用数轴表示正负数
正数和负数数轴讲义

正数和负数、数数同步课堂导入一、正数和负数1.地形图2.温度计测量温度3.2003/2004年西班牙足球甲级联赛净胜球统计队名进球失球净胜球奥萨苏纳24 21 3赛维利亚34 27 7皇家社会30 35 -54.某镇办4家企业今年第一季度的产值与去年同期相比的增长情况表企业名称面粉厂砖瓦厂油厂针织厂增长率% 9.2 7.3 -1.5 -2.8上图中表示地形高度、温度的数字,除了以前学过的5以外,还出现了-154,-5这样的新数。
像5,7,1887,45这样大于0的数,叫正数;像-5,-1.5,-2.8这样前面加上”-”(度负号)的数,叫做负数。
0既不是正数,也不是负数。
在计数时,数0可以表示没有,如:0个。
0还用来表示某种量的标准。
0是正数与负数的分界。
知识的应用(1)读出下面各数。
+6-8+38 27 +600-100 55 -21+3+66-1(2)给下面的数分类+5 -8 0 +12 -24 15 -9 7正数有负数有(3)度温度并比较大小-10℃>-15℃(类推)-10>-15整数和分数统称有理数。
二、数轴旗杆在0处,把向右计作正,向左计作负,右边第一棵树的位置可以表示为+3,-左边的树可以表示为-3.我们可以用直线上的点来表示数。
(一)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对此思考:原点相当于什么;正方向与什么一致;单位长度又是什么?所以,这种规定了原点、正方向、单位长度的直线叫做数轴。
(二)试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度;表示-a的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结整数能在数轴上都找到点吗?分数呢?可见,所有的有理数都可以用数轴上的点表示负数都在原点的左边,正数都在原点的右边.(三)例1 下列所画数轴对不对?如果不对,指出错在哪里.①45231②-10231③-1-2021④0⑤-101⑥-1-20-321⑦-1-2021【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0 【答案】-1-2-5-40-354231EDC BA图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0. 例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边. 【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例 4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)A.1个B.2个C.3个D.4个 【提示】 题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数. 例5 (1)与原点的距离为2.5个单位的点有 两 个,它们分别表示有理数 2.5 •和 -2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是 +3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数. 【答案】 -2,-1,0,1【点评】 本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm ,若这个数轴上随意画出一条长2000cm 的线段AB ,则线段AB 盖住的整点是(C ) A .1998或1999 B .1999或2000 C .2000或2001 D .2001或2002【提示】分两种情况分析:(1)当线段AB 的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB 的起点不是整点时,•终点也不落在整点上,那么线段AB 盖住了2000个整点.【点评】 本题体现了新课程标准的探索和实践能力. 备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________. 【点拨】 不要忽视在原点的左右两边. 【答案】 ±3数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:M 5M 4M 3M 2M 1-1-2-5-40-354231(1)点M 4和M 2所表示的有理数是什么? (2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单位长度.像2 与-2,4与-4,5与-5有这样只有符号不同的数叫做互为相反数。
正负数及应用论文

正负数及应用论文正负数是数学中的一种基本概念,用来表示数值的正负之间的关系。
正数表示大于零的数,负数表示小于零的数。
正负数在数学中的应用非常广泛,在各个领域都有着重要的作用。
首先,正负数在数轴上的表示能够明确地表示数值的大小和正负关系。
数轴上,我们可以用原点表示零,正方向表示正数,负方向表示负数。
利用数轴,我们可以直观地比较和表示不同数值的大小。
这在日常生活和数学计算中有着非常重要的应用,例如用数轴表示温度变化,可以直观地看出温度的升高或降低。
其次,正负数在代数中的运算是重要的。
正负数的加减法、乘除法等运算规则能够帮助我们进行各种数值计算。
正负数的加减法规则告诉我们相同符号的两个数相加得到的结果为正数,不同符号的两个数相加得到的结果为负数。
乘除法规则则告诉我们负数和正数相乘的结果为负数。
这些规则在代数中的运算中经常使用,例如解代数方程、求解函数的定义域和值域等问题。
正负数还在实际问题中有着广泛的应用。
例如在物理学中,正负数用来表示物体的速度和方向,能够帮助我们描述物体的运动状态。
在经济学中,正负数用来表示盈利和亏损,能够帮助我们分析企业的经营情况。
在统计学中,正负数用来表示正向和负向的影响,能够帮助我们进行统计分析和数据处理。
在工程学中,正负数用来表示电流的正负方向,能够帮助我们设计和控制电路。
正负数在数学中还涉及到一些重要的性质和概念。
例如绝对值是正负数的一个重要概念,它表示一个数到零的距离,无论这个数是正数还是负数,它的绝对值都是正数。
另一个重要的概念是相反数,表示与一个数的符号相反的数,它们的和为零。
正负数之间的关系还涉及到正数的倒数是正数,负数的倒数是负数,零的倒数不存在等等。
总的来说,正负数是数学中的一种基本概念,它在数学中的应用广泛,涉及到代数、几何、物理、经济学、统计学等多个领域。
正负数的运算规则和性质帮助我们进行数值计算和问题分析,正负数在实际问题中的应用帮助我们描述和解决现实生活中的各种数值和方向关系。
正负数在坐标系中的表示方法

正负数在坐标系中的表示方法在数学中,正负数是表示具有相反方向的数值,它们在坐标系中的表示方法可以通过数轴和坐标点来说明。
正数表示位于数轴右侧的数值,负数表示位于数轴左侧的数值。
下面将详细介绍正负数在坐标系中的表示方法。
一、数轴表示法数轴是一个直线上的图形,用于表示数字的相对位置。
在数轴上,从中心向右方延伸的部分表示正数,而从中心向左方延伸的部分表示负数。
零位于数轴的中心位置。
例如,在一个以零为中心的数轴上,数值1表示位于1单位距离的右侧,即正方向上;而数值-1表示位于1单位距离的左侧,即负方向上。
同样,2表示位于2单位距离的右侧,而-2表示位于2单位距离的左侧。
通过这种方式,我们可以用数轴准确地表示正负数。
二、坐标点表示法除了数轴,坐标系也可以用来表示正负数。
坐标系由x轴和y轴组成,通常以原点(0,0)为中心。
x轴代表水平方向上的值,而y轴代表垂直方向上的值。
在坐标系中,右边的x轴为正方向,左边的x轴为负方向。
上方的y轴为正方向,下方的y轴为负方向。
通过将正负数的值对应到坐标系的相应轴上,我们可以在平面上准确地表示这些数值。
例如,当我们要表示数值(2,3)时,我们在x轴上从原点向右方移动两个单位,在y轴上向上移动三个单位。
于是,我们连接原点和这个移动后的位置,就得到了一个坐标点(2,3)。
同理,当我们要表示数值(-2,-3)时,我们在x轴上从原点向左方移动两个单位,在y轴上向下移动三个单位。
连接原点和移动后的位置,就得到了一个坐标点(-2,-3)。
通过坐标点表示法,我们可以在二维平面上直观地看出正数和负数的相对位置,更方便地比较和计算数值之间的关系。
结论正负数在坐标系中的表示方法可以通过数轴和坐标点来说明。
数轴上,正数位于零的右侧,而负数位于零的左侧。
在坐标系中,可以利用x轴和y轴表示数值在水平和垂直方向上的位置。
通过这两种表示方法,我们能够直观地理解和计算正负数之间的关系,并在实际问题中应用它们。
数轴、相反数、绝对值

数轴、相反数、绝对值数学是研究数量、结构、变化及空间等概念的学科。
在数学中,数轴、相反数和绝对值是非常重要的概念,它们在解决各种实际问题中发挥着关键作用。
一、数轴数轴是数学中的一个基本概念,它是一个有序的直线,用来表示实数和有理数。
数轴上的点表示实数,原点表示零,正半轴表示正数,负半轴表示负数。
通过数轴,我们可以直观地比较两个实数的大小,也可以找出任何实数的相反数和绝对值。
二、相反数相反数是数学中的另一个重要概念。
如果一个数x的相反数是-x,那么它们在数轴上位于原点的两边,并且它们的距离相等。
例如,3的相反数是-3,5的相反数是-5。
在数学中,相反数经常被用于抵消或中和,以解决各种问题。
三、绝对值绝对值是数学中的一个非常有用的概念。
在数轴上,任何一个实数x的绝对值就是从原点到点x的距离。
例如,3的绝对值是3,-5的绝对值也是5。
绝对值的计算公式是|x| = x(x > 0)或 0(x = 0)或 -x(x < 0)。
绝对值的概念可以帮助我们确定一个数的符号和它的大小。
四、总结数轴、相反数和绝对值是数学中的基本概念,它们在解决各种实际问题中发挥着关键作用。
通过了解这些概念,我们可以更好地理解数学的本质,并解决各种复杂的问题。
因此,对于每一个学习数学的人来说,理解这些基本概念都是非常重要的。
《相反数、绝对值复习》课件一、教学目标1、复习相反数和绝对值的概念和性质,掌握它们的计算方法。
2、提高学生对于相反数和绝对值的理解和应用能力。
3、培养学生的思维能力和自主学习能力。
二、教学内容1、相反数的概念及性质。
2、绝对值的概念及性质。
3、相反数和绝对值的计算方法。
三、教学重点与难点重点:掌握相反数和绝对值的计算方法。
难点:理解相反数和绝对值的概念及性质,并应用到实际问题中。
四、教学方法与手段1、通过PPT展示相反数和绝对值的概念和性质,让学生自主思考和讨论。
2、通过例题讲解和练习,让学生掌握计算方法。
正负数的认识

正负数的认识正数和负数是数学中最基本的概念,而对于初学者来说,理解正负数的概念并直观的使用它们进行计算也是一个必须要掌握的基本技能。
正负数经常出现在日常的生活和工作中,比如气温的变化,盈亏的计算等等。
因此,对于正负数的认识以及正确使用,对我们生活和工作中的计算至关重要。
一、正负数的实际意义如果我们站在数轴上,数轴上的每个点代表一个实数,而其左边和右边分别代表了负数和正数。
换一种说法,负数就是从零点向左的数,而正数则是从零点向右的数。
比如说我们扔向上抛的物体,物体在空中的高度就是一个典型的正负数的实际意义。
物体在向上运动时数值为正数,到达最高点时数值为零,再往下落的过程中数值变为负数。
二、正负数的加减法正负数的加减法是计算中最常用的操作之一,下面介绍一些关于正负数的加减法的基本知识点,以便更好地理解正负数的加减法。
1.同号相加,异号相减当两个数的符号相同时,我们只需将它们的数值相加或相减,然后将它们的符号保持不变,这就是同号相加异号相减的规律。
比如:-5 + (-3) = -87 + 9 = 16-5 - (-3) = -29 - 5 = 42.绝对值较大的数减去绝对值较小的数当两个数的符号不同时,绝对值较大的数减去绝对值较小的数,然后将它们的符号与绝对值较大的数的符号保持一致,这就是绝对值较大的数减去绝对值较小的数的规律。
比如:-7 + 5 = -27 - 5 = 2-7 - 5 = -127 - (-5) = 12三、正负数在生活中的应用我们在生活和工作中的很多计算都需要用到正负数,比如温度的计算,盈亏的计算等等。
下面简单介绍一下正负数在生活和工作中的应用。
1.温度计算温度是生活和工作中经常和我们相伴的,而温度计算中的正负数也是正负数的一个典型应用场景。
不同于其他计算,温度计算中,我们可以很明显的看出正负数的物理象征。
当温度是正数时,我们表示天空在释放出一定的热能,而当温度是负数时,我们表示天空在吸收热能。
教学重点理解正负数的概念

教学重点理解正负数的概念正负数是数学中的基本概念之一,它在教学中起着重要的作用。
正负数概念的理解对学生的数学学习和思维发展具有重要的影响。
本文将从具体案例入手,结合实际生活中的场景,探讨正负数概念的理解和应用。
一、正负数的定义及表示方法正数是指大于零的数,以正号“+”表示;负数是指小于零的数,以负号“-”表示。
比如,“+3”表示正三,“-5”表示负五。
“+”和“-”号的使用是正负数的基本表示方法,帮助我们直观地区分正负数。
二、正负数在实际生活中的应用1. 温度计温度是一个常见的物理量。
在温度计上,正数表示高温,负数表示低温。
比如,一个温度计上的读数是“+25℃”,表示当前温度为摄氏25度;而读数为“-10℃”,则表示当前温度为摄氏零下10度。
通过这样的实例,学生可以很容易地理解正数和负数在温度表示中的含义。
2. 高低海拔地理上,海拔是衡量地面高度的一个重要指标。
正数表示高海拔,负数表示低海拔。
以珠穆朗玛峰的海拔为例,8848米可以表示为正数;相反,如果海平面以下为负数,那么死海的海拔就可以表示为负数。
通过这样的例子,学生可以进一步理解正负数在地理高低表示中的意义。
3. 存款和负债在金融领域,存款和负债是一个普遍存在的概念。
正数表示存款,负数表示负债。
例如,银行账户里有5000元表示正数存款,而-2000元表示账户欠款2000元。
通过这样的实际情境,学生可以更好地理解和应用正负数的概念。
三、正负数的运算法则在理解了正负数的基本概念后,我们需要掌握正负数的运算法则。
包括正负数加减、乘除的运算法则。
1. 正数加减正数两个正数相加或相减,结果仍然为正数。
如2+3=5,5-2=3。
2. 负数加减正数两个数相加或相减,和的符号取决于绝对值大的数的符号。
如-3+2=-1,3+(-5)=-2。
3. 负数加减负数两个负数相加或相减,结果为一个负数。
如-3+(-5)=-8,-7-(-4)=-3。
4. 正数乘法两个正数相乘,结果为正数。
正负数的加减法

正负数的加减法正负数的加减法是数学中一个基础的概念,掌握好这个概念对于数学学习的深入和应用至关重要。
在正负数的加减法中,正数表示具有数量的对象,负数表示欠债或者亏损的对象。
本文将详细介绍正负数的加减法及其相关性质。
一、正负数的定义在数轴的左侧为负数(如-3,-2,-1),在数轴的右侧为正数(如1,2,3),0既不是正数也不是负数。
通过数轴的左右位置区分正负数,可以直观地理解它们之间的关系。
二、同号数的加减法1. 正数的加法:将两个正数相加,结果仍为正数。
例如,4 + 2 = 6。
2. 正数的减法:将一个正数减去另一个正数,结果仍为正数。
例如,7 - 3 = 4。
3. 负数的加法:将两个负数相加,结果仍为负数。
例如,-4 + (-2) = -6。
4. 负数的减法:将一个负数减去另一个负数,结果仍为负数。
例如,-7 - (-3) = -4。
三、异号数的加减法1. 正负数的加法:将一个正数与一个负数相加,取它们的差的绝对值并赋予较大的符号。
例如,4 + (-2) = 4 - 2 = 2,结果为正数。
2. 正负数的减法:在正数的减法运算中,可以转化为正负数的加法运算。
例如,7 - (-3) = 7 + 3 = 10,结果为正数。
四、运用正负数的加减法解决实际问题正负数的加减法在实际问题中有着广泛的应用。
例如,温度的正负值、银行存款与取款、海拔高度的上升与下降等。
1. 温度的加减法:通过正负数的加减法,可以计算出不同温度之间的差值。
例如,今天气温是23摄氏度,明天气温预计下降8摄氏度,那么明天的气温是多少?解答:23 - 8 = 15,明天的气温是15摄氏度。
2. 银行存款与取款:银行账户中存款为正数,取款为负数。
通过正负数的加减法,可以计算出账户余额变化情况。
例如,账户余额为1000元,你向银行取款200元,此时账户余额为多少?解答:1000 - 200 = 800,账户余额为800元。
3. 海拔高度的加减法:通过正负数的加减法,可以计算出不同地点的海拔高度差。
怎么写正负数

怎么写正负数正负数是数学中的一种特殊概念,表示有向数量的运用。
正数表示具有数值大小和方向的数,而负数则表示具有相反方向的数值。
它们在数轴上表现为两个相反的方向,其中正数在右侧,负数在左侧。
下面将详细探讨正负数的定义、性质、运算法则以及实际应用。
一、正负数的定义正负数的定义起源于解决实际问题所面临的困境。
在过去的日子里,人们会遇到不同的情况,其中包含了增加和减少这两种相对的概念。
为了简化处理这类情况,以及更好地描述有向量的运动问题,正负数被引入并被广泛接受。
正负数可以直观地理解为有方向的数值。
在数轴上,从原点出发的向右运动被定义为正方向,使用正数表示;而从原点出发的向左运动被定义为负方向,使用负数表示。
在数学中,0通常被当作正数和负数的分界点,不属于正负数的概念。
二、正负数的性质1. 正负数具有相反的符号。
即,对于任意一个正数a,其相反数记作-a,而对于任意一个负数a,其相反数记作-a,两者之和为零。
2. 正负数加减的结果可能是正数、负数或零。
当两个正数相加或相减,结果通常为正数或零;当一个正数与一个负数相加或相减,结果通常为正数、负数或零;当两个负数相加或相减,结果通常为负数或零。
3. 正负数相乘的结果通常为负数或零。
当两个正数相乘,结果为正数;当一个正数与一个负数相乘,结果为负数;当两个负数相乘,结果为正数。
4. 正负数相除的结果可能是正数、负数或零。
当两个正数相除,结果为正数;当一个正数除以一个负数,结果为负数;当一个负数除以一个正数,结果为负数;当两个负数相除,结果为正数。
三、正负数的运算法则在进行正负数的运算时,我们需要遵守一些基本法则:1. 加法法则:同号相加,异号相减,取符号比较大的数的符号。
2. 减法法则:减去一个数等于加上这个数的相反数。
3. 乘法法则:同号相乘为正,异号相乘为负。
4. 除法法则:分子与分母同号时为正,异号时为负。
四、正负数的实际应用正负数在现实生活中有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左பைடு நூலகம்右的顺序
就是数从小到大的顺序。
4、再让学生实行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8>6,但是-8<-6”,使学生初步体会两负数比较大小时,
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、游戏中体会运动变化中的负数
出示例3,学生观察后提问:如何在一条直线上表示他们运动后的情况呢?
(1)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(2)教师在黑板上画好直线,在相对应的点上用小图片代表大树和学生,提问:怎样用
2、理解比较负数大小的方法
课前准备:小黑板、大树与学生图片
导学过程:(一)导入
1、读数,指出哪些是正数,哪些是负数?说一说你是怎样判断的?
-85.6+0.9-+0-82
2、如果+20%表示增加20%,那么-6%表示。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的
气温是()摄氏度。
数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来)。
(3)学生回答后,教师在相对应点的下方标出对应的数,再让学生说说直线上其他几个
点代表的数,让学生对数轴上的点表示的正负数形成相对完整的理解。
(4)总结:我们能够像这样在直线上表示出正数、0和负数,像这样的直线我们叫数
轴。
(5)引导学生观察:
绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
(设计意图:明确了数在数轴上的对应关系,结合生活常识和温度计的刻度排列特征使学生能够利用数轴比较两个数的大小。)
课堂检测:
一、填空题:
1、若下降5米记作-5米,那么上升8米记作(),不升不降记作()。2、如果向东走为正,那么-50米表示();如果向南为正,那么走-50又表示()。
3、下面每格表示2米,小华开始的位置在0处。
A、小华从0点向东行5米,表示为+5米,那么从0点向西行3米,表示为()米。
B、如果小华的位置是+6米,说明他是向()行()米。
C、小华先向东行5米,又向西行8米,这时小华的位置在()米处。
二、比较下面每组数的大小
-3○2-5○40○-8
-0.5○-1.56○-60○8
板书设计:
用数轴表示正负数
负数<0<正数
教学反思:
课题:用数轴表示正负数
1、理解数轴,理解数轴表示正负数的意义,会用数轴上的点表示正负数;同时能够由数
轴上的点说出其所表示的数。
2、能够准确比较负数的大小
3、初步体会数轴上数的顺序,完成对数的结构的初步构建。
4、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的水平。
备注:
1、理解数轴,并会用数轴上的点表示正负数和0,能够准确比较负数的大小。
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?(设计意图:利用运动的路线结合接触过的用直线表示数的知识把运动情况记录在直线上,从而使学生理解数轴,也在此过程中学会数轴的画法。)
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,