《高频课程设计》

合集下载

高频课程设计

高频课程设计

调频无线话筒1 概述通信的主要任务就是传输消息,最早的无线通信出现在工业化时期,随着无线电通信技术迅速发展,各种无线电通信设备广泛应用于人们生产、生活等各个领域。

1.1无线话筒准用的频段无线电波可以在空间自由传播,不受用途和地域限制,因此造成各种无线电设备的频率交叉重叠。

如果不加以规定和约束,不可避免地会产生相互干扰,影响正常的通信。

为此,世界上无线频率管理部门对无线电频率的使用范围作了统一规定,使它们之间的相互影响降到最低。

无线话筒使用频率为88MHZ-108MHZ。

1.2各频段无线电波的传播特性自由空间电磁波的传播衰减包括距离衰减(衰减量与距离的平方成正比)、传播媒体的吸收(空气、人体和墙体等)和金属结构物的反射。

频率越高,传播媒体的吸收越大,金属物体的反射越强(即阻止电磁波传播的能力越强)。

金属物体对电磁波都有反射作用。

阻挡电磁波传播的能力与电磁波的波长和金属物体的大小有关。

电磁波的波长小于金属物体的尺寸时,会被全部反射,传播受阻。

或者说,频率越高,金属物体对电磁波的反射越强。

相反,如果电磁波的波长大于金属物体的尺寸时,部分电磁波会绕过金属障碍物继续传播(电磁波的绕射特性)。

电磁波对金属网格(或金属孔板)有穿透能力。

电磁波的波长小于金属网格孔的直径时,则会被通过。

也就是说,波长越短,通过金属网格的穿透能力越强。

非金属物体(人体、墙壁等)对电磁波的吸收作用,电磁波的频率越高,非金属物体对它的吸收越大,电磁波的传播衰减也越大。

无线电通信系统的基本组成框图:信源输入换能器发射机无线信道接收机噪声图1.1 无线电通信系统框图1.3 无线话筒无线话筒是一个简单的发送设备,由输入换能器和发射机构成。

输入换能器将待发送的信息变换为基带信号,如果信息表现为声音,那么换能器便是将声音变换为电信号的话筒。

发射机将基带信号变换成其频带适合在信道中传播的信号,并送入信道。

这种变换称为调制。

用来对载波进行调制的基带信号称为调制信号。

高频课程设计liubing

高频课程设计liubing
压控振荡器MC1648采用外接LC电路形式,随压控信号输出89.6~110.4 MHz之间的频率,实际上是外接LC电路的谐振点(可变电容)随压控信号变化,而滤波范围为69.6~89.6 MHz,采用相同的LC电路形式,如图三(b)所示,用VCO的电压榨制信号,改变滤波LC谐振电路的容值,使其谐振频率点与VCO的输出频率“同步”,即滤波谐振频率总是与VCO的输出频率相差约20 MHz左右,称之为“滑动”LC谐振带通滤波电路,考虑到混频后两个边频最少相距20 MHz,可适当降低谐振电路Q值(并联合适电阻),达到69.6~89.6 MHz覆盖,从而灵活解决了高频带通滤波问题。
沈 阳 大 学
课程设计说明书NO.3
图二高频宽带滤波电路模型
2.3主要性能指标分析
2.3.1DDS相位噪声
DDS实际上是一个数字分频系统,理论上输出相噪应该以分频比N=fCLK/fDDS相对于系统时钟相噪优化-lg N(dB),0<N<1,但实际上,由DDS系统内部数字部分引入了相位抖动,不仅有可能抵消相噪优化的部分,而且还要恶化相噪,最坏情况可达10 dB。DDS相噪的近似关系:
2.3.5跳频时间
跳频时间包含两部分的计算,一部分是DDS跳频时间,另一部分则是环路的频率稳定时间。
DDS核心技术包括相位累加器。正弦表查值,DAC转换及LPF平滑,按芯片AD9850的资料,频率控制寄存器为40 b,采用并行方式需用5个时钟周期(TS)改变频率控制字,FQ_UD信号有效后,间隔tCF输出新的正弦信号。因此DDS跳频时间至少为:
直接数字式频率合成技术(DDS)的频率分辨率高、频率转换速度快,在通信、遥感测量、雷达等领域具有广阔的应用前景。DDS/PLL混合频率合成是一项新兴技术。DDS激励PLL倍频的方式能发挥DDS高分辨率的特点。但采用DDS技术制作的频率合成器在使用中还必须解决低相位噪声和抑制杂散等问题,DDS信号中的相噪与杂散一旦落入环路内将会恶化lg N。尤其当采用倍频、变频等方法将频率提高到微波频段后,该问题显得更加突出,此外还必须面对实现宽频带和降低成本的问题。

高频课程设计(13—14(1)

高频课程设计(13—14(1)

通信电路课程设计一、选频网络设计(2人)主要技术指标:谐振频率,通频带宽,品质因数,矩形系数小于10。

(串、并联)设计要求:电路图;利用Multisim或pspice进行仿真设计;相关仿真波形图、频率特性图。

二、高频小信号谐振放大器的设计(4人)主要技术指标:谐振频率,谐振电压放大倍数,通频带宽,矩形系数小于10。

设计要求:电路图;利用Multisim或pspice进行仿真设计;相关仿真波形图、频率特性图。

三、高频功率放大器的设计(5人)主要技术指标:输出功率,工作中心频率约为5MHz,效率大于60%,负载。

设计要求:电路图;工作状态分析;利用Multisim或pspice进行仿真设计;相关仿真波形图、频率特性图(包括负载特性、电压变化对工作状态的影响)。

四、高频正弦波振荡器的设计(5人)主要技术指标:工作频率,频率稳定度较高。

设计要求:互感耦合振荡电路或选择合适的三点式振荡器;选取电路各元件参数,使其满足起振条件及振幅条件;电路图;利用Multisim或pspice进行仿真设计;相关仿真波形图、频率特性图。

五、AM调制/解调电路的设计(5人)主要技术指标:载频为100MHz,调制信号为1kHz的正弦波,调幅指数为30%设计要求:分别用高电平调幅、低电平调幅电路实现AM调幅;包络检波检波器进行AM信号的解调;电路图;利用Multisim或pspice进行仿真设计;相关仿真波形图、频率特性图。

六、DSB调制/解调电路的设计(5人)主要性能指标:载频为100MHz,调制信号为1kHz的正弦波。

设计要求:低电平调幅电路实现DSB调制(2种);同步检波法进行解调。

电路图;利用Multisim或pspice进行仿真设计;相关仿真波形图、频率特性图。

七、SSB调制/解调电路的设计(4人)主要性能指标:载频为100MHz,调制信号为1kHz的正弦波。

设计要求:低电平调幅电路实现SSB调制;同步检波法进行解调。

高频课程设计

高频课程设计

⾼频课程设计1 总体设计⽅案与要求1.1 设计任务的⽬的(1)掌握⾼频电⼦电路的基本设计能⼒及基本调试能⼒,并在此基础上设计⼀个可实现调频,调幅功能的晶体正弦波振荡器。

(2)提⾼电⼦电路的理论知识及较强的实践能⼒,能够正确使⽤实验仪器进⾏电路的调试与检测。

1.2 设计任务的性能指标根据已知条件,完成通过基于⽯英晶体的正弦波振荡器的设计、连接与仿真。

该振荡器须符合以下要求:(1)采⽤晶体三极管构成⼀个正弦波振荡器;(2)额定电源电压12.0V ,电流1~3mA;其中本振的输出频率为16.455MHz;振荡器的输出频率为10MHz;(3)振荡器输出信号幅度≥0.5 V (P-P)。

2 设计课题总体⽅案及⼯作原理说明2.1 设计⽅案本次设计⾸先以NPN型晶体管9014/9013和标称频率为10MHz/16.455MHz的⽯英晶体为基础分别设计出16.455MHz本振信号振荡器和10MHz的晶体振荡器,然后根据⽯英晶体振荡器的输出要求设计电路,然后根据电路图的基本形式和设计的要求计算出各元件的参数和性能要求。

根据仿真后的电路原理图进⾏调试,从⽽完成整个正弦波振荡器的设计。

2.2 设计⽅案晶体管的介绍和⼯作原理2.2.1 ⽯英晶体的详细介绍⽯英晶体作为滤波、振荡元件已⼴泛应⽤在⼴播通讯、电⼦测量、航空、航天等⽅⾯。

其发展历史只有短短⼏⼗年,美国是发展⽯英晶体最早的国家,⽽像CORNIGN这样的⽼牌公司也只是在1941年才注册成⽴。

最近⼀、⼆⼗年来,由于PCS、GSM、GPS、PDC、CDMA等诸多移动通讯技术的需求,⽯英晶体振荡器中的⽯英晶体谐振器不再是单⼀元件,它已发展成为组件,⽽且⼏乎全部以集成化、全集成化、全数字化形式展现出来,体积⽐过去缩⼩了数倍乃⾄数⼗倍。

⽯英晶体振荡器是⾼精度和⾼稳定度的振荡器,被⼴泛应⽤于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中⽤于频率发⽣器、为数据处理设备产⽣时钟信号和为特定系统提供基准信号。

高频课程设计

高频课程设计

一、任务书二、报告正文一、课程设计目的1.掌握电子通信系统的基本组成及各部分的作用;2.进一步理解各种调制、解调和混频的基本理论和实现方法;3.学会应用LabVIEW软件进行仿真;4.提高依据所学知识及查阅的课外资料来分析问题解决问题的能力二、设计内容及要求内容:1.调幅与检波(1)高频DSBFC信号产生与检波(2)DSBSC信号产生与检波2.FM波产生与解调要求:1.调制信号均为5kHz的正弦波,高频DSBFC信号载波频率取500kHz-1600kHz (在该范围内可调),其他载波频率均取100kHz;2. 以上1中的DSBFC和DSBSC检波不可用相同的方法;3. 明确设计任务,合理选择设计方案;4. 利用LabVIEW进行仿真;三、设计原理(一)调制与解调概述调制电路与解调电路是通信系统中的重要组成部分。

调制是在发射端将调制信号从低频段变换到高频段, 便于天线发送或实现不同信号源、不同系统的频分复用;解调是在接收端将已调波信号从高频段变换到低频段, 恢复原调制信号。

在模拟系统里, 按照载波波形的不同, 可分为脉冲调制和正弦波调制两种调制方式:一、脉冲调制是以高频矩形脉冲为载波, 用低频调制信号分别去控制矩形脉冲的幅度、宽度或位置三个参量, 分别称为脉幅调制(PAM), 脉宽调制(PDM)和脉位调制(PPM)。

二、正弦波调制是以高频正弦波为载波, 用低频调制信号分别去控制正弦波的振幅、频率或相位三个参量, 分别称为调幅(AM)、调频(FM)和调相(PM)。

根据设计要求,本课程设计均采用正弦波调制,具体如下:调幅:使载波的幅度随着调制信号的大小变化而变化的调制方式。

调频:使载波的瞬时频率随调制信号的大小而变,而幅度保持不变的调制方式。

调相:利用原始信号控制载波信号的相位。

这三种调制方式的实质都是对原始信号进行频谱搬移,将信号的频谱搬移到所需要的较高频带上,从而满足信号传输的需要。

而解调则是相反的过程,即从已调制信号中恢复出原信号。

高频课程设计报告

高频课程设计报告

高频课程设计报告1. 引言本报告旨在对高频课程设计进行全面的分析和评估。

高频课程设计是一种针对特定需求和目标制定的教学计划,旨在提供高质量的教育体验。

通过本报告,我们将探讨高频课程设计的定义、目标、设计原则以及评估方法。

2. 高频课程设计的定义和目标2.1 定义高频课程设计是指教师或培训师根据特定的学习需求和目标,设计和组织高频的课程内容。

高频课程设计注重提供与实际工作和生活相关的教育内容,强调学生的实际操作能力和解决问题的能力。

2.2 目标高频课程设计的目标主要包括:•培养学生实际操作能力:通过设计易于实施的实践活动和项目,培养学生的实际操作技能。

•培养解决问题的能力:通过引导学生思考和解决实际问题的方式,培养学生的解决问题的能力。

•提高学习效果:通过设计高频的课程内容,激发学生的学习兴趣,提高学习效果和成绩。

3. 高频课程设计的原则3.1 目标导向性高频课程设计的首要原则是以学生的学习需求和目标为导向。

教师应该根据学生的实际情况和需求,设计课程内容和教学活动,以帮助学生实现其学习目标。

3.2 实践性高频课程设计注重学生的实践操作能力的培养。

教师应该设计和组织适合学生的实际操作活动和项目,以让学生在实践中学习和提高。

3.3 问题导向性高频课程设计应该引导学生思考和解决实际问题的能力。

教师应该通过设计问题情境和案例分析等教学活动,培养学生的解决问题的能力。

3.4 激发兴趣高频课程设计应该结合学生的兴趣和爱好,设计具有吸引力和趣味性的教学内容和活动,以激发学生的学习兴趣。

3.5 教学评估和反馈高频课程设计应该建立有效的教学评估机制,及时获取学生的学习情况,并给予及时的反馈和指导,以调整和改进课程设计和教学方法。

4. 高频课程设计的评估方法高频课程设计的评估方法主要包括定性和定量评估方法。

4.1 定性评估方法定性评估方法通过观察和记录学生的学习情况和表现,进行个案分析,从而评估高频课程设计的效果。

常用的定性评估方法包括教学观察、学生访谈、实际操作评估等。

multisim高频课程设计

multisim高频课程设计

multisim高频课程设计一、教学目标本课程旨在通过Multisim高频课程设计,让学生掌握高频电路的基本概念、设计和仿真方法。

在知识目标方面,学生需要了解高频电路的特点、分类和应用,掌握Multisim 仿真软件的基本操作,学会使用该软件进行高频电路的设计与验证。

在技能目标方面,学生应能独立完成高频电路的设计与仿真,具备分析和解决高频电路问题的能力。

在情感态度价值观目标方面,学生应培养对高频电路设计与仿真的兴趣,提高创新意识和团队合作能力。

二、教学内容本课程的教学内容主要包括以下几个部分:第一部分是高频电路基本概念,介绍高频电路的定义、特点和分类;第二部分是 Multisim 仿真软件的使用,讲解Multisim 软件的安装、界面及其基本操作;第三部分是高频电路设计与仿真,包括放大器、滤波器、振荡器等常见高频电路的设计与仿真;第四部分是案例分析,通过分析实际案例,让学生学会如何运用所学知识解决实际问题。

三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法。

主要包括:讲授法,用于讲解高频电路基本概念和 Multisim 软件的使用;讨论法,在课堂或课后学生针对具体问题进行讨论;案例分析法,通过分析实际案例,让学生学会解决实际问题;实验法,让学生动手进行高频电路的设计与仿真。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:教材,包括《高频电路》、《Multisim 仿真软件教程》等;参考书,为学生提供更多的学习资料;多媒体资料,包括教学PPT、视频等;实验设备,包括电脑、示波器、信号发生器等,用于进行高频电路的设计与验证。

五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。

平时表现主要考察学生的课堂参与、提问和团队协作等情况;作业包括课后练习和实验报告,用以巩固学生的理论知识;考试则分为期中和期末两次,全面检验学生的学习效果。

高频课设资料

高频课设资料

高频课设资料第一篇:高频课设资料一、课程设计目的由于高频振动器所产生的高频振动信号的功率很小,不能满足发射机天线对发射机的功率要求,所以在发射之前需要经过功率放大后才能获得足够的功率输出。

本次课程设计使通过已学的电路基础知识,模拟高频振动功率放大器,使发射机内部各级电路之间信号功率能有效传输,这就要求放大器输入端和输出端都能实现阻抗匹配。

即放大器输入端阻抗和信号阻抗匹配,放大器输出端阻抗和负载阻抗匹配。

我们知道能量是不能放大的,高频信号的功率放大,其实质在输入高频信号的控制下将电源直流功率转换为高频功率,因此除要求高频功率放大器产生符合要求的高频功率外,还应要求有尽可能高的转换率。

主要是根据已知数据设计一个丙类高频功率放大器。

二、课程设计题目描述和要求设计一高频功率放大电路; 1.要求三极管工作在丙类状态;2.主要技术指标:输入已调波的峰值为100mV;载波频率为6.5MHz,输出功率≧1w,负载50Ω,效率≧80%;3.用相关仿真软件画出电路并对电路进行分析与测试。

三、课程设计报告内容3.1 设计方案的论证高频功率放大器的主要功用是放大高频信号,并且以高效输出大功率为目的,它主要应用于各种无线电发射机中。

发射机中的振荡器产生的信号功率很小,需要经多级高频功率放大器才能获得足够的功率,送到天线辐射出去。

高频功率放大器输出功率范围,可以小到便捷式发射机的毫瓦级,大到无线电广播电台的几十千瓦,甚至兆瓦级。

目前,功率为几百瓦以上的高频功率放大器,其有源器件大多为电子管,几百瓦已下的高频功率放大器则主要采用双极晶体管和大功率场效应管。

如图所示是一个采用晶体管的高频功率放大器的原理线路,除电源和偏置电路外,它是由晶体管、谐振回路和输入回路三部分组成的。

高频功放中常采用平面工艺制造的NPN高频大功率管,它能承受高电压和大电流,并有较高的特征频率fT。

由先修课程可知,低频功率放大器可以工作在甲类状态,也可以工作在乙类状态,或甲乙类装态,乙类状态要比甲类状态效率高(甲类效率最大可达到50%;乙类效率最大可达78.5%),为了提高效率,高频功率放大器多工作于丙类状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1总体设计方案选择:频率调制是高频振荡的振幅U cm保持不变,而频率却随调制信号uΩ(t)的变化做线性变化,已调波成为调频波。

这中调制称为频率调制,常用FM 表示。

产生调频信号的电路叫做调频器,对他有4个主要的要求:1 已调波的瞬时频率与调制信号电压的大小成比例变化。

2 未调制时的载波频率即已调波的中心频率具有一定的稳定度。

3 最大频偏与调制频率无关。

4 无寄生调幅或寄生调幅尽量小。

产生调频的方法主要归纳为两类:1 用调制信号直接控制载波的瞬时频率——直接调频。

2先将调制信号积分,然后对载波进行调相,结果得到调频波。

即由调相变调频——间接调频。

变容二极管调频的主要优点是能够获得较大的频移(相对于间接调频而言),线路简单,并且几乎不需要调制功率,其主要缺点是中心频率的稳定度低。

在满足设计的各项参数的基础上尽量简化电路,因此本次课程设计采用2CC1C变容二极管进行直接调频电路设计。

电路包括二部分LC正弦波振荡器和变容二极管调频电路。

2变容二极管调频电路设计原理2.1 FM 调制原理:FM 调制是靠信号使频率发生变化,振幅可保持一定,所以噪声成分易消除。

设载波t w Vcm Vc c cos =,调制波t w Vsm Vs s cos =。

t w w w w s c m cos ∆+=或t f f f f s c m π2cos ∆+=,此时的频率偏移量△f 为最大频率偏移。

最后得到的被调制波m cm m V V θsin = , V m 随V s 的变化而变化。

⎰∆+==ts s c m m t w w w t w dt w 0sin )/(θ)sin sin(]sin )/(sin[sin t w m t w V t w w w t w V V V s c cm s s c cm mcm m +=∆+==θss f fw w m ∆=∆=为调制系数 2.2 变容二极管直接频率调制的原理:2.2.1 变容二极管的特性:变容二极管是利用半导体PN 结的结电容随反向电压的改变而变化这一特性制成的一种半导体二极管,它的集间结构和伏安特性与一般检波二极管没有多大差别。

不同的是在加反向电压时,变容二极管呈现较大的结电容。

这个结电容的大小能灵敏的随反向偏压而变化。

正是利用变容二极管这一特性,将变容二极管接到振荡器的振荡回路中,作为可控电容元件,则回路的电容量会随调制电压而变化,从而改变振荡频率,达到调频的目的。

变容二极管的反向电压与其结电容呈非线性关系,它的结电容C j 与反向电压V R 存在如下关系:γ)1(0DR j j V v C C +=式中,VD 为PN 结的势垒电压(内建电势差),C j0为V R =0时的结电容,γ为系数,它的值随半导体的掺杂浓度和PN 结的结构不同而异:对于缓变结,γ=1/3;突变结:γ=1/2;对于超突变结,γ=1~4,最大可达6以上。

2.2.2 变容二极管调频的基本原理:变容二极管的C j -V 特性曲线如图2.1所示。

图2.1 变容二极管的C j -V 特性曲线加到变容二极管上的反向电压包括直流偏压V 0和调制信号电压V Ω(t)=V Ωcos Ωt ,即tV V t v R Ω+=Ωcos )(0。

结电容在V R (t)的控制下随时间发生变化如图所示。

结电容是振荡器的振荡回路的一部分,结电容随调制信号变化。

把受到调制信号控制的变容二级管接入载波振荡器的振荡回路,则振荡回路的频率已收到调制信号的控制。

适当选择调频二极管的特性和工作状态,可以使振荡频率的变化与调制信号近似成线性变化,如图所示。

这样就实现了调频。

设电路工作在线性调制状态,在静态工作点Q 处,曲线的斜率为VC k ΔΔC =。

3 变容二极管调频电路设计分析3.1 变容二极管调频电路原理图如图3.1,是LC正弦波振荡器与变容二极管调频电路,有LC正弦波振荡器和变容二极管调频电路二部分组成。

其中,晶体管T组成常见的电容三点式震荡器的改进型电路即克拉波电路实现LC振荡,简便易行。

变容二极管的接入方式为部分接入,如果去掉与之串联的Cc则为全部接入。

变容二极管电容作为组成LC振荡电路的一部分,电容值会随加在其两端的电压的变化而变化,从而达到了变频的目的。

图3.1 变容二极管调频信号产生电路3.2 LC 振荡电路本电路晶体管T 被接成共基组态,CB 为经集极耦合电容。

Rc ,R E ,R B1,R B2设置LC 震荡电路的静态工作点,即:CC B B B BQ V R R R V 212+=β/CQ BQ CE CEO CC CQ E CQ BE BQ EQ I I R R V V I R I V V V =+-=≈-=小功率振荡器的静态工作电流I CQ 一般为(1~4)mA ,I CQ 增大,振荡幅度增加,但波形失真加重,频率稳定度变差。

L1,C1与C2,C3构成并联谐振回路,其中C3两端的电压构成振荡器的反馈电压V BE ,以满足相位平衡条件∑=πϕn 2。

比值C2/C3=F 决定反馈电压的大小,当A VO F=1时,振荡器满足振幅平衡条件,电路的起振条件为A VO F>1。

为减小晶体管的极间电容对回路振荡频率的影响,C2,C3的取值较大。

如果选C1<<C2,C1<<C3,则回路的谐振频率f 0主要由C1决定,则1121C L fo π≈·3.3 调频回路调频回路由变容二极管D C 及耦合电容C C 组成,Cc,Dc 接入LC 振荡电路改变振荡频率构成调频电路。

R1、R2提供变容二极管工作所需的反馈直流偏置电压V Q ,即V Q =[R2/(R1+R2)]V CC 。

电阻R3称为隔离电阻,常取R3>R1,R3>>R2,以减小调制信号V Ω对V Q 的影响。

信号V Ω从C5接入,电感L2是一低通线圈,可以过滤掉信号的高频部分,C6起到高频滤波作用。

变容二极管Dc 通过Cc 部分接入振荡电路,有利于提高主振频率fo 的稳定性,减小调制失真。

图3.2为变容二极管部分接入振荡回路的交流等效电路。

图3.2交流等效电路图3.4 调制灵敏度单位调制电压所引起的最大频偏称为调制灵敏度,以S ƒ表示,单位为 kHz/V ,即m ΩmV f S f ∆=V Ωm 为调制信号的幅度;Δƒm 为变容管的结电容变化ΔC j 时引起的最大频偏。

∵回路总电容的变化量为j2C p C ∆=∆∑在频偏较小时,Δƒm 与ΔC ∑的关系可采用下面近似公式,即∑∑∆⋅-≈∆Q o m 21C Cf f∴ p ↑ Δƒ ↑ ,ΔC j ↑Δƒ ↑。

调制灵敏度 式中,ΔC ∑为回路总电容的变化量;C Q ∑为静态时谐振回路的总电容, 即∴ C 1↓S ƒ↑Δƒ↑m ΩQ o 2V CC f S f ∑∑∆⋅=QC Q C 1Q C C C C C C ++=∑调制灵敏度S ƒ可以由变容二极管C j -V 特性曲线上V Q 处的斜率k C 计算。

S ƒ越大,说明调制信号的控制作用越强,产生的频偏越大。

改变C C 的值可以使变容二极管的工作点调节到最佳状态。

3.3 增加稳定度的措施:3.3.1 震荡回路参数LC显然LC 如有变化,必然引起震荡频率的变化,影响LC 飞变化的因素有:元件的机械变形,周围温度变化的影响,适度,气压的变化,因此为了维持LC 的数值不变,首先就应选取标准性高的,不易发生机械变形的元件;其次,应尽量维持振荡器的环境温度的恒定,因为当温度变化时,不仅会使LC 的数值发生变化,而且会引起电子器件的参数变化,因此高稳定度的振荡器可以封闭在恒温箱(杜瓦瓶)内,LC 采用温度系数低的材料制成。

3.3.2 温度补偿法使L 与C 的变化量与ΔL 与ΔC 的变化量相互抵消以维持恒定的震荡频率,其原理如下:若回路的损耗电阻r 很小,即Q 值很高,则振荡频率可以近似的用回路的固有频率f 0来表示。

LC f f π210=≈由于外界因素的影响,使LC 产生微小的变量ΔL 、ΔC ,因而引起振荡频率的变化为C Cf L L f f ∆∂∂+∆∂∂=∆00⎪⎭⎫⎝⎛∆+∆-≈C C L L f 021 若选用合适的负温度系数的电容器 (电感线圈的温度系数恒为正值), 使得ΔC/C 与ΔL/L 互相抵消,则Δf 可减为零。

这就是温度补偿法。

3.3.3 回路电阻r的大小是由振荡器的负载决定的,负载重时,r大,负载轻时r小,当负载变化时,振荡频率也随之变化。

为了减小r的影响尽量使负载小且稳定,r越小,回路的Q值越高,频率的稳定度也越高,3.3.4 加缓冲级为了减弱后级电路对主振器的影响,可在主振器后面加入缓冲级。

所谓缓冲级,就是实际上是一级不需要推动功率的放大器(工作于甲类)。

3.3.5有源器件的参数晶体管为有源器件时,若他的工作状态(电源电压或周围温度等)有所改变,则晶体管的h参数会发生变化,即引起振荡频率的改变。

本实验采用的三极管为3DG100. 为了维持晶体管的参数不变,应该采用稳压电源,和恒温措施。

图3.1高频三极管的参数采用高稳定度LC振荡电路例如采用克拉泼电路如图3.2所示:C 1>>C3,C2>>C3,Cb为基极耦合电容,C3为可变电容,他的作用是把L与C1,C2分隔开,使反馈系数仅取决于C1,C2的比值,振荡频率基本上由L和C3决定。

这样,C3就减弱了晶体管与振荡电路之间的耦合,使折算到回路内的有源器件的参数减小,提高了频率的稳定度,另一方面,不稳定电容(如分布电容)则与C1,C2并联,基本上不影响震荡频率。

C 3越小,则频率的稳定度越好,但起振也就越困难。

因此C3也不能无限制的减小。

4 各单元电路元器件参数设置:4.1 LC震荡电路直流参数设置:I CQ 一般为(1~4)mA。

ICQ偏大,振荡幅度增加,但波形失真加重,频率稳定性变差。

取ICQ =2mA。

取VCEQ=1/2VCC=6V。

可以求出Rc+Re=3KΩ,取Rc=2KΩ,Re=1KΩ;β=60,IBQ =β×IBQ,为使减小IBQ对偏执电阻的电位偏执效果的影响,取RB1和RB2上流过的电流IB >>IBQ,取RB1=28KΩ,RB2=8.2KΩ。

4.2 调频电路的直流参数设置根据2CC1C数据手册提供的变容二极管的Cj-V特性曲线(如图1),取变容二极管的正常工作的反向偏置电压为4V,R1与R2为变容二极管提供静态时的反向直流偏置电压V Q ,电阻R3称为隔离电阻,常取R3>>R2,R3>>R1,以减小调制信号VΩ对VQ的影响。

已知V Q =4V,若取 R2=10kW ,隔离电阻R3=150kΩ。

则R1=20KΩ4.3 交流电路参数设置:由LC 震荡频率的计算公式可求出11o π21C L f ≈,若取C 1=100pF ,则L 1≈10mH 。

相关文档
最新文档