新人教版九年级数学下册 二次函数测试习题及答案
【人教版】九年级下册数学《二次函数》同步检测题(含答案)

《二次函数》同步检测一、精心选一选(每小题4分,共40分.每小题有4个选项,其中只有一个选项是符合题目要求的)1.二次函数y=x 2+2x -7的函数值是8,那么对应的x 的值是( )A .3B .5C .-3和5D .3和-52.若二次函数y=x 2-x 与y=-x 2+k 的图象的顶点重合,则下列结论不正确的是( )A .这两个函数图象有相同的对称轴B .这两个函数图象的开口方向相反C .方程-x 2+k=0没有实数根D .二次函数y=-x 2+k 的最大值为12 3.已知二次函数c bx ax y ++=2(a ≠0)的图象如右图所示,则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( )A .l 个B .2个C .3个D .4个 4.已知抛物线c bx x y ++=2的部分图象如右图所示,若y<0,则x 的取值范围是( )A .-1<x<4 B.-1<x<3 C.x<-1或x>4 D.x<-1或x>35. 已知二次函数y=3(x-1)2+k 的图象上有三点A(2,y 1),B(2,y 2),C(-5,y 3),则y 1、y 2、y 3的大小关系为( )A .y 1.> y 2> y 3 B..y 2> y 1> y 3 C .y 3> y 1> y 2 D .y 3> y 2> y 16.已知二次函数,2c bx ax y ++=且0,0>+-<c b a a ,则一定有( )A .042>-ac bB .042=-ac bC .042<-ac bD .042≤-ac b7.已知抛物线m m x m x y (141)1(22--++=为整数)与x 轴交于点A ,与y 轴交于点B ,且OB OA =,则m 等于( )A 、52+B 、52-C 、2D 、2-8.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )9.小敏在某次投篮中,球的运动路线是抛物线的x y O x y O B x y O y O一部分(如图),若命中篮圈中心,则他与篮底的距离l 是( ).A .3.5mB .4mC .4.5mD .4.6m10.用列表法画二次函数2y x bx c =++的图象时先列一个表,当表中对自变量x 的值以相等间隔的值增加时,函数y 所对应的函数值依次为:20,56,110,182,274,380,506,650。
人教版初三数学二次函数单元测试题及答案

人教版初三数学二次函数单元测试题及答案1.下列关系式中,属于二次函数的是(x为自变量)()A。
y = 2x + 1B。
y = x^3C。
y = -x^2 + 2x - 3D。
y = 3x - 42.函数y = x^2 - 2x + 3的图像的顶点坐标是()A。
(1,-4)B。
(-1,2)C。
(1,2)D。
(0,3)3.抛物线y = 2(x - 3)^2的顶点在()A。
第一象限B。
第二象限C。
x轴上D。
y轴上4.抛物线的对称轴是()A。
x = -2B。
x = 2C。
x = -4D。
x = 45.已知二次函数y = ax^2 + bx + c的图像如图所示,则下列结论中,正确的是()A。
ab。
0,c。
0B。
ab。
0,c < 0C。
ab。
0D。
ab < 0,c < 06.二次函数y = ax^2 + bx + c的图像如图所示,则点在第___象限()A。
一B。
二C。
三D。
四7.如图所示,已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像的顶点P的横坐标是4,图像交x轴于点A(m,0)和点B,且m。
4,那么AB的长是()A。
4 + mB。
mC。
2m - 8D。
8 - 2m8.若一次函数y = ax + b的图像经过第二、三、四象限,则二次函数y = ax^2 + bx的图像只可能是()无法确定9.已知抛物线和直线在同一直角坐标系中的图像如图所示,抛物线的对称轴为直线x = -1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1 < x1 < x2,x3 < -1,则y1,y2,y3的大小关系是()A。
y1 < y2 < y3B。
y2 < y3 < y1C。
y3 < y1 < y2D。
y2 < y1 < y310.把抛物线y = x^2 - 2x + 3的图像向左平移2个单位,再向上平移3个单位,所得抛物线的函数关系式是()A。
人教版九年级数学二次函数专题训练(含答案)

二次函数专题训练(含答案)一、填空题1.把抛物线221x y -=向左平移2个单位得抛物线 ,接着再向下平移3个 单位,得抛物线 .2.函数x x y +-=22图象的对称轴是 ,最大值是 .3.正方形边长为3,如果边长增加x 面积就增加y ,那么y 与x 之间的函数关系是 .4.二次函数6822-+-=x x y ,通过配方化为k h x a y +-=2)(的形为 . 5.二次函数c ax y +=2(c 不为零),当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则 x 1与x 2的关系是 .6.抛物线c bx ax y ++=2当b=0时,对称轴是 ,当a ,b 同号时,对称轴在y 轴 侧,当a ,b 异号时,对称轴在y 轴 侧.7.抛物线3)1(22-+-=x y 开口 ,对称轴是 ,顶点坐标是 .如果y 随x 的增大而减小,那么x 的取值范围是 .8.若a <0,则函数522-+=ax x y 图象的顶点在第 象限;当x >4a-时,函数值随x 的增大而 .9.二次函数c bx ax y ++=2(a ≠0)当a >0时,图象的开口a <0时,图象的开口 ,顶点坐标是 . 10.抛物线2)(21h x y --=,开口 ,顶点坐标是 ,对称轴是 . 11.二次函数)()(32+-=x y 的图象的顶点坐标是(1,-2).12.已知2)1(312-+=x y ,当x 时,函数值随x 的增大而减小. 13.已知直线12-=x y 与抛物线k x y +=25交点的横坐标为2,则k= ,交点坐标为 . 14.用配方法将二次函数x x y 322+=化成k h x a y +-=2)(的形式是 . 15.如果二次函数m x x y +-=62的最小值是1,那么m 的值是 . 二、选择题:16.在抛物线1322+-=x x y 上的点是( )A.(0,-1)B.⎪⎭⎫ ⎝⎛0,21 C.(-1,5) D.(3,4) 17.直线225-=x y 与抛物线x x y 212-=的交点个数是( ) A.0个 B.1个 C.2个 D.互相重合的两个18.关于抛物线c bx ax y ++=2(a ≠0),下面几点结论中,正确的有( ) ① 当a >0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,当a <0时,情况相反.② 抛物线的最高点或最低点都是指抛物线的顶点.③ 只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④ 一元二次方程02=++c bx ax (a ≠0)的根,就是抛物线c bx ax y ++=2与x 轴交点的横坐标.A.①②③④B.①②③C. ①②D.① 19.二次函数y=(x+1)(x-3),则图象的对称轴是( )A.x=1B.x=-2C.x=3D.x=-320.如果一次函数b ax y +=的图象如图代13-3-12中A 所示,那么二次函+=2ax ybx -3的大致图象是( )图代13-2-1221.若抛物线c bx ax y ++=2的对称轴是,2-=x 则=ba( ) A.2 B.21 C.4 D.41 22.若函数xa y =的图象经过点(1,-2),那么抛物线3)1(2++-+=a x a ax y 的性 质说得全对的是( ) A. 开口向下,对称轴在y 轴右侧,图象与正半y 轴相交 B. 开口向下,对称轴在y 轴左侧,图象与正半y 轴相交 C. 开口向上,对称轴在y 轴左侧,图象与负半y 轴相交 D. 开口向下,对称轴在y 轴右侧,图象与负半y 轴相交23.二次函数c bx x y ++=2中,如果b+c=0,则那时图象经过的点是( ) A.(-1,-1) B.(1,1) C.(1,-1) D.(-1,1)24.函数2ax y =与xay =(a <0)在同一直角坐标系中的大致图象是( )图代13-3-1325.如图代13-3-14,抛物线c bx x y ++=2与y 轴交于A 点,与x 轴正半轴交于B , C 两点,且BC=3,S △ABC =6,则b 的值是( )A.b=5B.b=-5C.b=±5D.b=4图代13-3-1426.二次函数2ax y =(a <0),若要使函数值永远小于零,则自变量x 的取值范围是 ( )A .X 取任何实数 B.x <0 C.x >0 D.x <0或x >027.抛物线4)3(22+-=x y 向左平移1个单位,向下平移两个单位后的解析式为 ( )A.6)4(22+-=x y B.2)4(22+-=x y C.2)2(22+-=x y D.2)3(32+-=x y 28.二次函数229k ykx x y ++=(k >0)图象的顶点在( ) A.y 轴的负半轴上 B.y 轴的正半轴上 C.x 轴的负半轴上 D.x 轴的正半轴上 29.四个函数:xy x y x y 1,1,-=+=-=(x >0),2x y -=(x >0),其中图象经过原 点的函数有( )A.1个B.2个C.3个D.4个30.不论x 为值何,函数c bx ax y ++=2(a ≠0)的值永远小于0的条件是( ) A.a >0,Δ>0 B.a >0,Δ<0C .a <0,Δ>0 D.a <0,Δ<0 三、解答题31.已知二次函数1222+-+=b ax x y 和1)3(22-+-+-=b x a x y 的图象都经过x 轴上两上不同的点M ,N ,求a ,b 的值.32.已知二次函数c bx ax y ++=2的图象经过点A (2,4),顶点的横坐标为21,它 的图象与x 轴交于两点B (x 1,0),C (x 2,0),与y 轴交于点D ,且132221=+x x ,试问:y 轴上是否存在点P ,使得△POB 与△DOC 相似(O 为坐标原点)?若存在,请求出过P ,B 两点直线的解析式,若不存在,请说明理由.33.如图代13-3-15,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A ,B 两点,该 抛物线的对称轴x=-21与x 轴相交于点C ,且∠ABC=90°,求:(1)直线AB 的解析式;(2)抛物线的解析式.图代13-3-15图代13-3-1634.中图代13-3-16,抛物线c x ax y +-=32交x 轴正方向于A ,B 两点,交y 轴正方 向于C 点,过A ,B ,C 三点做⊙D ,若⊙D 与y 轴相切.(1)求a ,c 满足的关系;(2)设∠ACB=α,求tg α;(3)设抛物线顶点为P ,判断直线PA 与⊙O 的位置关系并证明. 35.如图代13-3-17,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示 意图,横断面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的DGD '部分为一段抛物线,顶点C 的高度为8米,AD 和A 'D '是两侧高为5.5米的支柱,OA 和OA '为两个方向的汽车通行区,宽都为15米,线段CD 和C 'D '为两段对称的上桥斜坡,其坡度为1∶4.求(1)桥拱DGD '所在抛物线的解析式及CC '的长;(2)BE 和B 'E '为支撑斜坡的立柱,其高都为4米,相应的AB 和A 'B '为两个方 向的行人及非机动车通行区,试求AB 和A 'B '的宽;(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,车 载大型设备的顶部与地面的距离均为7米,它能否从OA (或OA ')区域安全通过?请说明理由.图代13-3-1736.已知:抛物线2)4(2+++-=m x m x y 与x 轴交于两点)0,(),0,(b B a A (a <b ).O 为坐标原点,分别以OA ,OB 为直径作⊙O 1和⊙O 2在y 轴的哪一侧?简要说明理由,并指出两圆的位置关系.37.如果抛物线1)1(22++-+-=m x m x y 与x 轴都交于A ,B 两点,且A 点在x 轴 的正半轴上,B 点在x 同的负半轴上,OA 的长是a ,OB 的长是b. (1) 求m 的取值范围;(2) 若a ∶b=3∶1,求m 的值,并写出此时抛物线的解析式; (3) 设(2)中的抛物线与y 轴交于点C ,抛物线的顶点是M ,问:抛物线上是否存 在 点P ,使△PAB 的面积等于△BCM 面积的8倍?若存在,求出P 点的坐标;若不存在,请 说明理由. 38.已知:如图代13-3-18,EB 是⊙O 的直径,且EB=6,在BE 的延长线上取点P ,使EP=EB.A 是EP 上一点,过A 作⊙O 的切线AD ,切点为D ,过D 作DF ⊥AB 于F ,过B 作AD 的垂线BH ,交AD 的延长线于H ,连结ED 和FH.图代13-3-18(1) 若AE=2,求AD 的长.(2) 当点A 在EP 上移动(点A 不与点E 重合)时,①是否总有FHEDAH AD =?试证 明 你的结论;②设ED=x ,BH=y ,求y 与x 的函数关系式,并写出自变量x 的取值范围. 39.已知二次函数)294(2)254(222+--+--=m m x m m x y 的图象与x 轴的交点为 A ,B (点A 在点B 右边),与y 轴的交点为C. (1) 若△ABC 为Rt △,求m 的值; (2) 在△ABC 中,若AC=BC ,求∠ACB 的正弦值; (3) 设△ABC 的面积为S ,求当m 为何值时,S 有最小值,并求这个最小值. 40.如图代13-3-19,在直角坐标系中,以AB 为直径的⊙C 交x 轴于A ,交y 轴于B , 满足OA ∶OB=4∶3,以OC 为直径作⊙D ,设⊙D 的半径为2.图代13-3-19(1) 求⊙C 的圆心坐标. (2) 过C 作⊙D 的切线EF 交x 轴于E ,交y 轴于F ,求直线EF 的解析式. (3) 抛物线c bx ax y ++=2(a ≠0)的对称轴过C 点,顶点在⊙C 上,与y 轴交点为B ,求抛物线的解析式. 41.已知直线x y 21=和m x y +-=,二次函数q px x y ++=2图象的顶点为M. (1)若M 恰在直线x y 21=与m x y +-=的交点处,试证明:无论m 取何实数值,二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点. (2)在(1)的条件下,若直线m x y +-=过点D (0,-3),求二次函数q px x y ++=2的表达式,并作出其大致图象.图代13-3-20(3) 在(2)的条件下,若二次函数q px x y ++=2的图象与y 轴交于点C ,与x同的左交点为A ,试在直线x y 21=上求异于M 点P ,使P 在△CMA 的外接圆上. 42.如图代13-3-20,已知抛物线b ax x y ++-=2与x 轴从左至右交于A ,B 两点, 与y 轴交于点C ,且∠BAC=α,∠ABC=β,tg α-tg β=2,∠ACB=90°. (1) 求点C 的坐标; (2) 求抛物线的解析式;(3) 若抛物线的顶点为P ,求四边形ABPC 的面积.参 考 答 案动脑动手 1. 设每件提高x 元(0≤x ≤10),即每件可获利润(2+x )元,则每天可销售(100-10x ) 件,设每天所获利润为y 元,依题意,得)10100)(2(x x y -+=.360)4(10200801022+--=++-=x x x∴当x=4时(0≤x ≤10)所获利润最大,即售出价为14元,每天所赚得最大利润360元. 2.∵43432+⎪⎭⎫⎝⎛+-=x m mx y , ∴当x=0时,y=4. 当0,043432≠=+⎪⎭⎫ ⎝⎛+-m x m mx 时mm m 34,321==. 即抛物线与y 轴的交点为(0,4),与x 轴的交点为A (3,0),⎪⎭⎫⎝⎛0,34m B . (1)当AC=BC 时,94,334-=-=m m . ∴ 4942+-=x y(2)当AC=AB 时,5,4,3===AC OC AO .∴ 5343=-m. ∴ 32,6121-==m m . 当61=m 时,4611612+-=x x y ; 当32-=m 时,432322++-=x x y .(3)当AB=BC 时,22344343⎪⎭⎫⎝⎛+=-m m ,∴ 78-=m .∴ 42144782++-=x x y . 可求抛物线解析式为:43232,461161,494222+--=+-=+-=x x y x x y x y 或42144782++-=x x y .3.(1)∵)62(4)]5([222+---=∆m m)1(122222 +=++=m m m图代13-3-21 ∴不论m 取何值,抛物线与x 轴必有两个交点. 令y=0,得062)5(222=+++-m x m x 0)3)(2(2=---m x x , ∴ 3,2221+==m x x .∴两交点中必有一个交点是A (2,0).(2)由(1)得另一个交点B 的坐标是(m 2+3,0).12322+=-+=m m d ,∵ m 2+10>0,∴d=m 2+1.(3)①当d=10时,得m 2=9.∴ A (2,0),B (12,0).25)7(241422--=+-=x x x y .该抛物线的对称轴是直线x=7,顶点为(7,-25),∴AB 的中点E (7,0). 过点P 作PM ⊥AB 于点M ,连结PE , 则2222)7(,,521a MEb PM AB PE -====, ∴ 2225)7(=+-b a . ① ∵点PD 在抛物线上,∴ 25)7(2--=a b . ② 解①②联合方程组,得0,121=-=b b .当b=0时,点P 在x 轴上,△ABP 不存在,b=0,舍去.∴b=-1. 注:求b 的值还有其他思路,请读者探觅,写出解答过程. ②△ABP 为锐角三角形时,则-25≤b <-1; △ ABP 为钝角三角形时,则b >-1,且b ≠0. 同步题库一、 填空题 1.3)2(21,)2(2122-+-=+-=x y x y ; 2.81,41=x ; 3.9)3(2-+=x y ; 4. 2)2(22+--=x y ; 5.互为相反数; 6.y 轴,左,右; 7.下,x=-1,(-1,-3),x >-1;8.四,增大; 9.向上,向下,a bx a b ac a b 2,44,22-=⎪⎪⎭⎫ ⎝⎛--; 10.向下,(h,0),x=h ; 11.-1,-2; 12.x <-1; 13.-17,(2,3); 14.91312-⎪⎭⎫ ⎝⎛+=x y ; 15.10.二、选择题16.B 17.C 18.A 19.A 20.C 21.D 22.B 23.B 24.D 25.B 26.D 27.C 28. C 29.A 30.D 三、解答题31.解法一:依题意,设M (x 1,0),N (x 2,0),且x 1≠x 2,则x 1,x 2为方程x 2+2ax-2b+1=0 的两个实数根,∴ a x x 221-=+,1x ·122+-=b x . ∵x 1,x 2又是方程01)3(22=-+-+-b x a x 的两个实数根, ∴ x 1+x 2=a-3,x 1·x 2=1-b 2.∴ ⎩⎨⎧-=+--=-.112,322b b a a 解得 ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点, ∴a=1,b=0舍去.当a=1;b=2时,二次函数322-+=x x y 和322+--=x x y 符合题意. ∴ a=1,b=2.解法二:∵二次函数1222+-+=b ax x y 的图象对称轴为a x -=,二次函数1)3(22-+-+-=b x a x y 的图象的对称轴为23-=a x , 又两个二次函数图象都经过x 轴上两个不同的点M ,N , ∴两个二次函数图象的对称轴为同一直线.∴ 23-=-a a . 解得 1=a .∴两个二次函数分别为1222+-+=b x x y 和1222-+--=b x x y . 依题意,令y=0,得01222=+-+b x x , 01222=-+--b x x .①+②得022=-b b .解得 2,021==b b . ∴ ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点, ∴a=1,b=0舍去.当a=1,b=2时,二次函数为322-+=x x y 和322+--=x x y 符合题意. ∴ a=1,b=2.32.解:∵c bx ax y ++=2的图象与x 轴交于点B (x 1,0),C (x 2,0), ∴ acx x a b x x =⋅-=+2121,. 又∵132221=+x x 即132)(21221=-+x x x x ,∴ 132)(2=⋅--a cab . ① 又由y 的图象过点A (2,4),顶点横坐标为21,则有4a+2b+c=4, ② 212=-a b . ③ 解由①②③组成的方程组得a=-1,b=1,c=6.∴ y=-x 2+x+6.与x 轴交点坐标为(-2,0),(3,0).与y 轴交点D 坐标为(0,6).设y 轴上存在点P ,使得△POB ∽△DOC ,则有(1) 当B (-2,0),C (3,0),D (0,6)时,有 6,3,2,====OD OC OB ODOP OC OB . ∴OP=4,即点P 坐标为(0,4)或(0,-4).当P 点坐标为(0,4)时,可设过P ,B 两点直线的解析式为y=kx+4.有 0=-2k-4.得 k=-2.∴ y=-2x-4.或 3,6,2,====OC OD OB OCOP OD OB . ∴OP=1,这时P 点坐标为(0,1)或(0,-1).当P 点坐标为(0,1)时,可设过P ,B 两点直线的解析式为y=kx+1.有 0=-2k+1.得 21=k . ∴ 121+-=x y . 当P 点坐标为(0,-1)时,可设过P ,B 两点直线的解析式为y=kx-1,有 0=-2k-1,得 21-=k . ∴ 121--=x y . (2) 当B (3,0),C (-2,0),D (0,6)时,同理可得y=-3x+9,或 y=3x-9,或 131+-=x y , 或 131-=x y . 33.解:(1)在直线y=k(x-4)中,令y=0,得x=4.∴A 点坐标为(4,0).∴ ∠ABC=90°.∵ △CBD ∽△BAO , ∴OBOA OC OB =,即OB 2=OA ·OC.又∵ CO=1,OA=4,∴ OB 2=1×4=4.∴ OB=2(OB=-2舍去)∴B 点坐标为(0,2).将点B (0,2)的坐标代入y=k(x-4)中,得21-=k . ∴直线的解析式为:221+-=x y . (2)解法一:设抛物线的解析式为h x a y ++=2)1(,函数图象过A (4,0),B (0,2),得⎩⎨⎧=+=+.2,025h a h a 解得 .1225,121=-=h a ∴抛物线的解析式为:1225)1(1212++-=x y . 解法二:设抛物线的解析式为:c bx ax y ++=2,又设点A (4,0)关于x=-1的对 称是D.∵ CA=1+4=5,∴ CD=5.∴ OD=6.∴D 点坐标为(-6,0).将点A (4,0),B (0,2),D (-6,0)代入抛物线方程,得 ⎪⎩⎪⎨⎧=+-==++.0636,2,0416c b a c c b a 解得 2,61,121=-=-=c b a . ∴抛物线的解析式为:2611212+--=x x y . 34.解:(1)A ,B 的横坐标是方程032=+-c x ax 的两根,设为x 1,x 2(x 2>x 1),C 的 纵坐标是C.又∵y 轴与⊙O 相切,∴ OA ·OB=OC 2.∴ x 1·x 2=c 2.又由方程032=+-c x ax 知 ac x x =⋅21,∴a c c =2,即ac=1. (2)连结PD ,交x 轴于E ,直线PD 必为抛物线的对称轴,连结AD 、BD ,图代13-3-22∴ AB AE 21=. α=∠=∠=∠ADE ADB ACB 21. ∵ a >0,x 2>x 1, ∴ aa ac x x AB 54912=-=-=. a AE 25=. 又 ED=OC=c ,∴ 25==DE AE tg α. (3)设∠PAB=β,∵P 点的坐标为⎪⎭⎫ ⎝⎛-a a 45,23,又∵a >0, ∴在Rt △PAE 中,aPE 45=. ∴ 25==AE PE tg β. ∴ tg β=tg α. ∴β=α.∴∠PAE=∠ADE.∵ ∠ADE+∠DAE=90°∴PA 和⊙D 相切.35.解:(1)设DGD '所在的抛物线的解析式为c ax y +=2,由题意得G (0,8),D (15,5.5).∴ ⎩⎨⎧+==.255.5,8c a c 解得⎪⎩⎪⎨⎧=-=.8,901c a∴DGD '所在的抛物线的解析式为89012+-=x y . ∵41=AC AD 且AD=5.5, ∴ AC=5.5×4=22(米).∴ 2215(2)(22+⨯=+⨯=='AC OA OC c c )=74(米).答:cc '的长为74米.(2)∵ 4,41==BE BC EB , ∴ BC=16.∴ AB=AC-BC=22-16=6(米).答:AB 和A 'B '的宽都是6米.(3) 在89012+-=x y 中,当x=4时, 45377816901=+⨯-=y . ∵ 4519)4.07(45377=+->0. ∴该大型货车可以从OA (OA ')区域安全通过.36.解:(1)∵⊙O 1与⊙O 2外切于原点O ,∴A ,B 两点分别位于原点两旁,即a <0,b >0.∴方程02)4(2=+++-m x m x 的两个根a ,b 异号.∴ab=m+2<0,∴m <-2.(2)当m <-2,且m ≠-4时,四边形PO 1O 2Q 是直角梯形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). m=-4时,四边形PO 1O 2Q 是矩形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). (3)∵ 4)2()2(4)4(22++=+-+=∆m m m >0∴方程02)4(2=+++-m x m x 有两个不相等的实数根.∵ m >-2,∴ ⎩⎨⎧+=+=+.02,04 m ab m b a∴ a >0,b >0.∴⊙O 1与⊙O 2都在y 轴右侧,并且两圆内切.37.解:(1)设A ,B 两点的坐标分别是(x 1,0)、(x 2,0),∵A ,B 两点在原点的两侧,∴ x 1x 2<0,即-(m+1)<0,解得 m >-1.∵ )1()1(4)]1(2[2+⨯-⨯--=∆m m 7)21(484422+-=+-=m m m 当m >-1时,Δ>0,∴m 的取值范围是m >-1.(2)∵a ∶b=3∶1,设a=3k ,b=k (k >0),则 x 1=3k ,x 2=-k ,∴ ⎩⎨⎧+-=-⋅-=-).1()(3),1(23m k k m k k解得 31,221==m m . ∵31=m 时,3421-=+x x (不合题意,舍去), ∴ m=2 ∴抛物线的解析式是32++-=x x y .(3)易求抛物线322++-=x x y 与x 轴的两个交点坐标是A (3,0),B (-1,0) 与y 轴交点坐标是C (0,3),顶点坐标是M (1,4).设直线BM 的解析式为q px y +=,则 ⎩⎨⎧+-⋅=+⋅=.)1(0,14q p q p 解得 ⎩⎨⎧==.2,2q p∴直线BM 的解析式是y=2x+2.设直线BM 与y 轴交于N ,则N 点坐标是(0,2),∴ MNC BCN BCM S S S ∆∆∆+= .111211121=⨯⨯+⨯⨯=设P 点坐标是(x,y ),∵ BCM ABP S S ∆∆=8,∴ 1821⨯=⨯⨯y AB . 即 8421=⨯⨯y . ∴ 4=y .∴4±=y .当y=4时,P 点与M 点重合,即P (1,4),当y=-4时,-4=-x 2+2x+3,解得 221±=x .∴满足条件的P 点存在.P 点坐标是(1,4),)4,221(),4,221(---+.38.(1)解:∵AD 切⊙O 于D ,AE=2,EB=6,∴ AD 2=AE ·AB=2×(2+6)=16.∴ AD=4.图代13-2-23(2)①无论点A 在EP 上怎么移动(点A 不与点E 重合),总有FHED AH AD =. 证法一:连结DB ,交FH 于G ,∵AH 是⊙O 的切线,∴ ∠HDB=∠DEB.又∵BH ⊥AH ,BE 为直径,∴ ∠BDE=90°有 ∠DBE=90°-∠DEB=90°-∠HDB=∠DBH.在△DFB 和△DHB 中,DF ⊥AB ,∠DFB=∠DHB=90°,DB=DB ,∠DBE=∠DBH ,∴ △DFB ∽△DHB.∴BH=BF , ∴△BHF 是等腰三角形.∴BG ⊥FH ,即BD ⊥FH.∴ED ∥FH ,∴FH ED AH AD =.图代13-3-24证法二:连结DB ,∵AH 是⊙O 的切线,∴ ∠HDB=∠DEF.又∵DF ⊥AB ,BH ⊥DH ,∴ ∠EDF=∠DBH.以BD 为直径作一个圆,则此圆必过F ,H 两点,∴∠DBH=∠DFH ,∴∠EDF=∠DFH. ∴ ED ∥FH.∴ FHED AH AD =. ②∵ED=x ,BH=,BH=y ,BE=6,BF=BH ,∴EF=6y.又∵DF 是Rt △BDE 斜边上的高,∴ △DFE ∽△BDE ,∴EBED ED EF =,即EB EF ED ⋅=2. ∴)6(62y x -=,即6612+-=x y . ∵点A 不与点E 重合,∴ED=x >0.A 从E 向左移动,ED 逐渐增大,当A 和P 重合时,ED 最大,这时连结OD ,则OD ⊥PH. ∴ OD ∥BH.又 12,936==+=+=PB EO PE PO ,4,=⋅==POPB OD BH PB PO BH OD , ∴ 246,4=-=-===BF EB EF BH BF ,由ED 2=EF ·EB 得 12622=⨯=x ,∵x >0,∴32=x .∴ 0<x ≤32.(或由BH=4=y ,代入6612+-=x y 中,得32=x )故所求函数关系式为6612+-=x y (0<x ≤32). 39.解:∵]294)[2(2942254222⎪⎭⎫ ⎝⎛+--+=⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=m m x x m m x m m x y , ∴可得⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--2942,0,0,294),0,2(22m m C m m B A . (1)∵△ABC 为直角三角形,∴OB AO OC⋅=2, 即⎪⎭⎫ ⎝⎛+-⨯=⎪⎭⎫ ⎝⎛+-22942294422m m m m , 化得0)2(2=-m .∴m=2.(2)∵AC=BC ,CO ⊥AB ,∴AO=BO ,即22942=+-m m . ∴429422=⎪⎭⎫ ⎝⎛+-=m m OC .∴25==BC AC . 过A 作AD ⊥BC ,垂足为D ,∴ AB ·OC=BC ·AD.∴ 58=AD .∴ 545258sin ===∠AC AD ACB .图代13-3-25(3)CO AB S ABC ⋅=∆21 .1)1()2(2942229421222-+=+=⎪⎭⎫ ⎝⎛+-⋅⎪⎭⎫ ⎝⎛++-=u u u m m m m ∵ 212942≥+-=m m u ,∴当21=u ,即2=m 时,S 有最小值,最小值为45. 40.解:(1)∵OA ⊥OB ,OA ∶OB=4∶3,⊙D 的半径为2,∴⊙C 过原点,OC=4,AB=8.A 点坐标为⎪⎭⎫ ⎝⎛0,532,B 点坐标为⎪⎭⎫ ⎝⎛524,0. ∴⊙C 的圆心C 的坐标为⎪⎭⎫⎝⎛512,516. (2)由EF 是⊙D 切线,∴OC ⊥EF.∵ CO=CA=CB ,∴ ∠COA=∠CAO ,∠COB=∠CBO.∴ Rt △AOB ∽Rt △OCE ∽Rt △FCO.∴OBOC AB OF OA OC AB OE ==,. ∴ 320,5==OF OE . E 点坐标为(5,0),F 点坐标为⎪⎭⎫ ⎝⎛320,0, ∴切线EF 解析式为32034+-=x y . (3)①当抛物线开口向下时,由题意,得抛物线顶点坐标为⎪⎭⎫⎝⎛+4512,516,可得 ⎪⎪⎩⎪⎪⎨⎧==-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-.524,1,325.52453244,51622c b a c a b ac a b ∴ 5243252++-=x x y . ②当抛物线开口向上时,顶点坐标为⎪⎭⎫ ⎝⎛-4512,516,得⎪⎪⎩⎪⎪⎨⎧=-==⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-.524,4,85.524,5844,51622c b a c a b ac a b ∴ 5244852+--=x x y . 综合上述,抛物线解析式为5243252++-=x x y 或5244852+-=x x y . 41.(1)证明:由⎪⎩⎪⎨⎧+-==,,21m x y x y 有m x x +-=21, ∴ m y m x m x 31,32,23===. ∴交点)31,32(m m M . 此时二次函数为m m x y 31322+⎪⎭⎫ ⎝⎛-= m m mx x 31943422++-=. 由②③联立,消去y ,有 0329413422=-+⎪⎭⎫ ⎝⎛--m m x m x . ⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=∆m m m 3294413422 .013891613891622>=+-+-=m m m m∴无论m 为何实数值,二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点.图代13-3-26(2)解:∵直线y=-x+m 过点D (0,-3),∴ -3=0+m ,∴ m=-3.∴M (-2,-1).∴二次函数为)1)(3(341)2(22++=+-=-+=x x x x x y .图象如图代13-3-26.(3)解:由勾股定理,可知△CMA 为Rt △,且∠CMA=Rt ∠,∴MC 为△CMA 外接圆直径.∵P 在x y 21=上,可设⎪⎭⎫ ⎝⎛n n P 21,,由MC 为△CMA 外接圆的直径,P 在这个圆上, ∴ ∠CPM=Rt ∠.过P 分别作PN ⊥y ,轴于N ,PQ ⊥x 轴于R ,过M 作MS ⊥y 轴于S ,MS 的延长线与PR 的 延长线交于点Q.由勾股定理,有222QP MQ MP +=,即222121)2(⎪⎭⎫ ⎝⎛+++=n n MP . 22222213n n NP NC CP +⎪⎭⎫ ⎝⎛-=+=. 202=CM. 而 222CM CPMP =+, ∴ 20213121)2(2222=+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+++n n n n , 即 062252=-+n n , ∴ 012452=-+n n ,0)2)(65(=+-n n .∴ 2,5621-==n n . 而n 2=-2即是M 点的横坐标,与题意不合,应舍去.∴ 56=n , 此时 5321=n . ∴P 点坐标为⎪⎭⎫ ⎝⎛53,56. 42.解:(1)根据题意,设点A (x 1,0)、点(x 2,0),且C (0,b ),x 1<0,x 2>0,b >0, ∵x 1,x 2是方程02=++-b ax x 的两根,∴ b x x a x x -=⋅=+2121,.在Rt △ABC 中,OC ⊥AB ,∴OC 2=OA ·OB.∵ OA=-x 1,OB=x 2,∴ b 2=-x 1·x 2=b.∵b >0,∴b=1,∴C (0,1).(2)在Rt △AOC 的Rt △BOC 中, 211212121==+-=--=-=-ba x x x x x x OB OC OA OC tg tg βα. ∴ 2=a .∴抛物线解析式为122++-=x x y .图代13-3-27(3)∵122++-=x x y ,∴顶点P 的坐标为(1,2),当0122=++-x x 时,21±=x .∴)0,21(),0,21(+-B A .延长PC 交x 轴于点D ,过C ,P 的直线为y=x+1,∴点D 坐标为(-1,0).∴ DCA DPB ABPC S S S ∆∆-=四边形).(22321)22(212)22(212121平方单位+=⨯-⨯-⨯+⨯=⋅-⋅⋅=yc AD y DB p。
人教版九下数学《二次函数》经典练习题(带答案)

人教版九下数学《二次函数》经典练习题(带答案)1.(课本P15第1题变型)(1)说出抛物线y=3(x+3)2-4的开口方向、对称轴及顶点坐标.(2)说出抛物线y=3(x-3)2+4的开口方向、对称轴及顶点坐标.(3)说出抛物线y=3(x-3)x-4的开口方向、对称轴及顶点坐标.2.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9), 求这个二次函数的关系式.3.已知二次函数y=ax2+bx+c的图象与x轴的两个交点的横坐标为x1=1,x2=2.当x=3时,y=4,求这个函数的关系式,并写出它的对称轴和顶点坐标.(1)一变:已知二次函数y=ax2+bx+c的图象与x轴两交点间的距离为1, 对称轴为x= ,且当x=3时,y=4.求这个函数的关系式,并写出图象的顶点坐标和最值.答案1.解:(1)抛物线y=3(x+3)2-4开口向上,对称轴是直线x=-3,顶点坐标为(-3,-4).(2)抛物线y=3(x-3)2+4开口向上,对称轴是直线x=3,顶点坐标为(3,4).(3)抛物线y=3(x-3)2-4开口向上,对称轴是直线x=3,顶点坐标为(3,-4).2.解法一:∵顶点坐标为(8,9),∴设所求二次函数关系式为y=a(x-8)2+ 9.把(0,1)代入上式,得 a(0-8)2+9=1,∴a=-18.∴y=-18(x-8)2+9,即y=-18x 2+2x+1.解法二:设所求二次函数关系式为y=ax 2+bx+c. 由题意,得2182494c b a ac b a⎧⎪=⎪⎪-=⎨⎪⎪-=⎪⎩, 解得1821a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴所求二次函数关系式为y=18-x 2+2x+1.3.解:∵两个交点横坐标为x 1=1,x 2=2,∴这两个交点坐标为(1,0),(2,0).把(1,0),(2,0),(3,4)分别代入y=ax 2+bx+c, 得0420934a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得264a b c =⎧⎪=-⎨⎪=⎩∴y=2x 2-6x+4. ∴231222y x ⎛⎫=-- ⎪⎝⎭ ∴顶点为31,22⎛⎫- ⎪⎝⎭,对称轴为直线x=32. (1)∵抛物线与x 轴两交点间距离为1,对称轴为x=32, ∴抛物线与x 轴的两个交点坐标为(1,0),(2,0).于是把(1,0),(2,0),(3,4)分别代入y=ax 2+bx+c,得0420934a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得264a b c =⎧⎪=-⎨⎪=⎩ ∴y=2x 2-6x+4.∴231222y x⎛⎫=--⎪⎝⎭, ∴顶点为31,22⎛⎫-⎪⎝⎭,∵a=2>0,∴函数有最小值,当x=32时,y最小值=12-.。
九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
部编数学九年级下册26.1二次函数及其图象同步练习新人教版含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!26.1 二次函数及其图象专题一 开放题1.请写出一个开口向上,与y 轴交点纵坐标为﹣1,且经过点(1,3)的抛物线的解析式 .(答案不唯一)2.(1)若是二次函数,求m 的值;(2)当k 为何值时,函数是二次函数?专题二 探究题3.如图,把抛物线y =x 2沿直线y =x 平移个单位后,其顶点在直线上的A 处,则平移后抛物线的解析式是( )A .B .C .D .4.如图,若一抛物线y =ax 2与四条直线x =1、x =2、 y =1、y =2围成的正方形有公共点,求a的取值范围.22()m m y m m x -=+221(1)(3)k k y k x k x k --=++-+21)1(2-+=x y 1)1(2++=x y 1)1(2+-=x y 1)1(2--=x y专题三 存在性问题5.如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =2,OC =3.(1)求抛物线的解析式;(2)若点D (2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P ,使得△BDP的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.注:二次函数(≠0)的对称轴是直线=. =6.如图,二次函数的图象与x 轴分别交于A 、B 两点,顶点M 关于x 轴的对称点是M′.(1)若A (-4,0),求二次函数的关系式;(2)在(1)的条件下,求四边形AMBM′的面积;(3)是否存在抛物线,使得四边形AMBM′为正方形?若存在,请求出此抛物线的函数关系式;若不存在,请说明理由.c bx ax y ++=2a x ab 2-c x x y +-=221212y x x c =-+c bx x y ++-=221【知识要点】1.二次函数的一般形式(其中a ≠0,a ,b ,c 为常数).2.二次函数的对称轴是y 轴,顶点是原点,当a >0时,抛物线的开口向上, 顶点是抛物线的最低点,a 越大,抛物线的开口越小;当a <0时,抛物线的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大.3.抛物线的图象与性质:(1)二次函数的图象与抛物线形状相同,位置不同,由抛物线平移可以得到抛物线.平移的方向、距离要根据h ,k 的值确定.(2)①当时,开口向上;当a <0时,开口向下;②对称轴是直线;③顶点坐标是(h ,k ).4.二次函数y=ax 2+bx+c 的对称轴是直线x =,顶点坐标为.【温馨提示】1.二次函数的一般形式y=ax 2+bx+c 中必须强调a ≠0.2.当a <0时,a 越小,开口越小,a 越大,开口越大.3.二次函数的增减性是以对称轴为分界线的.4.当a >0时,二次函数有最小值,若自变量取值范围不包括顶点的横坐标,则距离对称轴最近处,取得函数的最小值;当a <0时,二次函数有最大值,若自变量取值范围不包括顶点的横坐标,则距离对称轴最近处,取得函数的最大值.【方法技巧】1.一般地,抛物线的平移规律是 “上加下减常数项,左加右减自变量”.2.如已知三个点求抛物线解析式,则设一般式y=ax 2+bx+c .3.若已知顶点和其他一点,则设顶点式.c bx ax y ++=22y ax =2()y a x h k =-+2()y a x h k =-+2y ax =2y ax =2()y a x h k =-+0a >x h =ab 2-)44,2(2a b ac a b --2()y a x h k =-+参考答案1.答案不唯一,如y=x 2+3x﹣1等.【解析】设抛物线的解析式为y=ax 2+bx+c ,∵ 开口向上,∴a >0. ∵其与y 轴交点纵坐标为﹣1,∴c =﹣1.∵经过点(1,3),∴a+b -1=3.令a =1,则b =3,所以y=x 2+3x ﹣1.2.解:(1)由题意,得解得m =2. (2)由题意,得解得k =3.3.C 【解析】把抛物线y=x 2沿直线y=x个单位,即是将抛物线向上平移一个单位长度后再向右移1个单位长度,再根据“上加下减常数项,左加右减自变量”即可得到平移后的抛物线的解析式为,答案为C.4.解:因为四条直线x =1、 x =2、 y =1、 y =2围成正方形ABCD ,所以A (1,2),C (2,1).设过A 点的抛物线解析式为y =a 1x 2,过C 点的抛物线解析式为y =a 2x 2,则a 2≤a ≤a 1.把A (1,2),C (2,1)分别代入,可求得a 1=2,a 2=14.所以a 的取值范围是14≤a ≤2. 5.解:(1)将A (-2,0), C (0,3)代入=得 解得b = 12,c = 3.∴此抛物线的解析式为 y = x 2+x +3. (2) 连接AD 交对称轴于点P ,则P 为所求的点.设直线AD 的解析式为y =kx +b.由已知得解得k= ,b =1.∴直线AD 的解析式为y =x +1. 对称轴为直线x =-= .当x = 时,y = ,∴ P 点的坐标为(,).6.解:(1) 把A (-4,0)代入,解出c =-12.∴二次函数的关系式为. (2)如图,⎪⎩⎪⎨⎧=+=-,0,222m m m m ⎩⎨⎧≠+=--,01,2122k k k 2(1)1=-+y x y c bx x ++-221⎩⎨⎧=+--=,022,3c b c 21-21⎩⎨⎧=+=+-,22,02b k b k 2121a b 22121452145c x x y +-=22112212--=x x y令y =0,则有,解得,,∴A (-4,0),B (6,0), ∴AB =10.∵,∴M (1, ), ∴M ′(1, ), ∴MM′=25.∴四边形AMBM′的面积=AB·MM′=×10×25=125.(3) 存在.假设存在抛物线,使得四边形AMBM′为正方形.令y =0,则,解得.∴A (,0),B (,0),∴AB =.),AMBM′211202x x --=14x =-26x =225)1(21122122--=--=x x x y 225-2251221c x x y +-=2210212=+-=c x x y c x 211-±=c 211--c 211-+c 212-c。
人教版九年级数学下册第26章二次函数测试(答案)

《二次函数》同步检测一、选择题(每题3分,共39分)1.二次函数y=x 2+2x -7的函数值是8,那么对应的x 的值是( D )A .3B .5C .-3和5D .3和-52、(2010三亚市月考).抛物线y=12x 2向左平移8个单位,再向下平移9个单位后,所得抛物线的表达式是( A )A. y=12(x+8)2-9 B. y=12(x-8)2+9 C. y=12(x-8)2-9 D. y=12(x+8)2+9 3、(2010年厦门湖里模拟)抛物线y =322+-x x 与坐标轴交点为 ( B )A .二个交点B .一个交点C .无交点D .三个交点 4、若二次函数y=x 2-x 与y=-x 2+k 的图象的顶点重合,则下列结论不正确的是( D )A .这两个函数图象有相同的对称轴B .这两个函数图象的开口方向相反C .方程-x 2+k=0没有实数根D .二次函数y=-x 2+k 的最大值为12 5、(2010年厦门湖里模拟)如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则 的值为 ( A )A. 0B. -1C. 1D. 26、(2010年杭州月考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论:①0<abc ②当1x =时,函数有最大值。
③当13x x =-=或时,函数y 的值都等于0. ④024<++c b a 其中正确结论的个数是( C )A.1B.2C.3D.47、已知二次函数,2c bx ax y ++=且0,0>+-<c b a a ,则一定有( A )A .042>-ac bB .042=-ac bC .042<-ac bD .042≤-ac b 8、小敏在某次投篮中,球的运动路线是抛物线的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是( B ).A .3.5mB .4mC .4.5mD .4.6m9、(2010年西湖区月考)关于二次函数y =ax 2+bx+c 的图象有下列命题:①当c=0时,函数的图象经过原点;②当c >0时且函数的图象开口向下时,ax 2+bx+c=0必有两个不等实根;③函数图象最高点的纵坐标是ab ac 442-;④当b=0时,函数的图象关于y 轴对称.其中正确的个数是( C )A.1个 B 、2个 C 、3个 D. 4个10、(2009烟台市)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )11、(2009年鄂州)已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c ,2a+b ,2a -b 中,其值大于0的个数为( ) A .2 B 3 C 、4 D 、512、(2009年兰州)在同一直角坐标系中,函数y mx m =+和函数xxxx222y mx x =-++(m 是常数,且0m ≠)的图象可能..是13、(2009年黄石市)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( ) A .①② B . ①③④ C .①②③⑤ D .①②③④⑤二、填空题(每题3分,共30分)1、(2010三亚市月考)Y=-2(x-1)2 +5 的图象开口向 下 ,顶点坐标为 (1,5) ,当x >1时,y 值随着x 值的增大而 减小 。
人教版数学九年级下册 第二十二章 一元二次函数 习题练习(附答案)

人教版数学九年级下册第二十二章一元二次函数习题练习(附答案)一、选择题1.已知抛物线y=x2+bx+c的顶点坐标为(1,-3),则抛物线对应的函数解析式为()A.y=x2-2x+2 B.y=x2-2x-2 C.y=-x2-2x+1 D.y=x2-2x+12.已知y=ax2(a≠0)的图象不经过第四象限,图象上有A(-1,y1),B(-,y2),C(2,y3)三点,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y1>y2>y3C.y2>y1>y3D.y3>y1>y23.将二次函数y=2x2的图象向右平移2个单位,得到该二次函数的表达式是()A.y=2(x+2)2B.y=2(x-2)2C.y=2x2+2D.y=2x2-24.将抛物线y=-2x2+1向下平移1个单位后所得到的抛物线为()A.y=-2(x+1)2+1 B.y=-2(x-1)2+1C.y=-2x2 D.y=-2x2+25.已知二次函数y=ax2-bx-2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a-b为整数时,ab的值为()A.或1 B.或1C.或 D.或6.二次函数y=-x2+mx的图象如图所示,对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0(t 为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>-5 B. -5<t<3 C. 3<t≤4 D. -5<t≤47.在下列二次函数中,其图象对称轴为x=2的是()A.y=2x2-4 B.y=2(x-2)2 C.y=2x2+2 D.y=2(x+2)28.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件售价为x元(x为非负整数),则若要使每星期的利润最大且每星期的销量较大,x应为多少元?()A. 41 B. 42 C. 42.5 D. 439.如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=x m,长方形的面积为y m2,要使长方形的面积最大,其边长x应为()A.m B. 6m C. 15m D.m10.已知正比例函数y=x与二次函数y=ax2+bx+c的图象如图所示,则二次函数y=ax2+(b-1)x+c的图象可能是()A. B. C. D.二、填空题11.二次函数y=(x-1)2+1,当2≤y<5时,相应x的取值范围为____________.12.将二次函数y=2(x+1)2-3的图象向右平移3个单位,再向上平移1个单位,那么平移后的二次函数的顶点坐标是____________.13.如图是二次函数y=ax2+bx-1图象的一部分,其对称轴为x=-1,且过点(-3,0),则(a+b+1)(2-a-b)=_______________.14.形如:y=ax2+bx+c(a≠0)的函数叫二次函数,它的图象是一条抛物线.类比一元一次方程的解可以看成两条直线的交点的横坐标;则一元二次方程x2+x-3=0的解可以看成抛物线y=x2+x-3与直线y=0(x轴)的交点的横坐标;也可以看成是抛物线y=x2与直线y=___________的交点的横坐标;也可以看成是抛物线y=____________与直线y=-x的交点的横坐标.15.若二次函数y=-ax2,当x=2时,y=;则当x=-2时,y的值是___________.16.若二次函数y=x2-3x-4的图象如图所示,则方程x2-3x-4=0的解是__________;不等式x2-3x-4>0的解集是______________;不等式x2-3x-4<0的解集是________________.17.若将抛物线y=x2-2x+1沿着x轴向左平移1个单位,再沿y轴向下平移2个单位,则得到的新抛物线的顶点坐标是____________.18.抛物线y=−x2+5在y轴左侧的部分是________(填“上升”或“下降”)的.三、解答题19.已知抛物线y=(x-m)2-(x-m),其中m是常数.(1)求证:不论m为何值,该抛物线与x 轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.20.在同一坐标系中画出y=-2x2+1和y=-2x2的图象,并说出它们的关系,对称轴和顶点坐标.21.在平面直角坐标系中,有抛物线y=x2+1,已知点A(0,2),P(m,n)是抛物线上一动点,过O、P的直线交抛物线于点D,若AP=2AD,求直线OP的解析式.22.已知关于x的方程mx2+2(m-1)x+m-1=0有两个实数根,且m为非负整数.(1)求m的值;(2)将抛物线C1:y=mx2+2(m-1)x+m-1向右平移a个单位,再向上平移b个单位得到抛物线C2,若抛物线C2过点A(2,b)和点B(4,2b+1),求抛物线C2的表达式;(3)将抛物线C2绕点(n+1,n)旋转180°得到抛物线C3,若抛物线C3与直线y=x+1有两个交点且交点在其对称轴两侧,求n的取值范围.答案解析1.【答案】B【解析】A、y=x2-2x+2=(x-1)2+1,顶点坐标为(1,1),不合题意;B、y=x2-2x-2=(x-1)2-3,顶点坐标为(1,-3),符合题意;C、y=-x2-2x+2=-(x+1)2+3,顶点坐标为(-1,3),不合题意;D、y=x2-2x+1=(x-1)2,顶点坐标为(1,0),不合题意.2.【答案】A【解析】∵y=ax2(a≠0)的图象不经过第四象限,∴a>0,在二次函数y=ax2(a≠0),对称轴y 轴,图象上有A(-1,y1),B(-,y2),C(2,y3)三点, |-1|<|-|<|2|,则y1、y2、y3的大小关系为y1<y2<y3.3.【答案】B【解析】二次函数y=2x2的图象向右平移2个单位,得y=2(x-2)2.4.【答案】C【解析】由“上加下减”的原则可知,抛物线y=-2x2+1向下平移1个单位,所得到的抛物线是y=-2x2+1-1,即y=-2x2.5.【答案】A【解析】依题意知a>0,>0,a+b-2=0,故b>0,且b=2-a,a-b=a-(2-a)=2a-2,于是0<a <2,∴-2<2a-2<2,又a-b为整数,∴2a-2=-1或0或1,故a=或1或,b=或1或,∴ab=或1.6.【答案】D【解析】如图,关于x的一元二次方程-x2+mx-t=0的解就是抛物线y=-x2+mx与直线y=t的交点的横坐标,当x=1时,y=3,当x=5时,y=-5,由图象可知关于x的一元二次方程-x2+mx-t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=-5和直线y=4之间包括直线y=4,∴-5<t≤4.7.【答案】B【解析】A、y=2x2-4的对称轴为x=0,所以选项A错误;B、y=2(x-2)2的对称轴为x=2,所以选项B正确;C、y=2x2+2的对称轴为x=0,所以选项C错误;D、y=2(x+2)2对称轴为x=-2,所以选项D错误;8.【答案】B【解析】由题意得,涨价为(x-40)元,(0≤x≤5且x为整数),每星期少卖10(x-40)件,∴每星期的销量为150-10(x-40)=550-10x,设每星期的利润为y元,则y=(x-30)×(550-10x)=-10(x-42.5)2+1562.5,∵x为非负整数,∴当x=42或43时,利润最大为1560元,又∵要求销量较大,∴x取42元.答:若要使每星期的利润最大且每星期的销量较大,x应为42元.9.【答案】D【解析】根据题意得y=30-(5-x)-x(12-),整理得y=-x2+12x,=-[x2-5x+()2-],=-(x-)2+15,∵−<0∴长方形面积有最大值,此时边长x应为m.10.【答案】C【解析】如图,∵点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,∴方程ax2+(b-1)x+c=0有两个正实数根,∴函数y=ax2+(b-1)x+c的图象与x轴有两个交点,并且这两个交点都在x轴的正半轴上,符合条件的只有选项C.11.【答案】-1<x≤0或2≤x<3【解析】当y=2时,(x-1)2+1=2,解得x=0或x=2,当y=5时,(x-1)2+1=5,解得x=3或x=-1,又抛物线对称轴为x=1,∴-1<x≤0或2≤x<3.12.【答案】(2,-2)【解析】二次函数y=2(x+1)2-3的图象的顶点坐标是(-1,-3),则向右平移3个单位,再向上平移1个单位的函数图象的顶点坐标是(2,-2).13.【答案】2【解析】∵二次函数的对称轴为x=-1,且过点(-3,0),∴二次函数与x轴的另一个交点坐标为(1,0),∴a+b-1=0,故a+b=1,则a+b+1=2,2-a-b=2-(a+b)=2-1=1,故(a+b+1)(2-a-b)=2×1=2.14.【答案】-x+3,x2-3【解析】依题意,一元二次方程x2+x-3=0可以看成是抛物线y=x2与直线y=-x+3的交点的横坐标;也可以看成是抛物线y=x2-3与直线y=-x的交点的横坐标.15.【答案】【解析】∵当x=2时,y=,∴-4a=,解得a=-.∴y=x2∴当x=-2时,y=.16.【答案】x1=4,x2=-1;x>4或x<-1;-1<x<4【解析】方程x2-3x-4=0的解是x1=4,x2=-1;不等式x2-3x-4>0的解集是x>4或x<-1;不等式x2-3x-4<0的解集是-1<x<4.17.【答案】(0,-2)【解析】∵y=x2-2x+1=(x-1)2,∴抛物线y=x2-2x+1的顶点坐标为(1,0),∵抛物线y=x2-2x+1沿着x轴向左平移1个单位,再沿y轴向下平移2个单位,∴平移后得抛物线的顶点坐标为(0,-2).18.【答案】上升【解析】抛物线y=−x2+5的开口向下,对称轴为y轴,对称轴左侧y随x增大而增大,∴y轴左侧的部分上升.19.【答案】(1)证明:y=(x-m)2-(x-m)=x2-(2m+1)x+m2+m,∵△=(2m+1)2-4(m2+m)=1>0,∴不论m为何值,该抛物线与x轴一定有两个公共点;(2)解:①∵x=-=,∴m=2,∴抛物线解析式为y=x2-5x+6;②设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2-5x+6+k,∵抛物线y=x2-5x+6+k与x轴只有一个公共点,∴△=52-4(6+k)=0,∴k=,即把该抛物线沿y轴向上平移个单位长度后,得到的抛物线与x轴只有一个公共点.【解析】(1)先把抛物线解析式化为一般式,再计算△的值,得到△=1>0,于是根据△=b2-4ac 决定抛物线与x轴的交点个数即可判断不论m为何值,该抛物线与x轴一定有两个公共点;(2)①根据对称轴方程得到=-=,然后解出m的值即可得到抛物线解析式;②根据抛物线的平移规律,设抛物线沿y轴向上平移k 个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2-5x+6+k,再利用抛物线与x轴的只有一个交点得到△=52-4(6+k)=0,然后解关于k的方程即可.20.【答案】解:y=-2x2+1和y=-2x2的图象,如图:,y=-2x2的图象向上平移1个单位得y=-2x2+1的函数图象;y=-2x2的对称轴是y轴,顶点坐标是(0,0);y=-2x2+1的对称轴是y轴,顶点坐标是(0,1).【解析】根据描点法,可得函数图象,根据函数的a、b相同,可得函数的图象相同,根据对称轴公式,可得对称轴,根据顶点坐标公式,可得函数图象的顶点坐标.21.【答案】解:∵P(m,n)是抛物线y=x2+1上一动点,∴m2+1=n,∴m2=4n-4,∵点A(0,2),∴AP===n,∴点P到点A的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x轴于F,∵AP=2AD,∴PF=2DE,∴OF=2OE,设OE=a,则OF=2a,∴×(2a)2+1=2(a2+1),解得a=,∴a2+1=×2+1=,∴点D的坐标为(,),设OP的解析式为y=kx,则k=,解得k=,∴直线OP的解析式为y=x.【解析】根据点P在抛物线上用n表示出m2,再利用勾股定理列式求出AP,从而得到点P到点A 的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x轴于F,根据AP=2AD判断出PF=2DE,得到OF=2OE,设OE=a,表示出OF=2a,然后代入抛物线解析式并列出方程求出a的值,再求出点D的坐标,最后利用待定系数法求一次函数解析式解答.22.【答案】解:(1)∵方程mx2+2(m-1)x+m-1=0有两个实数根,∴m≠0且△≥0,则有4(m-1)2-4m(m-1)≥0且m≠0∴m≤1且m≠0又∵m为非负整数,∴m=1.(2)抛物线C1:y=x2平移后,得到抛物线C2:y=(x-a)2+b,∵抛物线C2过点A(2,b),b=(2-a)2+b,可得a=2,同理:2b+1=(4-a)2+b,可得b=3,∴C2:y=(x-2)2+3(或y=x2-4x+7).(3)将抛物线C2:y=(x-2)2+3绕点(n+1,n)旋转180°后得到的抛物线C3顶点为(2n,2n-3),把x=2n代入直线y=x+1得,y=×2n+1=n+1,由题意得2n-3>n+1,即n>4.【解析】(1)直接利用根的判别式求出m的取值范围,进而得出答案;(2)利用(1)中所求得出平移后解析式,进而将A,B点代入求出即可;(3)将抛物线C2:y=(x-2)2+3绕点(n+1,n)旋转180°后得到的抛物线C3顶点为(2n,2n-3),进而将横坐标代入直线解析式求出n的取值范围即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专项训练三 二次函数一、选择题1.下列函数解析式中,一定为二次函数的是( )A .y =3x -1B .y =ax 2+bx +cC .s =2t 2-2t +1D .y =x 2+1x 2.二次函数y =x 2+4x -5的图象的对称轴为( )A .x =4B .x =-4C .x =2D .x =-23.将抛物线y =-2x 2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )A .y =-2(x +1)2B .y =-2(x +1)2+2C .y =-2(x -1)2+2D .y =-2(x -1)2+14.某种正方形合金板材的成本y (元)与它的面积成正比,设边长为x cm.当x =3时,y =18,那么当成本为72元时,边长为( )A .6cmB .12cmC .24cmD .36cm5.(兰州中考)点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3>y 2>y 1B .y 3>y 1=y 2C .y 1>y 2>y 3D .y 1=y 2>y 36.(毕节中考)一次函数y =ax +b (a ≠0)与二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )7.(兰州中考)二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =-1,有以下结论:①abc >0;②4ac <b 2;③2a +b =0;④a -b +c >2.其中正确的结论的个数是( )A .1个B .2个C .3个D .4个 8.已知抛物线y =-x 2-2x +3与x 轴交于A 、B 两点,将这条抛物线的顶点记为C ,连接AC 、BC ,则tan ∠CAB 的值为( )A.12B.55C.255D .2二、填空题9.(河南中考)已知A (0,3),B (2,3)是抛物线y =-x 2+bx +c 上两点,该抛物线的顶点坐标是________.10.若二次函数y =x 2+2x +m 的图象与x 轴没有公共点,则m 的取值范围是________.11.(大连中考)如图,抛物线y =ax 2+bx +c 与x 轴相交于点A 、B (m +2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c ),则点A 的坐标是________.第11题图 第14条图12.(台州中考)竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t =________.13.(厦门中考)已知点P (m ,n )在抛物线y =ax 2-x -a 上,当m ≥-1时,总有n ≤1成立,则a 的取值范围是____________.14.★(梅州中考)如图,抛物线y =-x 2+2x +3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为____________.三、解答题15.已知二次函数y =x 2-4x +3.(1)用配方法求其图象的顶点C 的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x 轴的交点A ,B 的坐标,及△ABC 的面积.16.(成都中考)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树.(1)直接写出平均每棵树结的橙子个数y (个)与x 之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?17.(大连中考)如图,抛物线y =x 2-3x +54与x 轴相交于A 、B 两点,与y 轴相交于点C ,点D 是直线BC 下方抛物线上一点,过点D 作y 轴的平行线,与直线BC 相交于点E .(1)求直线BC 的解析式;(2)当线段DE 的长度最大时,求点D 的坐标.18.★★(枣庄中考)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y =mx +n 经过B ,C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形时点P 的坐标.参考答案与解析1.C 2.D 3.C 4.A 5.D 6.C7.C 解析:∵抛物线开口向下,∴a <0.∵抛物线的对称轴为直线x =-b 2a =-1,∴b =2a <0.∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确;∵抛物线与x 轴有2个交点,∴Δ=b 2-4ac >0,所以②正确;∵b =2a ,∴2a -b =0,所以③错误;∵抛物线开口向下,x =-1是对称轴,所以x =-1对应的y 值是最大值,∴a -b +c >2,所以④正确.8.D 解析:令y =0,则-x 2-2x +3=0,解得x =-3或1.不妨设A (-3,0),B (1,0).∵y =-x 2-2x +3=-(x +1)2+4,∴顶点C 的坐标为(-1,4).作CD ⊥AB 于D .在Rt △ACD 中,tan ∠CAD =CD AD =42=2. 9.(1,4) 10.m >111.(-2,0) 解析:由C (0,c ),D (m ,c ),得函数图象的对称轴是x =m 2.设A 点坐标为(x ,0),由A 、B 关于对称轴x =m 2对称,得x +m +22=m 2,解得x =-2,即A 点坐标为(-2,0). 12.1.6 解析:设各自抛出后1.1秒时到达相同的最大离地高度为h ,则小球的高度y =a (t -1.1)2+h ,由题意a (t -1.1)2+h =a (t -1-1.1)2+h ,解得t =1.6.故第一个小球抛出后1.6秒时在空中与第二个小球的离地高度相同.13.-12≤a <0 解析:根据已知条件,画出函数图象,如图所示.由已知得⎩⎪⎨⎪⎧a <0,--12a ≤-1,解得-12≤a <0. 14.(1+2,2)或(1-2,2) 解析:∵△PCD 是以CD 为底的等腰三角形,∴点P 在线段CD 的垂直平分线上.过P 作PE ⊥y 轴于点E ,则E 为线段CD 的中点.∵抛物线y =-x 2+2x +3与y 轴交于点C ,∴C 点坐标为(0,3).又∵D 点坐标为(0,1),∴E 点坐标为(0,2),∴P 点纵坐标为2.在y =-x 2+2x +3中,令y =2,可得-x 2+2x +3=2,解得x =1±2,∴P 点坐标为(1+2,2)或(1-2,2).15.解:(1)y =x 2-4x +3=x 2-4x +4-4+3=(x -2)2-1,所以顶点C 的坐标是(2,-1),当x ≤2时,y 随x 的增大而减小;当x >2时,y 随x 的增大而增大;(2)解方程x 2-4x +3=0得x 1=3,x 2=1,即A 点的坐标是(1,0),B 点的坐标是(3,0).如图,过点C 作CD ⊥AB 于点D .∵AB =2,CD =1,∴S △ABC =12AB ×CD =12×2×1=1. 16.解:(1)平均每棵树结的橙子个数y (个)与x 之间的关系为y =600-5x (0≤x <120);(2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则w =(600-5x )(100+x )=-5x 2+100x +60000=-5(x -10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.17.解:(1)∵抛物线y =x 2-3x +54与x 轴相交于A 、B 两点,与y 轴相交于点C ,∴令y =0,可得x =12或x =52,∴A 点坐标为⎝⎛⎭⎫12,0,B 点坐标为⎝⎛⎭⎫52,0;令x =0,则y =54,∴C 点坐标为⎝⎛⎭⎫0,54.设直线BC 的解析式为y =kx +b ,则有⎩⎨⎧52k +b =0,b =54,解得⎩⎨⎧k =-12,b =54,∴直线BC 的解析式为y =-12x+54; (2)设点D 的横坐标为m ,则坐标为⎝⎛⎭⎫m ,m 2-3m +54,∴E 点的坐标为⎝⎛⎭⎫m ,-12m +54.设DE 的长度为d .∵点D 是直线BC 下方抛物线上一点,则d =-12m +54-⎝⎛⎭⎫m 2-3m +54=-m 2+52m .∵a =-1<0,∴当m =b -2a =54时,d 有最大值,d 最大=4ac -b 24a =2516,∴m 2-3m +54=⎝⎛⎭⎫542-3×54+54=-1516,∴点D 的坐标为⎝⎛⎭⎫54,-1516. 18.解:(1)依题意得⎩⎪⎨⎪⎧-b 2a =-1,a +b +c =0,c =3,解得⎩⎪⎨⎪⎧a =-1,b =-2,c =3,∴抛物线解析式为y =-x 2-2x +3.∵对称轴为直线x =-1,且抛物线经过A (1,0),∴点B 的坐标为(-3,0).把B (-3,0),C (0,3)分别代入直线y =mx +n ,得⎩⎪⎨⎪⎧-3m +n =0,n =3,解得⎩⎪⎨⎪⎧m =1,n =3,∴直线BC 的解析式为y =x +3; (2)设直线BC 与对称轴x =-1的交点为M ,则此时MA +MC 的值最小.把x =-1代入y =x +3得y =2,∴点M 的坐标为(-1,2),即当点M 到点A 的距离与到点C 的距离之和最小时点M 的坐标为(-1,2);(3)设点P 的坐标为(-1,t ).又∵点B 的坐标为(-3,0),点C 的坐标为(0,3),∴BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若点B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解得t =-2;②若点C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解得t =4;③若点P 为直角顶点,则PB 2+PC 2=BC 2,即4+t 2+t 2-6t +10=18,解得t 1=3+172,t 2=3-172.综上所述,点P 的坐标为(-1,-2)或(-1,4)或⎝⎛⎭⎪⎫-1,3+172或⎝ ⎛⎭⎪⎫-1,3-172.。