/㎡•℃
44
冷流体给热系数 w/㎡•℃
平均温差 ℃
27.8
计算结果
186.72
热流体平均温度 ℃
117.5
冷流体平均温度 ℃
盘管换热器相关计算

一、铜盘管换热器相关计算条件:600kg 水 6小时升温30℃ 单位时间换热器的放热量为q q=GC ΔT=600*4.2*10^3*30/(6*3600)= 3500w 盘管流速1m/s ,管径为0.007m ,0.01m ,物性参数:40℃饱和水参数。
黏度—653.3*10^-6运动黏度—0.659*10^-6 普朗特数—4.31 导热系数—63.5*10^2 w/(m.℃)求解过程:盘管平均水温40℃为定性温度时换热铜管的外径,分别取d1=0.014m d2=0.02m 努尔特准那么为0.4f 8.0f f Pr 023Re .0*2.1Nu ==1.2*0.023*21244.310.84.310.4=143.4 〔d1〕 0.4f8.0ff Pr 023Re.0*2.1Nu ==1.2*0.023*30349.010.84.310.4=190.7 〔d2〕管对流换热系数为l Nu h ff i λ⋅==143.4*0.635/0.014=6503.39 〔d1〕 lNu h ff i λ⋅==190.7*0.635/0.02=6055.63 〔d2〕 管外对流换热系数格拉晓夫数准那么为〔Δt=10〕23/υβtd g Gr ∆==9.8*3.86*10^-4*10*.0163/(0.659*10^-6)2=356781.6 〔d1〕 23/υβtd g Gr ∆==9.8*3.86*10^-4*10*.0223/(0.659*10^-6)2=927492.9〔d2〕其中g=9.8 N/kgβ为水的膨胀系数为386*10^-6 1/K自然对流换热均为层流换热〔层流围:Gr=10^4~5.76*10^8〕25.023w wPr t g l 525.0Nu ⎪⎪⎭⎫ ⎝⎛⋅∆=να=0.525(356781.6*4.31)0.25=18.48755 〔d1〕25.023w wPr t g l 525.0Nu ⎪⎪⎭⎫ ⎝⎛⋅∆=να=0.525(927492.9*4.31)0.25=23.47504 〔d2〕其中Pr 普朗特数为4.31 对流换热系数为dNu m λα==18.48755*0.635/0.014=838.5422 〔d1〕 dNu m λα==23.47504*0.635/0.014=677.5749 〔d2〕其中λ为0.635w/(m.℃) .传热系数Uλδ++=o i h 1h 1U 1=1/6503.39+1/838.5422+1/393=0.003891 U=257.0138 〔d1〕λδ++=o i h 1h 1U 1=1/6055.63+1/677.5749+1/393=0.004186 U=238.9191 〔d2〕h i -螺旋换热器外表传热系数 J/㎡·s ·℃ h o -螺旋换热器外外表传热系数 J/㎡·s ·℃ δ-螺旋换热器管壁厚 m δ=1mλ-管材的导热系数 J/m ·s ·℃λ=393W/m ℃k o -分别为管外垢层热阻的倒数〔当无垢层热阻时k o 为1〕 J/㎡·s ·℃自来水 k o =0.0002㎡℃/W换热器铜管长度 dq l απ70==3500/10/257.0138/3.14/0.014=27.1 〔d1〕A=1.53dq l απ70==3500/10/238.9191/3.14/0.022=21.2 〔d2〕A=1.65二、集热面积的相关计算〔间接系统〕条件:加热600kg 水,初始水温10℃,集热平面太阳辐照量17MJ/㎡以上,温升30℃,⎪⎪⎭⎫ ⎝⎛⋅⋅+⋅=hx hx CL R c IN AU A U F 1A A =9.5㎡式中IN A —间接系统集热器总面积,㎡L R U F —集热器总热损系数,W/〔㎡·℃〕对平板集热器,L R U F 宜取4~6W/〔㎡·℃〕 对真空管集热器,L R U F 宜取1~2W/〔㎡·℃〕取1hx U —环热器传热系数,W/〔㎡·℃〕 hx A —换热器换热面积,㎡c A —直接系统集热器总面积,㎡ )1(J f)t t (C Q A L cd T i end w w c ηη--=w Q —日均用水量,kgw C —水的定压比热容,kJ/〔kg ·℃〕 end t —出水箱水的设计温度,℃i t —水的初始温度,℃f —太阳保证率,%;根据系统的使用期的太阳辐照、系统经济以用户要求等因素综合考虑后确定,宜为30%~80%取1T J —当地集热采光面上的年平均日太阳辐照量kJ/㎡cd η—集热器的年平均集热效率;根均经历值宜为0.25~0.5取0.6L η—出水箱和管路的热损失率;根据经历取值宜为0.20~0.30取0.2结论:1) 换热器入口流速在1m/s 左右2) 保证换热器的平均温度在40℃左右 3) 换热器的入口压力不低于0.2 5MPa三、换热器计算1.传热面积TU Q A ∆=(2.1.1)A — 传热面积 ㎡ Q —传热量 J/sU —传热系数 J/㎡·s ·℃ ΔT -平均温度差 ℃2.平均温度差〔考虑逆流情况〕c1h2c2h1c1h2c2h1T T T T ln )T T ()T (T T -----=∆〔2.2.1〕 其中T c —冷流体温度 ℃ T h —热流体温度 ℃下标1为入口温度,下标2为出口温度 当c1h2c2h1T T T T --≤2时,可用算数平均值计算,即2)T T ()T (T c1h2c2h1-+-〔2.2.2〕3.传热系数U)A A (k 11)k 1h 1()A A (h 1U 1io i o o o i o i ++++=λδη〔2.3.1〕h i -螺旋换热器外表传热系数 J/㎡·s ·℃h o -螺旋换热器外外表传热系数 J/㎡·s ·℃ δ-螺旋换热器管壁厚 mλ-管材的导热系数 J/m ·s ·℃k i ,k o -分别为管外垢层热阻的倒数〔当无垢层热阻时k i ,k o 均为1〕 J/㎡·s ·℃ ηo -为肋面总效率〔如果外外表为肋化,那么ηo =1〕ioA A -为换热管的外外表积与外表积之比; 4.螺旋管外表传热系数lNu h ff i λ⋅=〔2.4.1〕 其中h i —管外表传热系数 J/㎡·h ·℃f Nu —努塞尔数f λ—流体导热系数 W/m ·K换热器设计流量为:4L/min ~14L/min ,管为湍流时实验关联式验证围:Re f =104~1.2×105,Pr f =0.1~120,l/d ≥60; 管径d 为特征长度。
管壳式换热器传热计算示例终 用于合并

Pa;
取导流板阻力系数:
;
导流板压降:
壳程结垢修正系数: 壳程压降:
Pa ;(表 3-12)
管程允许压降:[△P2]=35000 Pa;(见表 3-10) 壳程允许压降:[△P1]=35000 Pa;
△P2<[△P2] △P1<[△P1] 即压降符合要求。
Pa;
(2)结构设计(以下数据根据 BG150-2011)
m2; 选用φ25×2、5 无缝钢管作换热管; 管子外径 d0=0、025 m; 管子内径 di=0、025-2×0、0025=0、02 m; 管子长度取为 l=3 m; 管子总数:
管程流通截面积:
取 720 根 m2
管程流速: 管程雷诺数: 管程传热系数:(式 3-33c)
m/s 湍流
6)结构初步设计: 布管方式见图所示: 管间距 s=0、032m(按 GB151,取 1、25d0); 管束中心排管的管数按 4、3、1、1 所给的公式确定:
结构设计的任务就是根据热力计算所决定的初步结构数据,进一步设计全部结构尺寸, 选定材料并进行强度校核。最后绘成图纸,现简要综述如下:
1) 换热器流程设计 采用壳方单程,管方两程的 1-4 型换热器。由于换热器尺寸不太大,可以用一台,未考虑 采用多台组合使用,管程分程隔板采取上图中的丁字型结构,其主要优点就是布管紧密。 2)管子与传热面积 采用 25×2、5 的无缝钢管,材质 20 号钢,长 3m,管长与管径都就是换热器的标准管子 尺寸。 管子总数为 352 根,其传热面积为:
3)传热量与水热流量
取定换热器热效率为η=0、98; 设计传热量:
过冷却水流量:
; 4)有效平均温差 逆流平均温差:
根据式(3-20)计算参数 p、R: 参数 P:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50
70
0.0017
0.00017
4000
550
483.516484 热强度q(W/m2)
32660.28
2.计算结果:
换热器大温差端的流体温差△t1(0C)
0
换热器小温差端的流体温差△t2(0C)
30
流体有效平均温差△tM( C) 热流体平均温度Tm(0C) 热流体侧的壁温tth(0C) 一般情况下换热管管壁温度tt(0C) 管壁热阻小且管壁很薄温度tt(0C) 估算换热管管壁温度tt(0C)
67.55 冷流体平均温度tm(0C) 冷流体侧的壁温ttc( C)
0
139 75.31 100.12 99.88 129.45
60 124.93
3.结论:
换热管管壁温度tt (0 C) 壳壁温度ts(0C) 100.12
本表的计算适用于传热系数K值固定不变时△tM的计算
换热器壁温计算
1.工艺参数:
热流体进口温度Ti(0C) 冷流体进口温度ti(0C) 热流体侧污垢热阻rdh(m2。0C/W) 热流体侧给热系数α h(W/m2。0C) 总传热系数K(W/m2。0C) 178 热流体出口温度To(0C) 冷流体出口温度to(0C) 冷流体侧污垢热阻rdc(m2。0C/W) 热流体侧给热系数α c(W/m2。0C) 100