对汽车动力性建模设计的国内外研究现状
国内外电动汽车发展现状及充电技术研究

国内外电动汽车发展现状及充电技术研究一、国内外电动汽车发展现状1. 国外电动汽车发展概况随着全球对环保和可持续发展的日益关注,电动汽车(EV)在全球范围内的发展势头迅猛。
特别是在一些发达国家和地区,电动汽车的普及率和技术水平已经走在了世界前列。
在欧洲,许多国家为电动汽车的发展提供了强有力的政策支持。
例如,挪威是全球电动汽车销量最高的国家之一,其政府通过提供购车补贴、免费停车和免除道路使用费等优惠政策,极大地推动了电动汽车在该国的普及。
德国和英国等传统汽车制造强国也在电动汽车技术上投入巨资,力图保持在全球市场的领先地位。
在亚洲,中国、日本和韩国等国家在电动汽车领域也取得了显著成就。
中国的电动汽车市场已经成为全球最大的电动汽车市场,不仅有多家本土企业崭露头角,而且政策层面也给予了大力支持。
日本在电池技术和材料科学方面有着深厚的积累,因此在电动汽车的电池领域具有领先优势。
韩国则在电动汽车的设计和制造方面有着独特的优势,其产品在国际市场上也受到了广泛认可。
在北美,美国和加拿大等国的电动汽车市场也在稳步增长。
美国政府通过制定严格的排放标准和提供购车补贴等措施,推动了电动汽车的普及和技术进步。
加拿大的电动汽车产业链也相对完善,多家企业在电池、充电设施等领域有着不俗的表现。
国外电动汽车的发展呈现出多元化、全面化的特点,不仅在市场规模上不断扩大,而且在技术研发和产业链建设方面也取得了显著成就。
这些成功的经验和做法对于我国电动汽车的发展具有重要的借鉴意义。
2. 国内电动汽车发展概况近年来,中国电动汽车的发展取得了显著的进步,不仅在市场规模上迅速扩大,而且在技术研发和产业布局上也呈现出积极的态势。
政策推动是中国电动汽车快速发展的关键因素之一。
政府通过制定一系列优惠政策和补贴措施,鼓励消费者购买电动汽车,推动电动汽车产业的快速发展。
同时,中国还加大了对电动汽车基础设施建设的投入,建设了大量的充电桩和充电站,为电动汽车的普及提供了有力支持。
混合动力汽车驱动系统的国内外研究现状

混合动力汽车驱动系统的国内外研究现状姓名:学号:班级:1.1混合动力汽车提出背景1.1.1 21世纪汽车工业面临的挑战[1]内燃机汽车经过120多年的发展和壮大,为人类文明做出了巨大贡献,创造了难以计算的直接或间接经济利益。
但是,随着内燃机汽车保有量的急剧增长,人们越来越认识到传统的内燃机汽车对人类环境带来的危害。
传统燃油汽车排放所造成的空气质量日益恶化和石油资源的渐趋匮乏,环境保护的迫切性和石油储量日见短缺的压力,迫使人们重新考虑未来汽车的动力问题。
目前,世界上各种汽车的保有量超过7亿辆,每年新生产的各种汽车约5000万辆,按平均每辆汽车的年消耗10~15桶石油制品计算,汽车的石油消耗量每年达到80~100亿桶,约占世界石油产量的一半以上.石油资源的开采每年达到几十亿吨,经过长时期的现代化大规模地开采,石油资源日渐枯竭,按科学家预测,地球上的石油资源如果按目前的消耗水平,石油资源仅仅可以维持60~100年.21世纪以来,石油价格的上涨已对世界经济的发展形成了巨大的威胁,人类将面临更加严峻的石油资源的危机和挑战。
内燃机汽车上产生动力的同时,会产生燃烧废气,包括二氧化碳二氧化碳(CO2)、一氧化碳(CO)、氮氧化合物(NOX)、碳氢化合物(HX)等有害气体,对大气环境造成污染,对人体造成伤害。
内燃机汽车的噪声主要是燃烧噪声、进气和排气过程装配能够气体的空气动力性噪声,这些噪声随汽车的行驶,飘逸在其经过的环境中,在大城市中,汽车所产生的噪声会引起人们的神经系统和心血管系统功能的紊乱。
目前只是在每台汽车上装置降低噪声的处理系统,以降低噪声,达到国家规定的标准。
噪声降低的处理一般会因消耗一部分发动机的能量而降低内燃机的效率。
1.1.2 混合动力汽车的提出及其特点经过对各种新燃料,新能源和新动力的探索,电动汽车成为最主要的选择之一。
电动汽车包括纯电动汽车(EV)、混合动力汽车(HEV)和燃料电池汽车(FCV)三种形式,它是理想的零排放或低排放车辆。
我国新能源汽车驱动电机产业发展现状及趋势研究

我国新能源汽车驱动电机产业发展现状及趋势研究目录一、内容概览 (2)1.1 研究背景与意义 (2)1.2 国内外研究现状综述 (3)1.3 研究内容与方法 (5)1.4 论文结构安排 (6)二、我国新能源汽车驱动电机产业发展概述 (8)2.1 新能源汽车驱动电机技术发展历程 (9)2.2 我国新能源汽车驱动电机产业市场规模 (10)2.3 我国新能源汽车驱动电机产业竞争格局 (11)三、我国新能源汽车驱动电机产业发展现状分析 (13)3.1 驱动电机类型及技术路线分析 (14)3.2 驱动电机主要生产企业及产品分析 (15)3.3 技术创新与研发投入情况分析 (16)3.4 存在的问题与挑战分析 (17)四、我国新能源汽车驱动电机产业发展趋势预测 (18)4.1 市场需求预测 (19)4.2 技术发展趋势 (20)4.3 政策环境展望 (21)4.4 产业链协同发展前景 (22)五、结论与建议 (23)5.1 研究结论总结 (25)5.2 对产业发展的建议 (26)5.3 研究局限与未来展望 (27)一、内容概览随着全球气候变化和环境污染问题日益严重,新能源汽车作为低碳、环保的交通工具,受到了各国政府和市场的高度重视。
我国新能源汽车产业在国家政策的支持下,取得了显著的发展成果,其中驱动电机作为新能源汽车的核心部件之一,其产业发展现状及趋势备受关注。
本文档将对我国新能源汽车驱动电机产业发展现状进行详细分析,包括产业规模、技术水平、市场需求等方面的现状;同时,通过对国内外驱动电机产业发展趋势的研究,探讨我国驱动电机产业未来的发展方向和战略选择。
在分析现状的基础上,本文档还将提出一些建议,以期为我国新能源汽车驱动电机产业的发展提供有益的参考和借鉴。
1.1 研究背景与意义随着全球能源结构的转型和低碳经济的发展,新能源汽车作为未来汽车产业的重要发展方向,正受到各国政府和企业的高度关注。
新能源汽车产业已经进入了快速发展的阶段,特别是驱动电机作为新能源汽车的核心部件,其技术水平直接影响到整车的性能和经济性。
A车辆非线性动力学的国内外研究现状及发展动态

机械设计及理论车辆非线性动力学的国内外研究现状及发展动态1.引言非线性问题广泛地存在于自然界中,它是一门研究物体的几何非线性和物理非线性的科学。
动力学问题一开始就是非线性的,如用牛顿运动定律描述的行星运动微分方程。
但直到1930年,历史上才专门使用非线性力学这一名词。
发展到现在,这种非线性力学几乎包括了力学的大部分。
早期受理论分析水平和计算能力的限制,一般将其简化为线性模型【1】忽略了其非线性。
随着社会和科学技术的发展,非线性系统动力学问题的研究越显重要,尤其是在20世纪60年代以后,由于计算机和计算数学的飞速发展,为非线性问题的研究提供了基础。
其研究目的就是利用非线性动力学理论,阐明复杂力学现象的机理,研究在不同的初始条件和系统参数改变的情况下,系统的定性和定量变化规律。
18世纪60年代的第一次工业革命,引起了从手工劳动向动力机器生产转变的重大飞跃。
1814年,英国人斯蒂芬逊制造出世界上第一辆蒸气机车。
1886年,第一辆以汽油为动力的汽车诞生。
从此,人类从为停止对车辆的探索研究。
作为一种工业产品的高度集成,汽车中的非线性无所不在,如悬架系统、轮胎、座椅中都存在着诸多非线性因素。
此外,汽车在行驶过程中还会有许多不确定因素,其非线性因素在一定的载荷激励下影响十分突出【2】,因此,汽车中的非线性因素不容忽视。
例如,在转向系统中,由于转向轮的轮胎拖距、主销后倾等因素的影响,当车速达到某一数值时,车身会发生严重的左右摆动现象,称为汽车“振摆”,这是一种有害的自激振动。
此外,由干摩擦引起结构的非线性振动在汽车系统中也会出现,例如,汽车制动系统中由于干摩擦引起的粘滑振动。
对于车辆非线性动力学模型,早期的到来研究一般将其简化为线性模型进行分析计算。
然而,由于在汽车中,悬架和轮胎有着很强的非线性特性,这些非线性因素使得汽车行驶过程平稳性及转向性与线性计算结果有着非常大的差别【3】。
例如,在转向动力学中,当汽车高速行驶时,轮胎早已处于非线性工作状态,此时仍采用线性轮胎模型来研究汽车的转向动力学特性已失去实际意义。
重型汽车动力学性能仿真研究与优化设计

重型汽车动力学性能仿真研究与优化设计重型汽车动力学性能仿真研究与优化设计摘要:随着工业化的不断发展,交通运输业迅猛发展,重型汽车作为货物运输和物流行业的主力军,其动力学性能的研究和优化设计显得尤为重要。
本文基于重型汽车动力学性能仿真研究与优化设计的背景,综述了该领域的研究现状和最新成果,并介绍了仿真方法及其在动力学性能研究中的应用,最后提出了优化设计的思路和方法。
本文的目的是推动重型汽车动力学性能仿真研究与优化设计的发展,为相关领域的研究者提供一些建议和参考。
关键词:重型汽车,动力学性能,仿真,优化设计1. 引言随着全球经济一体化的进一步深化,国内外贸易的不断增长,重型汽车在货物运输和物流行业中扮演着重要角色。
在这个背景下,重型汽车的动力学性能研究和优化设计变得尤为重要。
动力学性能直接关系到汽车的行驶安全性、操控性以及燃油消耗率等关键指标。
因此,深入研究重型汽车的动力学性能,掌握其运动特点和工作原理,对于改进和优化重型汽车的性能具有重要意义。
2. 动力学性能的仿真研究方法动力学性能的仿真研究是一种基于计算机模型和仿真软件的方法,通过模拟重型汽车在不同工况下的运动过程,得出相关指标的仿真结果。
对于重型汽车动力学性能的仿真研究来说,主要包括车辆运动学仿真和车辆动力学仿真两个方面。
2.1 车辆运动学仿真车辆运动学仿真主要研究重型汽车的运动学特性,如速度、加速度、转向角等。
通过建立重型汽车的几何模型和动力学方程,采用数值计算方法,可以得到重型汽车在不同路况和驾驶行为下的运动状态。
这种仿真方法可以较为准确地预测重型汽车的运动轨迹和行驶特性,为优化设计提供基础。
2.2 车辆动力学仿真车辆动力学仿真主要研究重型汽车的动力学特性,如加速性能、制动性能、悬挂系统的振动特性等。
通过建立重型汽车的动力学模型和控制策略,采用仿真软件进行模拟计算,可以得到重型汽车在不同工况下的动力学参数和响应性能。
这种仿真方法可以帮助优化重型汽车的动力系统和悬挂系统设计,提高汽车的性能。
车辆行驶动力学的研究现状

车辆行驶动力学研究现状姓名:赵方班级:研1002班学号:2010020038 指导老师:林慕义完成日期:2010年12月27日目录前言 (2)汽车行驶动力学的研究现状 (3)一、国内外研究现状31路面对汽车激励建模研究的现状 (3)2、汽车振动模型建模研究的现状43、汽车行驶平顺性仿真求解方法的研究现状44、虚拟激励法的研究现状5二、行驶动力学的新发展61车辆行驶平顺性评价 (6)2、车辆非平稳行驶动力学研究方法73、................................................................... 联合仿真8三、存在的问题9四、今后努力的方向10总结 (12)参考文献 (13)、八, 、■刖言行驶动力学研究中的首要问题是建立考虑悬架特性在内的汽车动力学模型。
在汽车理论中常用汽车的平顺性作为行驶动力学的主要评价性能。
按照GB/T 4971-1985《汽车平顺性名词术语和定义》,汽车平顺性是指避免汽车在行驶过程中所产生的振动和冲击使人感到不舒适、疲劳甚至损害健康,或使货物损坏的性能[2] o车辆动力学的系统研究始于50年代,随着计算机技术的发展和随机振动理论的应用使车辆行驶动力学得到迅速发展。
80年代初,国际上成立了车辆系统动力学学会,总部设在荷兰,定期出版刊物和举行学术会议,发表大量最新研究成果,使汽车动力学的研究发展到一个崭新的阶段。
有代表性的著作是德国Mitschke.E.M(1963) ,Packeja.H.B(1976) ,Willermeit.H.P(1980) 所著的汽车动力学,美国GillespieT.D(1992)的汽车动力学基础。
Mitschke教授在其著作中详细论述了汽车的驱动、制动、操纵稳定性和车辆的振动,该著作在80年代初译成中文,在我国汽车动力学研究中产生重要影响,其中90年代出版的汽车动力学(B卷)对汽车行驶动力学进行了全面的论述。
国内外汽车发动机的技术现状及发展趋势

国内外汽车发动机的技术现状及发展趋势摘要:发动机是汽车的心脏,发动机的发展在很大程度上决定着汽车产业的发展。
随着电子技术的发展也不断推动着发动机新技术的开发。
无疑,先进的发动机技术将在汽车节能、环保技术开发中起着关键的决定性的作用。
Abstract: the engine is the heart of the car, the engine development in a great extent the development of the car industry. With the development of electronic technology is also constantly push engine the development of new technology. No doubt, the advanced engine technology will in car the energy conservation, the environmental protection technology development plays a key of the decisive role.关键词:车用汽油机柴油机发动机技术发展趋势汽油机所采用的新技术及发展趋势由于汽油机的燃油经济性比柴油机差,所以降低汽油机的能耗已经成为汽车界当前必须要解决的一个问题。
具有理论空燃比的均质混合气的燃烧理论在火花点火发动机上被广泛使用,它的最大优点是可以实用三效催化器来降低CO、HC和NOx等废气的排放。
不足之处是不能获得较高的燃油经济性,为了提高发动机的热效率和降低废气排放,燃烧技术在不断地发展。
汽油机经历了由完全机械控制的化油器供油为主到采用电控喷射、缸内直喷、电辅助增压和电动气门、可变压缩比、停缸等技术的变化,汽油机发展的最终方案将采用综合汽油机和柴油机优点的燃烧控制技术。
汽油机所采用的技术:1、燃油电子喷射技术。
国内外新能源汽车技术发展现状与趋势

国内外新能源汽车技术发展现状与趋势摘要:新能源汽车是未来汽车产业的发展方向之一,其中电动汽车是主要发展方向。
本文以全球范围内新能源汽车的技术发展现状为研究对象,分析了新能源汽车技术的发展趋势,并探讨了国内外新能源汽车技术发展的差异以及我国新能源汽车行业存在的问题和未来发展的思路。
关键词:新能源汽车;电动汽车;技术发展;趋势分析。
正文:一、新能源汽车的技术发展现状新能源汽车是国家现代化产业体系建设的战略性新兴产业,是低碳经济和环境友好型交通工具的代表。
随着全球气候变化问题的愈发严峻,新能源汽车的推广和应用已成为全球范围内的共识和趋势。
新能源汽车主要是指纯电动、混合动力、燃料电池、太阳能等多种类型的汽车,而电动汽车是其中最为普及的一类新能源车。
电动汽车采用电池作为能量储存装置,通过电动机驱动车轮运动,相比于传统燃油车具有零排放、低噪音、高效能等优点,已成为目前新能源汽车发展的主要方向之一。
目前,全球主要的电动汽车技术有三种:纯电动、插电混合动力和非插电混合动力。
其中,纯电动汽车不需要加油和前往加油站,而混合动力汽车则同时拥有燃油发动机和电动机,可随时通过电池储能系统供电,减少能耗和排放,因此备受市场关注。
在全球范围内,新能源汽车技术的发展趋势主要体现在以下几个方面:1. 能量密度的提升:新能源汽车的发展离不开先进的电池技术,而电池能量密度的提升是实现电动汽车长续航里程和更高性能的关键所在。
例如,锂离子电池的能量密度可以达到普通镍镉电池的2倍以上,同时容量相同,总重量也更轻。
因此,当前国内外新能源汽车技术的研究和开发都在探索和提高电池的能量密度。
2. 充电设备的升级:新能源汽车的推广和应用离不开完善的充电设施,便捷的充电模式也是消费者购买新能源汽车的重要考虑因素。
根据国际能源署(IEA)的数据,目前全球新能源汽车充电设施已经超过95万个,覆盖了全球主要城市中心区域。
未来,充电设备的升级和智能化将是一条主要发展方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对汽车动力性建模设计的国内外研究现状汽车产品开发中,客观评价和主观评价的全数字化仿真是汽车动力学模型的发展趋势之一,对于ISO等标准试验的客观评价工况,商用动力学软件已经能够较好的仿真,并且广泛用于汽车的稳态性能开发。
为实现汽车主观评价的仿真,国际上提出了驾驶模拟器进行主观评价的方法,避免了对于驾驶员的建模。
然而嵌入驾驶模拟器的动力学模型目前不能有效仿真汽车动态过程,本文研究了面向汽车主观评价的实时动力学建模关键问题以及实现该模型的方法。
面向主观评价的动力学模型需要仿真精细的全工况的动态过程。
提出模型需要实现全工况仿真、反映稳态工况间的迁变过程、描述动态过程的精细化建模以及完备自由度建模。
针对建模方法和各子系统特点,在建模过程中应重点考虑以下几个问题:隔离解耦的动态子系统,转向和车轮静动摩擦模型,完备的转向系统模型,面向非水平路面的动态车轮模型,基于总成特性的悬架模型,全工况的动力传动模型,本文重点探索了子系统隔离解耦方法、基于总成特性的悬架模型,全工况的动力传动模型。
基于结构的转向系统模型包含阿克曼转向机构边界力输入、转向系统的弹性环节、摩擦环节描述三部分。
建立了齿轮齿条式转向系统模型,实现了阿克曼转向机构力输入、转向静动摩擦力建模以及转向系统弹性,取代了转向系统原有的正向计算运动、逆向计算力矩的模型,实现了完备转向系统建模。
模型具备仿真车辆抵抗转向盘上微小干扰输入和道路不平扰动的能力以及中心区转向等特性,能较为精确计算方向盘的回正力矩。
动态车轮模型将车轮系统简化为轮辋和刚
性环,两者通过六向弹簧阻尼器连接,构建起由轮辋和刚性环组成的动力学系统。
车轮的滑移率由轮心和刚性环接地印迹的相对运动动态计算得到。
轮辋和刚性环之间加入静动摩擦模型,车轮在低于某个运动状态使其停车。
轮胎与路面间的动摩擦力学特性采用UniTire轮胎模型,实现了多工况高精度的仿真。
主观评价在汽车产品开发阶段只能用驾驶模拟器评价,要求动力学模型实时仿真;与性能模型相比,面向主观评价的模型仿真频带更高,产生刚性微分方程,同时动力学模型向基于结构的模型发展,涉及到关键硬点的计算;接触模型,迟滞模型,摩擦模型,导致计算量大,需要多速率积分;以上四个问题都使得应用于驾驶模拟器的实时动力学模型需要进行子系统分解。
结合最新版SAE-J670-2008车辆动力学术语,重新划分子系统的体。
通过子系统分界面研究,将子系统边界划分在约束处,系统方程只有常微分方程,从建模环节上避免了代数方程的出现。
为更精确描述集中质量建模中体的运动状态,提出虚拟主销体和轮轴体。
以较为复杂的乘用车前置前驱为例,详细讨论了各子系统的分界面及体的组成,梳理主销和轮轴在驱动系统、行走系统和转向系统的作用。
基于总成特性的悬架模型包含悬架导向机构模型、悬架承载模型以及悬架KC特性修正,能够避免对悬架系统多杆件和多弹性元件直接建模,满足悬架系统实时仿真。
本文分析了基于侧倾中心和纵倾中心的导向机构模型,抽象出等效的二力杆,以传递车轮和车体间的侧向力和纵向力;悬架承载模型采用了一阶微分方程的Fancher迟滞模型描述系统级
的干摩擦;提取关键的悬架KC数据,补偿由于悬架运动学及弹性元
件等引起的附加变形。
为实现汽车起步、加速、换档等工况,同时避免建立离合器执行机构的复杂模型,提出了基于总成特性的动力传动系模型。
由于离合器位置和变速器挡位的可切换性,产生了多种组合工况,离合器状态的分离相、滑磨相、接合相以及变速器状态的空挡,非空挡(包括倒挡)2个相,讨论了离合器、变速器状态组合出的6
个相的运动学状态和扭矩传递过程。
为使动力学模型能在离合器和挡位变换切换时平稳过渡,建立了静动摩擦的离合器模型。
由于传统多刚体动力学模型处理刚性代数微分方程时仿真速度较慢,为此提出多刚体动力学实时仿真平台。
通过子系统隔离,用等效方法描述约束,取消了代数约束方程。
采用常微分方程加边界等价的方法以及小步长的定步长积分,实现多刚体动力学实时仿真。
该仿真平台由动态子系统层、物理层和数学层组成,同时也便于实现仿真管理以及多速率仿真。
在该仿真平台上研究了汽车动力学的关键子系统模型的具体实现。
最后,通过对比有无悬架运动学前束和前悬架导向机构模型,验证了悬架KC修正模型以及导向机构模型的作用。
通过起步换挡场地实验
数据驱动整车模型,验证动力传动子系统能满足平顺切换离合器和变速器挡位的要求;整车实验能够仿真ISO以及国标等工况,验证了模型有较高精度,同时实现了SteeringFight、平顺性和正弦扫频等动态过程的仿真。