高考概率统计9个考点解析
高考大题规范解答系列(六)——概率与统计

高考一轮总复习 • 数学
考点一
随机抽样、频率分布直方图及其应用(文)
例 1 (2021·河南质量测评)“不忘
初心、牢记使命”主题教育活动正在全国
开展,某区政府为统计全区党员干部一周
参与主题教育活动的时间,从全区的党员
干部中随机抽取n名,获得了他们一周参
加主题教育活动的时间(单位:时)的频率
所以 E(X)=0×210+1×290+2×290+3×210=32.·········6 分 得分点④
第十章 概率(文)
高考一轮总复习 • 数学
(2)当乙盒中红球个数为0时,P1=0, ··························7分 得分点⑤ 当乙盒中红球个数为1时,P2=290×16=430, ···············8分 得分点⑥ 当乙盒中红球个数为2,P3=290×26=230, ···················9分 得分点⑦ 当乙盒中红球个数为3时,P4=210×36=410, ·············10分 得分点⑧ 所以从乙盒中任取一球是红球的概率为P1+P2+P3+P4=41. ·····················································································12分 得分点⑨
第十章 概率(文)
高考一轮总复习 • 数学
所以 X 的分布列为
X
0
1
2
3
P
1 20
9 20
9 20
1 20
·························································································5 分 得分点③
【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
高三数学选修2-3(B版)_专题提升:概率与统计

概率与统计高考对本内容的考查主要有:(1)抽样方法的选择、与样本容量相关的计算,尤其是分层抽样中的相关计算,A 级要求.(2)图表中的直方图、茎叶图都可以作为考查点,尤其是直方图更是考查的热点,A级要求.(3)特征数中的方差、标准差计算都是考查的热点,B级要求.(4)随机事件的概率计算,通常以古典概型、几何概型的形式出现,B级要求.重难点:1.概率问题(1)求某些较复杂的概率问题时,通常有两种方法:一是将其分解为若干个彼此互斥的事件的和,然后利用概率加法公式求其值;二是求此事件A的对立事件A 的概率,然后利用P(A)=1-P(A)可得解;(2)用列举法把古典概型试验的基本事件一一列出来,然后再求出事件A中的基本事件,利用公式P(A)=mn求出事件A的概率,这是一个形象、直观的好办法,但列举时必须按照某一顺序做到不重复,不遗漏;(3)求几何概型的概率,最关键的一步是求事件A所包含的基本事件所占据区域的测度,这里需要解析几何的知识,而最困难的地方是找出基本事件的约束条件.2.统计问题(1)统计主要是对数据的处理,为了保证统计的客观和公正,抽样是统计的必要和重要环节,抽样的方法有三:简单随机抽样、系统抽样和分层抽样;(2)用样本频率分布来估计总体分布一节的重点是:频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布,难点是:频率分布表和频率分布直方图的理解及应用;(3)用茎叶图优点是原有信息不会抹掉,能够展开数据发布情况,但当样本数据较多或数据位数较多时,茎叶图就显得不太方便了;(4)两个变量的相关关系中,主要能作出散点图,了解最小二乘法的思想,能根据给出的线性或归方程系数或公式建立线性回归方程.考点1、抽样方法【例1】某学院的A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本. 已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取________名学生.【方法技巧】分层抽样适用于总体由差异明显的几部分组成的情况,按各部分在总体中所占的比实施抽样,据“每层样本数量与每层个体数量的比与所有样本数量与总体容量的比相等”列式计算;在实际中这种有差异的抽样比其他两类抽样要多的多,所以分层抽样有较大的应用空间,应引起我们的高度重视.【变式探究】某校高三年级学生年龄分布在17岁、18岁、19岁的人数分别为500、400、200,现通过分层抽样从上述学生中抽取一个样本容量为m的样本,已知每位学生被抽到的概率都为0.2,则m=________.【解析】(500+400+200)×0.2=220.【答案】220考点2、用样本估计总体【例2】(2013·重庆卷改编)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为________.【解析】由茎叶图及已知得x=5,又因9+15+10+y+18+245=16.8,所以y=8.【答案】5,8【方法技巧】由于数据过大,直接计算会引起计算错误,故要学会像解析中介绍的两种方法那样尽量简化计算;同时要理解茎叶图的特点,能够从茎叶图获取原始数据.【变式探究】某校共有400名学生参加了一次数学竞赛,竞赛成绩的频率分布直方图如图所示(成绩分组为[0,10),[10,20),…,[80,90),[90,100]).则在本次竞赛中,得分不低于80分以上的人数为______ .【例3】袋中有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:(1)3只全是红球的概率;(2)3只颜色全相同的概率;(3)3只颜色不全相同的概率.解(1)记“3只全是红球”为事件A.从袋中有放回地抽取3次,每次取1只,共会出现3×3×3=27种等可能的结果,其中3只全是红球的结果只有一种,故事件A的概率为P(A)=1 27.(2)“3只颜色全相同”只可能是这样三种情况:“3只全是红球”(事件A);“3只全是黄球”(设为事件B);“3只全是白球”(设为事件C).故“3只颜色全相同”这个事件为A+B+C,由于事件A、B、C不可能同时发生,因此它们是互斥事件.再由红、黄、白球个数一样,故不难得P(B)=P(C)=P(A)=127,所以P(A+B+C)=P(A)+P(B)+P(C)=1 9.(3) 3只颜色不全相同的情况较多,如是两只球同色而另一只球不同色,可以两只同红色或同黄色或同白色等等;或三只球颜色全不相同等.考虑起来比较麻烦,现在记“3只颜色不全相同”为事件D,则事件D为“3只颜色全相同”,显然事件D与D是对立事件.∴P(D)=1-P(D)=1-19=89.【方法技巧】在求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥事件的概率的和;二是先去求此事件的对立事件的概率.一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解;对于“至少”,“至多”等问题往往用这种方法求解.【训练3】(2013·陕西卷改编)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是________.考点预测:1.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为________.2.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为________.3.某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为________.【解析】分层抽样应按各层所占的比例从总体中抽取.4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为________.5.一个袋中有3个黑球,2个白球共5个大小相同的球,每次摸出一球,放进袋里再摸第二次,则两次摸出的球都是白球的概率为________.6.从甲、乙、丙等5名候选学生中选2名作为青年志愿者,则甲、乙、丙中有2个被选中的概率为________.7.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为________.【解析】平均数x =14+17+18+18+20+216=18,故方差s 2=16[(-4)2+(-1)2+02+02+22+32)]=5.【答案】58.袋中装有大小相同且形状一样的四个球,四个球上分别标有“2”、“3”、“4”、“6”这四个数.现从中随机选取三个球,则所选的三个球上的数恰好能构成一个等差数列的概率是________.【解析】总的取法是4组,能构成等差数列的有{2,3,4},{2,4,6} 2组;故所求概率为P =24=12.【答案】129.设f (x )=x 2-2x -3(x ∈R ),则在区间[-π,π]上随机取一个数x ,使f (x )<0的概率为________.10.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.11.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为________.12.从一副没有大小王的52张扑克牌中随机抽取1张,事件A 为“抽得红桃8”,事件B 为“抽得为黑桃”,则事件“A +B ”的概率值是________(结果用最简分数表示).13.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.【解析】由题意得到的P (m ,n )有:(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共计6个;在圆x 2+y 2=9的内部的点有(2,1),(2,2),所以概率为26=13.【答案】13 14.抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x ,y ,则x y 为整数的概率是________.。
高考概率统计9个考点解析

例 11 (2002 年天津高考题) 甲、乙两种冬小麦试验品种连续 5 年的平均单位面积产量 如下(单位:t/hm2) :
其中产量比较稳定的小麦品种是_____.
5
考点 8 样本抽样识别与计算 简单随机抽样,系统抽样,分层抽样得共同特点是不放回抽样,且各个体被抽取得概率相 等,均为(N 为总体个体数,n 为样本容量).系统抽样,分层抽样的实质分别是等距抽样与按比 例抽样,只需按照定义,适用范围和抽样步骤进行 ,就可得到符合条件的样本 .高考常结合应 用问题,考查构照抽样模型,识别图形,搜集数据,处理材料等研究性学习的能力. 例 12 (2005 年湖北湖北高考题) 某初级中学有学生 270 人, 其中一年级 108 人, 二、 三年级各 81 人,现要利用抽样方法抽取 10 人参加某项调查,考虑选用简单随机抽样、分 层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级 依次统一编号为 1,2,…,270;使用系统抽样时,将学生统一随机编号 1,2,…,270, 并将整个编号依次分为 10 段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是( ) A.②、③都不能为系统抽样 B.②、④都不能为分层抽样 C.①、④都可能为系统抽样 D.①、③都可能为分层抽样
(2)若第 n 次由甲射击的概率为 a n ,求数列 a n 的通项公式;求 lim a n ,并说明极
高考一轮复习第9章计数原理概率随机变量及其分布第4讲随机事件的概率

第四讲 随机事件的概率知识梳理·双基自测 知识梳理知识点一 随机事件和确定事件(1)在条件S 下,__必然要发生__的事件,叫做相对于条件S 的必然事件,简称必然事件. (2)在条件S 下,__不可能发生__的事件,叫做相对于条件S 的不可能事件,简称不可能事件. (3)必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件.(4)在条件S 下,__可能发生也可能不发生__的事件,叫做相对于条件S 的随机事件,简称随机事件. 知识点二 概率与频率(1)概率与频率的概念:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的__频数__,称事件A 出现的比例f n (A)=n An为事件A 出现的__频率__.(2)概率与频率的关系:对于给定的随机事件A ,由于事件A 发生的频率f n (A)随着试验次数的增加稳定于概率P(A),因此可以用__频率f n (A)__来估计概率P(A).知识点三 互斥事件与对立事件 事件的关系与运算 定义符号表示 包含 关系 若事件A__发生__,则事件B__一定发生__,这时称事件B 包含事件A(或称事件A 包含于事件B) __B ⊇A__ __(或A ⊆B)__ 相等 关系 若B ⊇A ,且__A ⊇B__,则称事件A 与事件B 相等 __A =B__ 并事件 (和事件) 若某事件发生__当且仅当事件A 发生或事件B 发生__,则称此事件为事件A 与事件B 的并事件(或和事件) __A ∪B__ __(或A +B)__ 交事件 (积事件) 若某事件发生__当且仅当事件A 发生且事件B 发生__,则称此事件为事件A 与事件B 的交事件(或积事件) __A∩B __ __(或AB)__ 互斥 事件 若A∩B 为__不可能__事件,则称事件A 与事件B 互斥 __A∩B=∅__ 对立 事件 若A∩B 为__不可能__事件,A ∪B 为__必然事件__,则称事件A 与事件B 互为对立事件__A∩B=∅,__ __且A ∪B =Ω__重要结论概率的几个基本性质(1)概率的取值范围:__0≤P(A)≤1__. (2)必然事件的概率:P(A)=__1__. (3)不可能事件的概率:P(A)=__0__.(4)概率的加法公式:若事件A 与事件B 互斥,则P(A ∪B)=__P(A)+P(B)__.(5)对立事件的概率:若事件A 与事件B 互为对立事件,则A ∪B 为必然事件.P(A ∪B)=__1__,P(A)=__1-P(B)__.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生的频率与概率是相同的.( × ) (2)在大量重复试验中,概率是频率的稳定值.( √ ) (3)两个事件的和事件是指两个事件都得发生.( × )(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.( × )(5)对立事件肯定是互斥事件、互斥事件不一定是对立事件.( √ ) 题组二 走进教材2.(P 121T4)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( D ) A .至多有一次中靶 B .两次都中靶 C .只有一次中靶D .两次都不中靶[解析] “至少有一次中靶”的对立事件是“两次都不中靶”.故选D . 3.(P 133T4)同时掷两个骰子,向上点数不相同的概率为__56__.[解析] 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P =1-636=56.题组三 走向高考4.(2018·课标全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( B )A .0.3B .0.4C .0.6D .0.7[解析] 设事件A 为“不用现金支付”,事件B 为“既用现金支付也用非现金支付”,事件C 为“只用现金支付”,则P(A)=1-P(B)-P(C)=1-0.15-0.45=0.4故选B .5.(2020·新课标Ⅰ)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( A )A .15B .25C .12D .45[解析] O ,A ,B ,C ,D 中任取3点,共有 C 35=10种,即OAB ,OAC ,OAD ,OBC ,OBD ,OCD ,ABC ,ABD ,ACD ,BCD 十种, 其中共线为A ,O ,C 和B ,O ,D 两种, 故取到的3点共线的概率为P =210=15,故选A .考点突破·互动探究考点一 随机事件的关系——自主练透例1 (1)(2020·辽宁六校协作体期中)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( C )A .“至少有1个白球”和“都是红球”B .“至少有2个白球”和“至多有1个红球”C .“恰有1个白球”和“恰有2个白球”D .“至多有1个白球”和“都是红球”(2)(2021·中山模拟)从1,2,3,4,5这5个数中任取两个数,其中: ①恰有一个是偶数和恰有一个是奇数; ②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述事件中,是对立事件的是( C ) A .① B .②④ C .③D .①③(3)设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)对于选项A ,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B ,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C ,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D ,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C .(2)从1,2,3,4,5这5个数中任取两个数有3种情况:一奇一偶,2个奇数,2个偶数.其中“至少有一个是奇数”包含一奇一偶或2个奇数这两种情况,它与两个都是偶数是对立事件.又①中的事件可以同时发生,不是对立事件,故选C .(3)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P(A)+P(B)=1;投掷一枚硬币3次,满足P(A)+P(B)=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P(A)=78,P(B)=18,满足P(A)+P(B)=1,但A ,B 不是对立事件,故甲是乙的充分不必要条件.名师点拨(1)准确把握互斥事件与对立事件的概念:①互斥事件是不可能同时发生的事件,但也可以同时不发生;②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,既有且仅有一个发生.(2)判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.〔变式训练1〕(2021·宁夏检测)抽查10件产品,设事件A 为“至少有2件次品”,则事件A 的对立事件为( B ) A .至多有2件次品 B .至多有1件次品 C .至多有2件正品D .至少有2件正品[解析] ∵“至少有n 个”的反面是“至多有n -1个”,又∵事件A“至少有2件次品”,∴事件A 的对立事件为“至多有1件次品”.考点二 随机事件的概率——多维探究 角度1 频率与概率例2 (2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化.那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)[解析] (1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为502 000=0.025.(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51 =372.故所求概率估计为1-3722 000=0.814.(3)增加第五类电影的好评率,减少第二类电影的好评率. 角度2 统计与概率例3 (2021·云南名校适应性月考)下边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( A )甲 乙 9 8 8 3 3 7 2 1 09● 9A .45B .25C .910D .710[解析] 记其中被污损的数字为x ,由题知甲的5次综合测评的平均成绩是15×(80×2+90×3+8+9+2+1+0)=90,乙的5次综合测评的平均成绩是15×(80×3+90×2+3+3+7+x +9)=442+x 5, 令90>442+x 5,解得x <8,即x 的取值可以是0~7,因此甲的平均成绩超过乙的平均成绩的概率是810=45.故选A .名师点拨概率和频率的关系概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.〔变式训练2〕(1)(2021·黑龙江大庆质检)某公司欲派甲、乙、丙3人到A ,B 两个城市出差,每人只去1个城市,且每个城市必须有人去,则A 城市恰好只有甲去的概率为( B )A .15B .16C .13D .14(2)(2021·吉林模拟)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.②估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;③如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?[解析] (1)总的派法有:(甲、乙A),(丙B);(甲、乙B),(丙A);(甲、丙A),(乙B);(甲、丙B),(乙A);(乙、丙A),(甲B);(乙、丙B),(甲A),共6种(或C 23A 22=6(种)),A 城市恰好只有甲去有一种,故所求概率P =16.(2)①从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.②从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.③与①同理.可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点三 互斥事件、对立事件的概率——师生共研例4 (1)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C .求:①P(A),P(B),P(C); ②1张奖券的中奖概率;③1张奖券不中特等奖且不中一等奖的概率.(2)(2021·河南新乡模拟)从5个同类产品(其中3个正品,2个次品)中,任意抽取2个,下列事件发生概率为910的是( C )A .2个都是正品B .恰有1个是正品C .至少有1个正品D .至多有1个正品[解析] (1)①P(A)=11 000,P(B)=101 000=1100,P(C)=501 000=120.②因为事件A ,B ,C 两两互斥,所以P(A ∪B ∪C)=P(A)+P(B)+P(C)=11 000+1100+120=611 000.故1张奖券的中奖概率为611 000.③P(A ∪B )=1-P(A +B)=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.(2)从5个产品中任取2个的取法有C 25=10种,其中2个都是正品的取法有C 23=3种,故2个都是正品的概率P 1=310;其对立事件是“至多有1个正品”,概率为P 2=1-P 1=1-310=710.恰有1个正品的取法有C 13·C 12=6种,故恰有1个正品的概率P 3=610=35.至少有1个正品的概率P 4=P 1+P 3=310+610=910.名师点拨求复杂的互斥事件的概率的两种方法(1)直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率求和公式计算.(2)间接求法,先求此事件的对立事件的概率,再用公式P(A)=1-P(A),即运用逆向思维(正难则反).特别是“至多”“至少”型题目,用间接求法就显得较简便.〔变式训练3〕(1)(2020·西安二模)2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B( A )A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件(2)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.则该地1位车主至少购买甲、乙两种保险中的一种的概率为__0.8__;该地1位车主甲、乙两种保险都不购买的概率为__0.2__.[解析](1)2021年某省新高考将实行“3 +1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B不能同时发生,但能同时不发生,故事件A和B是互斥事件,但不是对立事件,故A正确.故选A.(2)记A表示事件:该车主购买甲种保险;B表示事件:该车主购买乙种保险但不购买甲种保险;C表示事件:该车主至少购买甲、乙两种保险中的一种;D表示事件:该车主甲、乙两种保险都不购买.①由题意得P(A)=0.5,P(B)=0.3,又C=A∪B,所以P(C)=P(A∪B)=P(A)+P(B)=0.5+0.3=0.8.②因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2.名师讲坛·素养提升用正难则反的思想求对立事件的概率例5 (1)(2020·浙江湖州期末,改编)现有5个不同编号的小球,其中黑色球2个,白色球2个,红色球1个,若将其随机排成一列,则相同颜色的球都不相邻的概率是__45__.(2)(2021·洛阳模拟)经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:排队人数0 1 2 3 4 5人及5人以上概率0.1 0.16 0.3 0.3 0.1 0.04求:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?[解析](1)“相同颜色的球不都相邻”的对立事件为“相同颜色的球都相邻”,记为事件A.因5个不同编号的小球排列有A55=120种排法,“相同颜色的球都相邻”的排法有A22A22A33=24种排法,∴所求概率P=|-P(A)|=1-24120=45.(2)记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F互斥.①记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.②解法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.解法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.名师点拨“正难则反”的思想是一种常见的数学思想,如反证法、补集的思想都是“正难则反”思想的体现.在解决问题时,如果从问题的正面入手比较复杂或不易解决,那么尝试采用“正难则反”思想往往会起到事半功倍的效果,大大降低题目的难度.在求对立事件的概率时,经常应用“正难则反”的思想,即若事件A与事件B互为对立事件,在求P(A)或P(B)时,利用公式P(A)=1-P(B)先求容易的一个,再求另一个.〔变式训练4〕某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人) x 30 25 y 10结算时间(分钟/人)1 1.52 2.5 3(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)[解析](1)由已知得25+y+10=55,x+30=45,所以x=15,y= 20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)=20100=1 5,P(A2)=10100=110.P(A)=1-P(A1)-P(A2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.。
数学一轮复习高频考点集中练概率统计含解析

高频考点集中练概率统计1.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0。
45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0。
3B.0。
4C。
0。
6D。
0.7【解析】选B.方法一:画Venn图,如图设只用非现金支付(不用现金支付)的概率为x,则0。
45+0.15+x=1,解得x=0。
4,所以不用现金支付的概率为0。
4.方法二:记“用现金支付”为事件A,“用非现金支付”为事件B,则“只用非现金支付(不用现金支付)”为事件B—(A∩B),由已知,P(A)=0.45+0。
15=0。
6,P(A∩B)=0。
15,又P(A∪B)=P(A)+P(B)—P(A∩B)=0。
6+P(B)-0。
15=1,所以P(B)=0。
55,P(B—(A∩B))=P(B)—P(A∩B)=0.55—0.15=0。
4。
【真题拾贝】解决此类问题:①判断事件的基本关系利用概率的计算公式计算;②若事件为互斥事件的和,则由公式P(A∪B)=P(A)+P(B)+P(AB)计算可得;③若事件为独立事件的积,则由公式P(AB)=P(A)P(B)计算可得。
2。
(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分。
7个有效评分与9个原始评分相比,不变的数字特征是()A。
中位数B。
平均数 C.方差 D.极差【命题思维分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【解析】选A.由于去掉1个最高分、1个最低分,不影响中间的数值,故中位数不变。
【真题拾贝】本题旨在考查学生对中位数、平均数、方差、极差本质的理解。
理解概念即可.3。
(2018·全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,D(X)=2。
概率与统计 高中数学讲义解析版

第九章概率与统计9.1 两个计数原理、排列与组合1.通过实例,了解分类加法计数原理、分步乘法计数原理及其意义.2.通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式.【教材梳理】1.分类加法计数原理与分步乘法计数原理(1)分类加法计数原理①定义:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.②拓展:完成一件事,如果有n类方案,且:第1类方案中有m1种不同的方法,第2类方案中有m2种不同的方法,… ,第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+⋯+m n种不同的方法.(2)分步乘法计数原理①定义:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.②拓展:完成一件事,如果需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,… ,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.2.排列与组合(1)排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.两个排列相同的充要条件是:两个排列的元素完全相同,且元素的排列顺序也相同.(2)排列数做从n 个不同元素中取出m 个元素的一个组合.(4)组合数3.A n m =(n −m +1)A n m−1=nA n−1m−1 ;(n +1)!−n!=n ⋅n! .4.kC n k =nC n−1k−1 ;C n m =C n−1m−1+C n−2m−1+⋯+C m−1m−1 .1. 判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1) 在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( √ ) (2) 在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( × )(3) 所有元素完全相同的两个排列为相同排列.( × )(4) (n +1)!−n !=n ⋅n ! .( √ )(5) kC n k =nC n−1k−1 .( √ )2. 公共汽车上有10位乘客,沿途5个车站,所有乘客下车的可能方式有( D )A. A 105 种B. C 105 种C. 105 种D. 510 种[解析]解:所有乘客下车的可能方式有510 种.故选D.3. (教材改编题)已知集合M ={1,−2,3} ,N ={−4,5,6,−7} ,从M ,N 这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是( C )A. 12B. 8C. 6D. 4[解析]解:分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6 .故选C.4. 已知n ,m 为正整数,且n ≥m ,则下列各式中正确的个数是( C )①A 63=120 ;②A 127=C 127A 77 ;③C n m +C n+1m =C n+1m+1 ;④C n m =C n n−m .A. 1B. 2C. 3D. 4[解析]解:对于①,A 63=6×5×4=120 ,故①正确;对于②,因为C 127=A 127A 77 ,所以A 127=C 127A 77 ,故②正确;对于③,因为C n m +C n m−1=C n+1m ,所以C n m+1+C n m =C n+1m+1 ,故③错误;对于④,C n m =C n n−m ,故④正确.故选C.考点一 分类加法计数原理与分步乘法计数原理例1 (1) 满足a ,b ∈{−1,0,1,2} ,且关于x 的方程ax 2+2x +b =0 有实数解的有序数对(a,b) 的个数为13.[解析]解:当a =0 时,b 的值可以是−1 ,0 ,1 ,2 ,故(a,b) 的个数为4;当a ≠0 时,要使方程ax 2+2x +b =0 有实数解,需使Δ=4−4ab ≥0 ,即ab ≤1 .若a =−1 ,则b 的值可以是−1 ,0 ,1 ,2 ,(a,b) 的个数为4;若a =1 ,则b 的值可以是−1 ,0 ,1 ,(a,b) 的个数为3;若a =2 ,则b 的值可以是−1 ,0 ,(a,b) 的个数为2.由分类加法计数原理可知,(a,b) 的个数为4+4+3+2=13 .故填13.(2) 某旅游景区有如图所示A 至H 共8个停车位,现有2辆不同的白色车和2辆不同的黑色车,要求相同颜色的车不停在同一行也不停在同一列,则不同的停车方法总数为( B )A. 288B. 336C. 576D. 1 680[解析]解:第一步:排白车,第一行选一个位置,则第二行有三个位置可选,由于车是不相同的,故白车的停法有4×3×2=24(种).第二步:排黑车,若白车选AF,则黑车有BE,BG,BH,CE,CH,DE,DG共7种选择,黑车是不相同的,故黑车的停法有2×7=14(种).根据分步计数原理,共有24×14=336(种),故选B.(3)(教材改编题)某儿童游乐园有5个区域要涂上颜色,现有四种不同颜色的油漆可供选择,要求相邻区域不能涂同一种颜色,则符合条件的涂色方案种数为( D )A. 36B. 48C. 54D. 72[解析]解:如图,将五个区域分别记为①,②,③,④,⑤.涂色分为5步完成,前三步涂区域①②③,有4×3×2=24(种)方法.后两步涂区域④⑤,可分为两类:区域②④涂色相同,有1×2种方案;区域②,④涂色不相同,有1×1种方案.所以不同的涂色方案共有24×(1×2+1×1)=72(种).故选D.【点拨】解答计数应用问题的总体思路:根据完成事件所需的过程,对事件进行整体分类,确定可分为几大类,整体分类以后,再确定在每类中完成事件要分几个步骤,这些问题都弄清楚了,就可以根据两个基本原理解决问题了.此外,还要掌握一些非常规计数方法,如:①枚举法:将各种情况一一列举出来,它适用于种数较少且计数对象不规律的情况;②转换法:转换问题的角度或转换成其他已知问题;③间接法:若用直接法比较复杂,难以计数,则可考虑利用正难则反的策略,先计算其反面情形,再用总数减去即得.变式1.(1)从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为( D )A. 56B. 54C. 53D. 52[解析]解:在8个数中任取2个不同的数共有8×7=56个对数值,但在这56个数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56−4=52(个).故选D.(2)某学校有东、南、西、北四个校门.翻新改造期间,学校对进入四个校门做出如下规定:学生只能从东门或西门进入校园,教师只能从南门或北门进入校园.现有3名教师和4名学生要进入校园(不分先后顺序),请问进入校园的方式共有128种.(用数字作答)[解析]解:因为学生只能从东门或西门进入校园,所以4名学生进入校园的方式共24=16种.因为教师只能从南门或北门进入校园,所以3名教师进入校园的方式共有23=8种.所以3名教师和4名学生要进入校园的方式共有16×8= 128种.故填128.(3) [2023届湖南长郡中学高三入学考试]某城市在中心广场建造一个花圃,花圃分为6个部分,如图所示.现要栽种4种不同颜色的花,每部分栽种一种,且相邻部分不能栽种同样颜色的花,则不同的栽种方法有( B )A. 80种B. 120种C. 160种D. 240种[解析]解:第一步,对1号区域栽种,有4种选择.第二步,对2号区域栽种,有3种选择.第三步,对3号区域栽种,有2种选择.第四步,对5号区域栽种,分为三种情况:①5号与2号颜色相同,则4号仅有1种选择,6号有2种选择;②5号与3号颜色相同,情况与①类似;③5号与2,3号颜色都不同,则4,6号只有1种选择.所以共有4×3×2×(1×2×2+1×1)=120(种).故选B.考点二排列、组合的基本问题命题角度1 排列的基本问题例2 有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数. (1)选其中5人排成一排;[答案]解:从7个人中选5个人排,排法总数有A75=7×6×5×4×3=2 520(种).(2)排成前后两排,前排3人,后排4人;[答案]分两步完成,先选3人排在前排,有A73种方法,余下4人排在后排,有A44种方法,故共有A73A44=5 040(种).另解:本题即为7人排成一排的全排列.(3)全体排成一排,甲不站排头也不站排尾;[答案](优先法)(方法一)甲为特殊元素.先排甲,有5种方法,其余6人有A66种方法,故共有5×A66=3 600(种).(方法二)排头与排尾为特殊位置.排头与排尾从除甲的其余6个人中选2个排列,有A62种方法,中间5个位置由余下4人和甲进行全排列,有A55种方法,共有A62×A55=3 600(种).(4)全体排成一排,女生必须站在一起;[答案](捆绑法)将女生看成一个整体,与3名男生一起全排列,有A44种方法,再将4名女生进行全排列,也有A44种方法,故共有A44A44=576(种).(5)全体排成一排,男生互不相邻;[答案](插空法)男生不相邻,而女生不作要求,所以应先排女生,有A44种方法,再在女生之间及首尾空出的5个空位中任选3个空位排男生,有A53种方法,故共有A44A53=1 440(种).(6)全体排成一排,甲、乙两人中间恰好有3人;[答案](捆绑法)把甲、乙及中间3人看作一个整体,第一步:先排甲乙两人,有A22种方法;第二步:从余下5人中选3人排在甲乙中间,有A53种;第三步:把这个整体与余下2人进行全排列,有A 33 种方法.故共有A 22A 53A 33=720(种).(7) 全体排成一排,甲必须排在乙前面(可不相邻);[答案](消序法)7人的全排列有A 77 种,其中甲在乙前面与乙在甲前面各占12 ,故共有A 772=2 520 (种).另解:7个位置中任选5个排除甲、乙外的5人,余下的两个位置甲、乙的排法即定,故有A 75=2 520 (种).(8) 全部排成一排,甲不排在左端,乙不排在右端.[答案]甲、乙为特殊元素,左、右两端为特殊位置.(方法一)(特殊元素法)甲在最右端时,其他的可全排,有A 66 种;甲不在最右端时,可从余下5个位置中任选一个,有A 51 种,而乙可排在除去最右端位置后剩余的5个中的任意一个上,有A 51 种,其余人全排列,共有A 51A 51A 55 种.由分类加法计数原理,共有A 66+A 51A 51A 55=3 720 (种).(方法二)(特殊位置法)先排最左端,除去甲外,有A 61 种,余下6个位置全排,有A 66 种,但应剔除乙在最右端时的排法A 51A 55 种,因此共有A 61A 66−A 51A 55=3 720 (种).方法三(间接法):7个人全排,共A 77 种,其中,不合条件的有甲在最左端时,有A 66 种,乙在最右端时,有A 66 种,其中都包含了甲在最左端,同时乙在最右端的情形,有A 55 种.因此共有A 77−2A 66+A 55=3 720 (种).【点拨】有约束条件的排列问题一般有以下几种基本类型与方法:①特殊元素优先考虑;②对于相邻问题采用“捆绑法”,整体参与排序后,再考虑“捆绑”部分的排序;③对于不相邻问题,采用“插空”法,先排其他元素,再将不相邻元素插入空档;④对于定序问题,可先不考虑顺序限制,排列后再除以定序元素的全排列数.变式2. 【多选题】某学院学生会的3名男生和2名女生在社区参加志愿者活动,结束后这5名同学排成一排合影留念,则下列说法正确的是( BCD )A. 若让其中的男生甲排在两端,则这5名同学共有24种不同的排法B. 若要求其中的2名女生相邻,则这5名同学共有48种不同的排法C. 若要求其中的2名女生不相邻,则这5名同学共有72种不同的排法D. 若要求其中的1名男生排在中间,则这5名同学共有72种不同的排法[解析]解:对于A,男生甲排在两端,共有2A44=48(种)不同的排法,A错误.对于B,2名女生相邻,共有A22A44=48(种)不同的排法,B正确.对于C,2名女生不相邻,共有A33A42=72(种)不同的排法,C正确;对于D,要求1名男生排在中间,则这5名同学共有3A44=72(种)不同的排法,D正确.故选BCD.命题角度2 组合的基本问题例3 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有1名女生;[答案]解:1名女生,4名男生,故共有C51C84=350(种).(2)两队长当选;[答案]将两队长作为一类,其他11个作为一类,故共有C22C113=165(种).(3)至少有1名队长当选;[答案]至少有1名队长当选含有两类:只有1名队长和2名队长.故共有C21C114+ C22C113=825(种).或采用间接法:C135−C115=825(种).(4)至多有2名女生当选;[答案]至多有2名女生含有三类:有2名女生、只有1名女生、没有女生,故选法有C52C83+C51C84+C85=966(种).(5)既要有队长,又要有女生当选.[答案]分两类:第一类女队长当选,有C124种选法;第二类女队长不当选,有C41C73+C42C72+C43C71+C44种选法.故选法共有C124+C41C73+C42C72+C43C71+C44=790(种).【点拨】解组合问题时要注意:①分类时不重不漏;②注意间接法的使用,在涉及“至多”“至少”等问题时,多考虑用间接法(排除法);③应防止出现如下常见错误:如第3小题,先选1名队长,再从剩下的人中选4人得C21C124≠825,请同学们自己找错因.变式3. 【多选题】为响应政府部门号召,某红十字会安排甲、乙、丙、丁四名志愿者奔赴A,B,C三地参加健康教育工作,则下列说法正确的是( BCD )A. 不同的安排方法共有64种B. 若恰有一地无人去,则不同的安排方法共有42种C. 若甲必须去A地,且每地均有人去,则不同的安排方法共有12种D. 若甲、乙两人都不能去A地,且每地均有人去,则不同的安排方法共有14种[解析]解:四人到三地去,一人只能去一地,方法数为34=81,A错误.若恰有一地无人去,则不同的安排方法数是C31(C41+C42+C43)=42,B正确.若甲必须去A地,且每地均有人去,则不同的安排方法数为A33+C31+C32= 12,C正确.若甲、乙两人都不能去A地,且每地均有人去,分甲、乙去同一个地方和不去同一个地方,则不同的安排方法数为2×5+2A22=14,D正确.故选BCD.考点三排列、组合的综合问题命题角度1 分堆与分配问题例4 按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;[答案]解:无序不均匀分组问题.先选1本,有C61种选法;再从余下的5本中选2本,有C52种选法;最后余下3本全选,有C33种选法.故共有C61C52C33=60(种).(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;[答案]有序不均匀分组问题.由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑再分配,共有C 61C 52C 33A 33=360 (种).(3) 平均分成三份,每份2本;[答案]无序均匀分组问题.先分三步,则应是C 62C 42C 22 种方法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB,CD,EF) ,则C 62C 42C 22 种分法中还有(AB,EF,CD) ,(CD,AB,EF) ,(CD,EF,AB) ,(EF,CD,AB) ,(EF,AB,CD) ,共有A 33 种情况,而这A 33 种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法,故分配方式有C 62C 42C 22A 33=15 (种).(4) 平均分配给甲、乙、丙三人,每人2本;[答案]有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配方式C 62C 42C 22A 33⋅A 33=C 62C 42C 22=90 (种).(5) 分成三份,1份4本,另外两份每份1本;[答案]无序部分均匀分组问题.共有C 64C 21C 11A 22=15 (种).(6) 甲、乙、丙三人中,一人得4本,另外两人每人得1本;[答案]有序部分均匀分组问题.在(5)的基础上再分配给3个人,共有分配方式C 62C 21C 11A 22⋅A 33=90 (种).(7) 甲得1本,乙得1本,丙得4本.[答案]直接分配问题.甲选1本,有C 61 种方法;乙从余下的5本中选1本,有C 51 种方法,余下4本留给丙,有C 44 种方法,故共有分配方式C 61C 51C 44=30 (种).【点拨】平均分配给不同人的分法等于平均分堆的分法乘以堆数的全排列.分堆到位相当于分堆后各堆再全排列,平均分堆不到指定位置,其分法数为:平均分堆到指定位置.对于分堆与分配问题应注意:①处理分配问题要注意先分堆再堆数的阶乘分配;②被分配的元素是不同的(如“名额”等则是相同元素,不适用),位置也应是不同的(如不同的“盒子”);③分堆时要注意是否均匀,如6分成(2,2,2)为均匀分组,分成(1,2,3)为非均匀分组,分成(4,1,1)为部分均匀分组.变式4.(1) [2020年新高考Ⅰ卷]6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( C )A. 120种B. 90种C. 60种D. 30种[解析]解:首先从6名同学中选1名去甲场馆,方法数为C61;然后从其余5名同学中选2名去乙场馆,方法数为C52;最后剩下的3名同学去丙场馆.故不同的安排方法共有C61C52=6×10=60种.故选C.(2)【多选题】2022年北京冬奥会吉祥物“冰墩墩”有着可爱的外表和丰富的寓意,现有5个不同造型的“冰墩墩”,则下列说法正确的是( BCD )A. 把这5个“冰墩墩”装入3个不同的盒内,共有129种不同的装法B. 从这5个“冰墩墩”中选出3个分别送给3位志愿者,每人1个,共有60种选法C. 从这5个“冰墩墩”中随机取出3个,共有10种不同的取法D. 把这5个“冰墩墩”装入3个不同的盒内,每盒至少装一个,共有150种不同的装法[解析]解:对于A,每个“冰墩墩”可选择3个盒子中的任意一个,根据分步乘法原理共有35=243(种)不同的装法,故A错误.对于B,共有C53A33=60(种)选法,故B正确.对于C,共有C53=10(种)不同的取法,故C正确.对于D,若3个盒子中“冰墩墩”的数量为1,1,3,则有C53C31A22=60(种)不同的装法;若3个盒子中“冰墩墩”的数量为1,2,2,则有C51C31C42=90(种).共有60+90=150(种),故D正确.故选BCD.命题角度2 数字排列问题例5 用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位奇数?[答案]解:先排个位数,有C31种方法,然后排千位数,有C41种方法,剩下百位和十位任意排,有A42种方法,故所求为C41C31A42=144个.(2)能组成多少个无重复数字且比1 325大的四位数?[答案]分为三类,第一类是千位是2,3,4,5中任意一个,有A41A53个数;第二类是千位是1,且百位是4,5中的一个,有A21A42个数;第三类是千位是1,且百位是3和十位是4,5中的一个,有A21A31个数.故所求为A41A53+A21A42+A21A31=270个.【点拨】对于有限制条件的数字排列问题,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置,同时注意隐含条件:0不能在首位.变式5.(1)设集合A={0,2,4} ,B={1,3,6} .现分别从A,B中任取2个元素组成无重复数字的四位数,其中不能被5整除的数共有( C )A. 64个B. 96个C. 144个D. 152个[解析]解:所求的四位数中,数字含0的数有C21C32C21A33=72个,数字不含0的数有C22C32A44=72个,共有72+72=144个.故选C.(2)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2不相邻,这样的六位数的个数是32.(用数字作答)[解析]解:任何相邻两个数字的奇偶性不同,且1和2相邻,可分三步:第一步:先将3,5排列,共有A22种排法;第二步:再将4,6插空排列,共有2A22种排法;第三步:将1,2捆绑放到3,5,4,6形成的空中,共有C51种排法.共有A222A22C51=40(种)排法.又任何相邻两个数字的奇偶性不同,共有2A33A33=72(种)排法,所以所求为72−40=32.故填32.【巩固强化】1. 体育场南侧有3个大门,北侧有2个大门,某学生到该体育场练跑步,每个门都可进出,则他进出体育场的方案共有( D )A. 6种B. 10种C. 5种D. 25种[解析]解:该学生进出体育场都有5种可能,故他进出体育场的方案共有5×5=25(种).故选D.2. 某学校为落实“双减政策”,在每天放学后开设拓展课程供学生自愿选择,开学第一周的安排如下表.周内选择编程、书法、足球三门课,则不同的选课方案共有( A )A. 15种B. 10种C. 8种D. 5种[解析]解:若周二选编程,则选课方案有C31C31=9(种);若周三选编程,则选课方案有C21C31=6(种).综上,不同的选课方案共有9+6=15(种).故选A.3. [2023届安徽高三开学考试]如图,“天宫空间站”是我国自主建设的大型空间站,其基本结构包括天和核心舱、问天实验舱和梦天实验舱三个部分. 假设有6名航天员(4男2女)在天宫空间站开展实验,其中天和核心舱安排4人,问天实验舱与梦天实验舱各安排1人,且两名女航天员不在一个舱内,则不同的安排方案种数为( B )A. 14B. 18C. 30D. 36[解析]解:将6名航天员安排在3个实验舱的方案种数为C64C21C11=30(种),其中两名女航天员在一个舱内的方案种数为C42C21C11=12(种).所求为30−12=18(种).故选B.4. 给如图所示的5块区域A,B,C,D,E涂色,要求同一区域用同一种颜色,有公共边的区域使用不同的颜色,现有红、黄、蓝、绿、橙5种颜色可供选择,则不同的涂色方法有( D )A. 120种B. 720种C. 840种D. 960种[解析]解:A有5种颜色可选,B有4种颜色可选,D有3种颜色可选,C,E 均可涂除D的涂色外的其它颜色,均有4种可选.故共有5×4×3×4×4= 960(种)不同的涂色方法.故选D.5. 语文里流行一种特别的句子,正和反读起来都一样的,比如:“清水池里池水清”“中山自鸣钟鸣自山中”,那么在所有的四位数中符合这个规律且四个数字不能都相同的四位数有( A )A. 81个B. 90个C. 100个D. 729个[解析]解:设符合题意的四位数为xyyx,则当x=1时,y=0,2,3,…,9,共9个;当x=2时,y=0,1,3,…,9,共9个;…当x=9时,y=0,1,2,…,8,共9个.由分类加法计数原理可知满足条件的四位数有9×9=81(个).故选A.6. 某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教(每地至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同的选派方案共有( D ) A. 27种 B. 36种 C. 33种 D. 30种[解析]解:因为甲和乙一定不同地,甲和丙必须同地,所以有(2,2,1)和(3,1,1)两种分配方案:①分成(2,2,1)三组,其中甲和丙为一组,从余下3人选出2人组成一组,然后排列,有C32A33=3×3×2=18(种);②分成(3,1,1)三组,在丁、戊中选出1人,与甲丙组成一组,然后排列,有C21A33=2×3×2=12(种).共有18+12=30(种).故选D.7.(1)若C n4>C n6,则n的取值集合是{6,7,8,9} .[解析]解:因为C n4>C n6,所以n≥6,且n!4!(n−4)!>n!6!(n−6)!,所以30>(n−4)(n−5),即(n−10)(n+1)<0,解得−1<n<10.综上,6≤n<10.故n 的取值集合是{6,7,8,9}.(2)C22+C32+C42+⋯+C102=165 .[解析]解:C22+C32+C42+⋯+C102=C33+C32+C42+⋯+C102=C43+C42+⋯+ C102=⋯=C102+C103=C113=165.8. 【多选题】上海某校举办了主题为“党在我心中”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,则下列结论正确的是( BCD )A. 若甲、乙、丙三名同学全参加,则不同的朗诵排列顺序有36种B. 若甲、乙、丙三名同学恰有一人参加,则不同的朗诵排列顺序有288种C. 若甲、乙、丙三名同学恰有二人参加,则不同的朗诵排列顺序有432种D. 选派的4名学生不同的朗诵排列顺序有768种[解析]解:对于A,甲、乙、丙三名同学全参加,有C41A44=96(种)情况,由捆绑法易得其中甲、乙相邻的有C41A22A33=48(种)情况.所以甲、乙、丙三名同学全参加时,甲和乙的朗诵排列顺序不能相邻有96−48=48(种)情况,故A错误.对于B,甲、乙、丙三名同学恰有一人参加,不同的朗诵排列顺序有C43C31A44= 288(种)情况,故B正确.对于C,甲、乙、丙三名同学恰有二人参加时,不同的朗诵排列顺序有C42C32A44=432(种)情况,故C正确.对于D,选派的4名学生不同的朗诵排列顺序有288+432+48=768(种)情况,故D正确.故选BCD.【综合运用】9. 直线l:xa +yb=1,a∈{1,3,5,7},b∈{2,4,6,8} .若l与坐标轴围成的三角形的面积不小于10,则这样的直线的条数为( B )A. 6B. 7C. 8D. 16[解析]解:l与坐标轴围成的三角形的面积为S=12ab≥10,即ab≥20.当a= 1时,不满足;当a=3时,b=8,即1条;当a∈{5,7}时,b∈{4,6,8},此时a的取法有2种,b的取法有3种,则直线l的条数为2×3=6.故满足条件的直线的条数为1+6=7.故选B.10. 洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图象(如图),结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数(图中白圈表示的数为阳数,黑点表示的数为阴数).现利用阴数和阳数构成一个四位数,规则如下:(从左往右数)第一位数是阳数,第二位数是阴数,第三位数和第四位数一阴一阳和为7,则这样的四位数的个数有( A )A. 120个B. 90个C. 48个D. 12个[解析]解:根据题意,阳数为1,3,5,7,9,阴数为2,4,6,8.第一位数的选择有5种,第二位数的选择有4种,第三位数和第四位数的组合可以为(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共6种选择,根据分步乘法计数原理,这样的四位数共有5×4×6=120(个).故选A.11. 如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( D )A. 48B. 18C. 24D. 36[解析]解:第1类,对于每一条棱,都可以与两个面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).故选D.12. 【多选题】从1,2,3,4,5,6中任取三个不同的数组成一个三位数,则在所组成的数中( ACD )A. 偶数有60个B. 比300大的奇数有48个C. 个位和百位数字之和为7的数有24个D. 能被3整除的数有48个[解析]解:对于A,先从2,4,6中任取一个数放在个位,再任取两个数放在十位和百位,共有3A52=60(个),故A正确.对于B,若百位数字为3或5,有2×2×4=16(个)三位奇数;若百位数字为4或6,有2×3×4=24(个)三位奇数.则符合题意的三位数有16+24=40(个),故B错误.对于C,个位和百位的数可以是{1,6},{2,5},{3,4}顺序可以交换,再从剩下的数中任选一个放在十位上,共有A22C31C41=24(个),故C正确.对于D,要使组成的数能被3整除,则各位数之和为3的倍数,取出的数有{1,2,3},{1,2,6},{1,3,5},{1,5,6},{2,3,4},{2,4,6},{3,4,5},{4,5,6},共8种情况,所以组成的能被3整除的数有8A33=48(个),故D正确.故选ACD.13. 中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图是利用算筹表示数1-9的一种方法.例如:3可以表示为“”,26可以表示为“”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数的个数为16. [解析]解:根据题意,6根算筹可以表示的数字组合为15,19,24,28,33,37,46,68,77.数字组合15,19,24,28,37,46,68中,每组可以表示2个两位数,则可以表示2×7=14(个)两位数;数字组合33,77共可表示2个两位数.则共可表示14+2=16(个)两位数.故填16.【拓广探索】。
高中数学概率与统计中的随机事件与条件概率解析

高中数学概率与统计中的随机事件与条件概率解析概率与统计是高中数学中的重要内容,其中随机事件与条件概率是基础且常见的考点。
在本文中,我将通过具体题目的举例,对随机事件与条件概率进行解析,帮助高中学生和他们的父母更好地理解和掌握这一知识点。
一、随机事件的概念与性质随机事件是指在一次试验中可能发生也可能不发生的事件。
我们以一个例子来说明。
例题1:一颗骰子投掷一次,事件A为“出现奇数点数”,事件B为“出现偶数点数”。
求事件A和事件B的关系。
解析:骰子有6个面,每个面上的点数是1、2、3、4、5、6。
事件A中包含的样本点有1、3、5,事件B中包含的样本点有2、4、6。
从样本点的角度看,事件A和事件B没有共同的样本点,即事件A和事件B互不相容。
因此,事件A和事件B是互斥事件。
通过这个例子,我们可以了解到随机事件的概念以及互斥事件的性质。
在解题过程中,需要注意对事件的定义和样本空间的确定,以便准确地判断事件之间的关系。
二、条件概率的计算与应用条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
我们通过一个实际问题来说明。
例题2:某班级有60名学生,其中30名男生和30名女生。
从中随机抽取一名学生,已知这名学生是男生,求他的身高大于170cm的概率。
解析:设事件A为“抽取的学生是男生”,事件B为“抽取的学生身高大于170cm”。
根据题意可知,事件A的概率为P(A) = 30/60 = 1/2。
事件B的概率为P(B) = (男生中身高大于170cm的人数)/60。
由于题目没有给出具体的数据,我们暂时无法计算P(B)。
但是,已知学生是男生,即事件A发生,我们可以在男生中进行考察。
假设在男生中,身高大于170cm的有20人,那么事件A和事件B同时发生的概率为P(A∩B) = 20/60。
根据条件概率的定义,我们有P(B|A) = P(A∩B)/P(A) = (20/60)/(1/2) = 2/3。
通过这个例题,我们可以看到条件概率的计算过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考概率与统计9个考点解析概率与统计试题是高考的必考内容。
它是以实际应用问题为载体,以排列组合和概率统计等知识为工具,以考查对五个概率事件的判断识别及其概率的计算和随机变量概率分布列性质及其应用为目标的中档师,预计这也是今后高考概率统计试题的考查特点和命题趋向。
下面对其常见题型和考点进行解析。
考点1 考查等可能事件概率计算在一次实验中可能出现的结果有n 个,而且所有结果出现的可能性都相等。
如果事件A 包含的结果有m 个,那么P (A )=nm。
这就是等可能事件的判断方法及其概率的计算公式。
高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。
例1(2004天津)从4名男生和2名女生中任选3人参加演讲比赛. (I) 求所选3人都是男生的概率;(II)求所选3人中恰有1名女生的概率; (III)求所选3人中至少有1名女生的概率.考点2 考查互斥事件至少有一个发生与相互独立事件同时发生概率计算不可能同时发生的两个事件A 、B 叫做互斥事件,它们至少有一个发生的事件为A+B ,用概率的加法公式)()()(B P A P B A P +=+计算。
事件A (或B )是否发生对事件B (或A )发生的概率没有影响,则A 、B 叫做相互独立事件,它们同时发生的事件为B A ⋅。
用概率的法公式()()()B P A P B A P ⋅=⋅计算。
高考常结合考试竞赛、上网工作等问题对这两个事件的识别及其概率的综合计算能力进行考查。
例2.(2005全国卷Ⅲ)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。
已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125, (Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率.考点3 考查对立事件概率计算必有一个发生的两个互斥事件A 、B 叫做互为对立事件。
即-=A B 或-=B A 。
用概率的减法公式()⎪⎭⎫⎝⎛-=_1A P A P 计算其概率。
高考常结合射击、电路、交通等问题对对立事件的判断识别及其概率计算进行考查。
例3.(2005福建卷文)甲、乙两人在罚球线投球命中的概率分别为5221与. (Ⅰ)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.考点4考查独立重复试验概率计算若在次重复试验中,每次试验结果的概率都不依赖其它各次试验的结果,则此试验叫做n 次独立重复试验。
若在1 次试验中事件A 发生的概率为P ,则在n 次独立惩处试验中,事件A 恰好发生k 次的概率为()()kn kkn n P P C k P --=1。
高考结合实际应用问题考查n 次独立重复试验中某事件恰好发生k 次的概率的计算方法和化归转化、分类讨论等数学思想方法的应用。
例4.(2005湖北卷)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p 1,寿命为2年以上的概率为p 2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; (Ⅲ)当p 1=0.8,p 2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).考点5考查随机变量概率分布与期望计算解决此类问题时,首先应明确随机变量可能取哪些值,然后按照相互独立事件同时发生概率的法公式去计算这些可能取值的概率值即可等到分布列,最后根据分布列和期望、方差公式去获解。
以此考查离散型随机变量分布列和数学期望等概念和运用概率知识解决实际问题的能力。
例5.(2005湖北卷)某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。
如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一年内领到驾照的概率.考点6考查随机变量概率分布列与其他知识点结合 1考查随机变量概率分布列与函数结合例6.(2005湖南卷)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值. (Ⅰ)求ξ的分布及数学期望;(Ⅱ)记“函数f (x )=x 2-3ξx +1在区间[2,+∞)上单调递增”为事件A ,求事件A 的概率.2、考查随机变量概率分布列与数列结合例7甲乙两人做射击游戏,甲乙两人射击击中与否是相互独立事件,规则如下:若射击一次击中,原射击者继续射击,若射击一次不中,就由对方接替射击。
已知甲乙两人射击一次击中的概率均为87,且第一次由甲开始射击。
(1)求前4次射击中,甲恰好射击3次的概率。
(2)若第n 次由甲射击的概率为n a ,求数列{}n a 的通项公式;求n n a ∞→lim ,并说明极限值的实际意义。
3、考查随机变量概率分布列与线形规划结合 例8(2005辽宁卷) 某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A 、B 两个等级.对每种产品,两道工序的加工结果都为A 级时,产品为一等品,其余均为二等品. (Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A 级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P 甲、P 乙;(Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I )的条件下,求ξ、η的分布列及E ξ、E η; (Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元.设x 、y 分别表示生产甲、乙产品的数量,在(II )的条件下,x 、y 为何值时,ηξyE xE z +=最大?最大值是多少?(解答时须给出图示)考点7考查随机变量概率分布列性质应用 设离散型随机变量的分布列为它有下面性质:①),2,1(0 =≥i P i②,121=++++ i p p p 即总概率为1;③期望;11 +++=i i P x P x E ξ方差 +-++-=i i P E x P E x D 2121)()(ξξξ离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 高考常结合应用问题对随机变量概率分布列及其性质的应用进行考查. 例9 (2004年湖北高考题)设随机变量的概率分布为,5)(k ak P ==ξa 为常数,k=1,2, ,则a=例10(2004年全国高考题)某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.①求这名同学回答这三个问题的总得分的概率分布和数学期望. ②求这名同学总得分不为负分(即)0≥ξ)的概率.例11 (2002年天津高考题) 甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm 2):其中产量比较稳定的小麦品种是_____.考点8样本抽样识别与计算简单随机抽样,系统抽样,分层抽样得共同特点是不放回抽样,且各个体被抽取得概率相等,均为(N为总体个体数,n为样本容量).系统抽样,分层抽样的实质分别是等距抽样与按比例抽样,只需按照定义,适用范围和抽样步骤进行,就可得到符合条件的样本.高考常结合应用问题,考查构照抽样模型,识别图形,搜集数据,处理材料等研究性学习的能力.例12(2005年湖北湖北高考题)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,...,270;使用系统抽样时,将学生统一随机编号1,2, (270)并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样例13(2005年湖南高考题)一工厂生产了某种产品16800件,它们来自甲.乙.丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲.乙.丙三条生产线抽取的个体数组成一个等差数列,则乙生产线生产了______件产品.考点9考查直方图。
例14.(2005江西卷)为了解某校高三学生的视力情Array况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a, b的值分别为()A.0,27,78 B.0,27,83C.2.7,78 D.2.7,83例1(2004天津)本小题考查等可能事件的概率计算及分析和解决实际问题的能力.满分12分.(I)解:所选3人都是男生的概率为34361.5C C =(II)解:所选3人中恰有1名女生的概率为1224363.5C C C = (III)解:所选3人中至少有1名女生的概率为12212424364.5C C C C C +=2.(2005全国卷Ⅲ)解:(Ⅰ)记甲、乙、丙三台机器在一小时需要照顾分别为事件A 、B 、C ,……1分则A 、B 、C 相互独立,由题意得: P (AB )=P (A )P (B )=0.05 P (AC )=P (A )P (C )=0.1P (BC )=P (B )P (C )=0.125…………………………………………………………4分 解得:P (A )=0.2;P (B )=0.25;P (C )=0.5所以, 甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.5……6分(Ⅱ)∵A 、B 、C 相互独立,∴AB C 、、相互独立,……………………………………7分 ∴甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为()()()()0.80.750.50.3P A B C P A P B P C ⋅⋅==⨯⨯=……………………………10分∴这个小时内至少有一台需要照顾的概率为1()10.30.7p P A B C =-⋅⋅=-=……12分例3.(2005福建卷文)解:(Ⅰ)依题意,记“甲投一次命中”为事件A ,“乙投一次命中”为事件B ,则.53)(,21)(,52)(,21)(====B P A P B P A P 甲、乙两人在罚球线各投球一次,恰好命中一次的概率为.21(Ⅱ)∵事件“甲、乙两人在罚球线各投球二次均不命中”的概率为100953532121=⨯⨯⨯=P ∴甲、乙两人在罚球线各投球两次至少有一次命中的概率.10091100911=-=-=P P 答:甲、乙两人在罚球线各投球二次,至少有一次命中的概率为.10091 ∵“甲、乙两人各投球一次,恰好命中一次”的事件为B A ⋅+⋅.2152215321)()()(=⨯+⨯=⋅+⋅=⋅+⋅∴B A P B A P B A B A P例4.(2005湖北卷)解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为,51p 需要更换2只灯泡的概率为;)1(213125p p C -(II )对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p 1(1-p 2),故所求的概率为);1()1(2121p p p p -+-=(III )至少换4只灯泡包括换5只和换4只两种情况,换5只的概率为p 5(其中p 为(II )中所求,下同)换4只的概率为415p C (1-p ),故至少换4只灯泡的概率为.34.042.34.04.06.056.06.07.08.02.0,3.0,8.0).1(45322141553只灯泡的概率为年至少需要换即满时又当=⨯⨯+=∴=⨯+===-+=p p p p p p C p p例5.(2005湖北卷)解:ξ的取值分别为1,2,3,4. 1=ξ,表明李明第一次参加驾照考试就通过了,故P (1=ξ)=0.6.2=ξ,表明李明在第一次考试未通过,第二次通过了,故.28.07.0)6.01()2(=⨯-==ξPξ=3,表明李明在第一、二次考试未通过,第三次通过了,故.096.08.0)7.01()6.01()3(=⨯-⨯-==ξPξ=4,表明李明第一、二、三次考试都未通过,故.024.0)8.01()7.01()6.01()4(=-⨯-⨯-==ξP∴ξ的期望E ξ=1×0.6+2×0.28+3×0.096+4×0.024=1.544. 李明在一年内领到驾照的概率为1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.9976.例6.(2005湖南卷)解:(I )分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点” 为事件A 1,A 2,A 3. 由已知A 1,A 2,A 3相互独立,P (A 1)=0.4,P (A 2)=0.5, P (A 3)=0.6. 客人游览的景点数的可能取值为0,1,2,3. 相应地,客人没有游览的景点数的可能取 值为3,2,1,0,所以ξ的可能取值为1,3.P (ξ=3)=P (A 1·A 2·A 3)+ P (321A A A ⋅⋅)= P (A 1)P (A 2)P (A 3)+P ()()()321A P A P A ) =2×0.4×0.5×0.6=0.24,P (ξ=1)=1-所以ξ的分布列为E ξ=1×0.76+3×(Ⅱ)解法一因为,491)23()(22ξξ-+-=x x f 所以函数),23[13)(2+∞+-=ξξ在区间x x x f 上单调递增,要使),2[)(+∞在x f 上单调递增,当且仅当.34,223≤≤ξξ即从而.76.0)1()34()(===≤=ξξP P A P 解法二:ξ的可能取值为1,3.当ξ=1时,函数),2[13)(2+∞+-=在区间x x x f 上单调递增, 当ξ=3时,函数),2[19)(2+∞+-=在区间x x x f 上不单调递增.0 所以.76.0)1()(===ξP A P例7 解:记A 为甲射击,B 为乙射击,则1)前4次射击中甲恰好射击3次可列举为 AAAB ,AABA ,ABAA其概率为P=51263878181818187818787=⨯⨯+⨯⨯+⨯⨯ 2)第1+n 次由甲射击这一事件,包括第 n 次由甲射击,第1+n 次继续由甲射击这一事件以第 n 次由乙射击,第1+n 由甲射击这一事件,这两事件发生的概率是互斥的且发生的概率分别为n a 87与)1(81n a -则有关系式=+1n a n a 87+ )1(81n a -=8143+n a其中11=a 。