学年高中数学三维设计人教A版浙江专版必修讲义等差数列含答案
2019-2020学年高中数学三维设计人教A版浙江专版必修5讲义:模块复习精要 复习课(二)数 列 Word版含答案.doc

复习课(二) 数 列对应学生用书P58数列的基本运算以小题出现具多,但也可作为解答题第一步命题,主要考查利用数列的通项公式及求和公式,求数列中的项、公差、公比及前n 项和等,一般试题难度较小.[考点精要]1.等差数列(1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. (3)前n 项和公式S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 视为关于n 的一元二次函数,开口方向由公差d 的正负确定;S n =(a 1+a n )n2中(a 1+a n )视为一个整体,常与等差数列性质结合利用“整体代换”思想解题.2.等比数列(1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).(3)等比数列{a n },S n 为其前n 项和,则S n 可表示为S n =k ·q n +b ,(k ≠0,且k +b =0). [典例] 成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n }中的b 3,b 4,b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.[解] (1)设成等差数列的三个正数分别为a -d ,a ,a +d .依题意,得a -d +a +a +d =15,解得a =5.所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,(7-d )(18+d )=100, 解得d =2或d =-13(舍去), ∴b 3=5,公比q =2,故b n =5·2n -3.(2)证明:由(1)知b 1=54,公比q =2,∴S n =54(1-2n )1-2=5·2n -2-54,则S n +54=5·2n -2,因此S 1+54=52,S n +54S n -1+54=5·2n -25·2n -3=2(n ≥2).∴数列⎩⎨⎧⎭⎬⎫S n +54是以52为首项,公比为2的等比数列.[类题通法]在等差(或等比)数列中,首项a 1与公差d (或公比q )是两个基本量,一般的等差(或等比)数列的计算问题,都可以设出这两个量求解.在等差数列中的五个量a 1,d ,n ,a n ,S n 或等比数列中的五个量a 1,q ,n ,a n ,S n 中,可通过列方程组的方法,知三求二.在利用S n 求a n 时,要注意验证n =1是否成立.[题组训练]1.在等比数列{a n }中,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为17,则S 6=( )A.634 B .16 C .15D.614解析:选A 设{a n }的公比为q ,则由等比数列的性质知,a 2a 3=a 1a 4=2a 1,则a 4=2;由a 4与2a 7的等差中项为17知,a 4+2a 7=2×17=34,得a 7=16.∴q 3=a 7a 4=8,即q =2,∴a 1=a 4q 3=14,则S 6=14(1-26)1-2=634,故选A.2.已知等差数列{a n }的前n 项和为S n ,且a 3+a 8=13,S 7=35,则a 7=________. 解析:设等差数列{a n }的公差为d ,则由已知得(a 1+2d )+(a 1+7d )=13,S 7=7(a 1+a 1+6d )2=35.联立两式,解得a 1=2,d =1,∴a 7=a 1+6d =8.答案:83.设S n 是数列{a n }的前n 项和,已知a 1=-1,S n +1-S n =S n S n +1.⎝⎛⎭⎫其中12+22+…+n 2=16n (n +1)(2n +1)(1)求证⎩⎨⎧⎭⎬⎫1S n 是等差数列,并求S n ;(2)若b n =1a n,求数列{b n }的前n 项和T n .解:(1)证明:1S 1=1a 1=-1.因为S n +1-S n =S n S n +1,所以1S n +1-1S n=-1,所以⎩⎨⎧⎭⎬⎫1S n 是首项为-1、公差为-1的等差数列,所以1S n=-1+(n -1)×(-1)=-n ,故S n =-1n .(2)b 1=1a 1=-1.当n ≥2时,a n =S n -S n -1=-1n +1n -1=1n (n -1),b n =n 2-n .所以T 1=-1.当n ≥2时,T n =-1+(22+32+…+n 2)-(2+3+…+n ) =-1+(12+22+32+…+n 2)-(1+2+3+…+n ) =-1+16n (n +1)(2n +1)-12n (n +1)=-1+13n (n +1)(n -1).故T n =-1+13n (n +1)(n -1).等差、等比数列的性质主要涉及数列的单调性、最值及其前n 项和的性质.利用性质求数列中某一项等,试题充分体现“小”“巧”“活”的特点,题型多以选择题和填空题的形式出现,一般难度较小.[考点精要]n 135246n 列{a n }的前n 项和,则使得S n 取得最大值的n 是( )A .21B .20C .19D .18(2)记等比数列{a n }的前n 项积为T n (n ∈N *),已知a m -1a m +1-2a m =0,且T 2m -1=128,则m =________.[解析] (1)由a 1+a 3+a 5=105得,3a 3=105, ∴a 3=35. 同理可得a 4=33,∴d =a 4-a 3=-2,a n =a 4+(n -4)×(-2) =41-2n .由⎩⎪⎨⎪⎧a n ≥0,a n +1<0,得n =20. ∴使S n 达到最大值的n 是20.(2)因为{a n }为等比数列,所以a m -1a m +1=a 2m ,又由a m -1a m +1-2a m =0,从而a m =2.由等比数列的性质可知前(2m -1)项积T 2m -1=a 2m -1m,则22m -1=128,故m =4. [答案] (1)B (2)4 [类题通法]关于等差(比)数列性质的应用问题,可以直接构造关于首项a 1和公差d (公比q )的方程或方程组来求解,再根据等差(比)数列的通项公式直接求其值,此解思路简单,但运算过程复杂.[题组训练]1.等差数列{a n }的前16项和为640,前16项中偶数项和与奇数项和之比为22∶18,则公差d ,a 9a 8的值分别是( )A .8,109B .9,109C .9,119D .8,119解析:选D 设S 奇=a 1+a 3+…+a 15,S 偶=a 2+a 4+…+a 16,则有S 偶-S 奇=(a 2-a 1)+(a 4-a 3)+…+(a 16-a 15)=8d ,S 偶S 奇=8(a 2+a 16)28(a 1+a 15)2=a 9a 8.由⎩⎪⎨⎪⎧S 奇+S 偶=640,S 偶∶S 奇=22∶18,解得S 奇=288,S 偶=352.因此d =S 偶-S 奇8=648=8,a 9a 8=S 偶S 奇=119.故选D.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列的前13项和为( ) A .13 B .26 C .52D .156解析:选B 3(a 3+a 5)+2(a 7+a 10+a 13)=24,∴6a 4+6a 10=24,∴a 4+a 10=4,∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26,故选B.3.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:选C ∵a 5·a 2n -5=a 2n =22n ,且a n >0,∴a n =2n ,∵a 2n -1=22n -1,∴log 2a 2n -1=2n -1,∴log 2a 1+log 2a 3+…+log 2a 2n -1=1+3+5+…+(2n -1)=n [1+(2n -1)]2=n 2.通项及数列求和一直是考查的热点,在命题中,多以与不等式的证明或求解相结合的形式出现.一般数列的求和,主要是将其转化为等差数列或等比数列的求和问题,题型多以解答题形式出现,难度较大.[考点精要]1.已知递推公式求通项公式的常见类型 (1)类型一 a n +1=a n +f (n )把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解. (2)类型二 a n +1=f (n )a n把原递推公式转化为a n +1a n=f (n ),再利用叠乘法(逐商相乘法)求解.(3)类型三 a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0), 先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p,再利用换元法转化为等比数列求解.2.数列求和(1)错位相减法:适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n 两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .(2)裂项相消法:即将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c为常数)的数列.(3)拆项分组法:把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简单的数列,最后分别求和.(4)并项求和法:与拆项分组相反,并项求和是把数列的两项(或多项)组合在一起,重新构成一个数列再求和,一般适用于正负相间排列的数列求和,注意对数列项数奇偶性的讨论.[典例] (1)已知数列{a n }中,a 1=1,a n +1=a n (1-na n +1),则数列{a n }的通项公式为( ) A .a n =n 2-n +22B .a n =n 2-n +12C .a n =2n 2-n +1D .a n =2n 2-n +2(2)已知正项数列{a n }的前n 项和S n 满足:4S n =(a n -1)·(a n +3),(n ∈N *). ①求a n 的通项公式;②若b n =2n ·a n ,求数列{b n }的前n 项和T n .[解析] (1)原数列递推公式可化为1a n +1-1a n=n ,令b n =1a n ,则b n +1-b n =n ,因此b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 3-b 2)+(b 2-b 1)+b 1=(n -1)+(n -2)+…+2+1+1=n 2-n +22.从而a n =2n 2-n +2.故选D. [答案] D(2)解:①因为4S n =(a n -1)(a n +3)=a 2n +2a n -3,所以当n ≥2时,4S n -1=a 2n -1+2a n -1-3,两式相减得,4a n =a 2n -a 2n -1+2a n -2a n -1,化简得,(a n +a n -1)(a n -a n -1-2)=0, 由于{a n }是正项数列,所以a n +a n -1≠0,所以a n-a n-1-2=0,即对任意n≥2,n∈N*都有a n-a n-1=2, 又由4S1=a21+2a1-3得,a21-2a1-3=0,解得a1=3或a1=-1(舍去),所以{a n}是首项为3,公差为2的等差数列,所以a n=3+2(n-1)=2n+1.②由已知及(1)知,b n=(2n+1)·2n,T n=3·21+5·22+7·23+…+(2n-1)·2n-1+(2n+1)·2n,(ⅰ)2T n=3·22+5·23+7·24+…+(2n-1)·2n+(2n+1)·2n+1,(ⅱ) (ⅱ)-(ⅰ)得,T n=-3×21-2(22+23+24+…+2n)+(2n+1)·2n+1=-6-2×4(1-2n-1)1-2+(2n+1)·2n+1=2+(2n-1)·2n+1.[类题通法](1)由递推公式求数列通项公式时,一是要注意判别类型与方法.二是要注意a n的完整表达式,易忽视n=1的情况.(2)数列求和时,根据数列通项公式特征选择求和法,尤其是涉及到等比数列求和时要注意公比q对S n的影响.[题组训练]1.已知函数f(n)=n2cos(nπ),且a n=f(n)+f(n+1),则a1+a2+a3+…+a100=________.解析:因为f(n)=n2cos(nπ),所以a1+a2+a3+…+a100=[f(1)+f(2)+…+f(100)]+[f(2)+…+f(101)],f(1)+f(2)+…+f(100)=-12+22-32+42-…-992+1002=(22-12)+(42-32)+…(1002-992)=3+7+…+199=50(3+199)2=5 050,f(2)+…+f(101)=22-32+42-…-992+1002-1012=(22-32)+(42-52)+…+(1002-1012)=-5-9-…-201=50(-5-201)2=-5 150,所以a1+a2+a3+…+a100=[f(1)+f(2)+…+f(100)]+[f(2)+…+f(101)]=-5 150+5 050=-100.答案:-1002.已知a1+2a2+22a3+…+2n-1a n=9-6n,则数列{a n}的通项公式是________.解析:令S n=a1+2a2+22a3+…+2n-1a n,则S n=9-6n,当n=1时,a1=S1=3;当n ≥2时,2n -1·a n =S n -S n -1=-6,∴a n =-32n -2.∴通项公式a n =⎩⎪⎨⎪⎧3,n =1,-32n -2,n ≥2. 答案:a n =⎩⎪⎨⎪⎧3,n =1,-32n -2,n ≥2 3.已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N *),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解:(1)当n =1时,a 1=S 1,由S 1+12a 1=1,得a 1=23,当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1,则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2).故数列{a n }是以23为首项,13为公比的等比数列.故a n =23·⎝⎛⎭⎫13n -1=2·⎝⎛⎭⎫13n (n ∈N *). (2)因为1-S n =12a n =⎝⎛⎭⎫13n . 所以b n =log 13(1-S n +1)=log 13⎝⎛⎭⎫13n +1=n +1,因为1b n b n +1=1(n +1)(n +2)=1n +1-1n +2,所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n +1-1n +2=12-1n +2=n2(n +2).4.已知数列{a n }满足a 1=12,a n +1a n =2a n +1-1,令b n =a n -1.(1)求证:数列⎩⎨⎧⎭⎬⎫1b n 为等差数列;(2)设c n =a n +1a n ,求证:数列{c n }的前n 项和T n <n +34.证明:(1)由题意知,1b 1=1a 1-1=-2,a n =2-1a n +1,则1b n +1-1b n=1a n +1-1-1a n -1=1a n +1-1-12-1a n +1-1=-1,∴数列⎩⎨⎧⎭⎬⎫1b n 是首项为-2,公差为-1的等差数列.(2)由(1)可知,1b n=-2+(n -1)×(-1)=-n -1,∴b n =-1n +1, 代入a n =b n +1=1-1n +1=n n +1, ∴a n +1a n=n +1n +2n n +1=(n +1)2 n (n +2)=1+1n (n +2)=1+12⎝⎛⎭⎫1n -1n +2,∴T n =c 1+c 2+…+c n =a 2a 1+a 3a 2+…+a n +1a n=⎣⎡⎦⎤1+12⎝⎛⎭⎫1-13+⎣⎡⎦⎤1+12⎝⎛⎭⎫12-14+…+⎣⎡⎦⎤1+12⎝⎛⎭⎫1n -1n +2 =n +12⎝⎛⎭⎫1+12-1n +1-1n +2<n +34.1.设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A .d >0 B .d <0 C .a 1d >0D .a 1d <0解析:选D ∵{2a 1a n }为递减数列,∴2a 1a n +12a 1a n=2a 1a n +1-a 1a n =2a 1d <1=20,∴a 1d <0,故选D.2.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11=( )A .24B .48C .66D .132解析:选D 由a 9=12a 12+6得,2a 9-a 12=12,由等差数列的性质得,2a 9-a 12=a 6+a 12-a 12=12,则a 6=12,所以S 11=11(a 1+a 11)2=11×2a 62=132,故选D. 3.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( ) A .-165 B .-33 C .-30D .-21解析:选C 由已知得a 2=a 1+a 1=2a 1=-6, ∴a 1=-3.∴a 10=2a 5=2(a 2+a 3)=2a 2+2(a 1+a 2)=4a 2+2a 1 =4×(-6)+2×(-3)=-30.4.设S n 是公差不为0的等差数列{a n }的前n 项和,若a 1=2a 8-3a 4,则S 8S 16=( ) A.310 B.13 C.19D.18解析:选A 由题意可得,a 1=2a 1+14d -3a 1-9d ,∴a 1=52d ,又S 8S 16=8a 1+28d 16a 1+120d =20d +28d 40d +120d =48d 160d =310,故选A.5.已知数列2 008,2 009,1,-2 008,-2 009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 016项之和S 2 016等于( )A .1B .2 010C .4 018D .0解析:选D 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前n 项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009,….由此可知数列为周期数列,周期为6,且S 6=0.∵2 016=6×336,∴S 2 016=S 6=0.6.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n =( )A .4n -1B .4n -1C .2n -1D .2n -1解析:选D 设等比数列{a n }的公比为q ,∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①÷②可得1q=2,∴q =12,代入①解得a 1=2,∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n ,∴S n a n =4⎝⎛⎭⎫1-12n 42n=2n -1. 7.已知数列{a n }的通项公式为a n =2n -30,S n 是{|a n |}的前n 项和,则S 10=________. 解析:由a n =2n -30,令a n <0,得n <15,即在数列{a n }中,前14项均为负数, 所以S 10=-(a 1+a 2+a 3+…+a 10)=-102(a 1+a 10)=-5[(-28)+(-10)]=190. 答案:1908.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.解析:由S 2=3a 2+2,S 4=3a 4+2相减可得a 3+a 4=3a 4-3a 2,同除以a 2可得2q 2-q-3=0,解得q =32或q =-1.因为q >0,所以q =32. 答案:329.数列{a n }满足a 1=1,a n -a n -1=1n (n -1)(n ≥2且n ∈N *),则数列{a n }的通项公式为a n =________.解析:a n -a n -1=1n (n -1)(n ≥2),a 1=1, ∴a 2-a 1=12×1=1-12, a 3-a 2=13×2=12-13, a 4-a 3=14×3=13-14,…, a n -a n -1=1n (n -1)=1n -1-1n . 以上各式累加,得a n -a 1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =1-1n. ∴a n =a 1+1-1n =2-1n ,当n =1时,2-1n =1=a 1,∴a n =2-1n ,故数列{a n }的通项公式为a n =2-1n .答案:2-1n10.已知数列{a n }满足a 1=1,a n +1=2a n ,数列{b n }满足b 1=3,b 2=6,且{b n -a n }为等差数列.(1)求数列{a n }和{b n }的通项公式;(2)求数列{b n }的前n 项和T n .解:(1)由题意知数列{a n }是首项a 1=1,公比q =2的等比数列, 所以a n =2n -1. 因为b 1-a 1=2,b 2-a 2=4,所以数列{b n -a n }的公差d =2,所以b n -a n =(b 1-a 1)+(n -1)d =2+2(n -1)=2n , 所以b n =2n +2n -1. (2)T n =b 1+b 2+b 3+…+b n=(2+4+6+…+2n )+(1+2+4+…+2n -1) =(2+2n )n 2+1×(1-2n )1-2=n (n +1)+2n -1.11.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2(n ∈N *). (1)求证:数列{a n }是等差数列;(2)设b n =1S n,T n =b 1+b 2+…+b n ,求T n . 解:(1)证明:S n =a n (a n +1)2(n ∈N *),① S n -1=a n -1(a n -1+1)2(n ≥2).② ①-②得a n =a 2n +a n -a 2n -1-a n -12(n ≥2), 整理得(a n +a n -1)(a n -a n -1)=a n +a n -1(n ≥2). ∵数列{a n }的各项均为正数,∴a n +a n -1≠0,∴a n -a n -1=1(n ≥2).当n =1时,a 1=1,∴数列{a n }是首项为1,公差为1的等差数列.(2)由(1)得S n =n 2+n 2, ∴b n =2n 2+n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, ∴T n =2[ ⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1 ]=2⎝⎛⎭⎫1-1n +1=2n n +1. 12.设数列{a n }满足a 1=2,a n +1-a n =3×22n -1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.解:(1)由已知,a n+1=[(a n+1-a n)+(a n-a n-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.而a1=2,符合上式,所以数列{a n}的通项公式为a n=22n-1.(2)由b n=na n=n·22n-1知S n=1×2+2×23+3×25+…+n×22n-1,①从而22·S n=1×23+2×25+3×27+…+n×22n+1.②①-②得(1-22)S n=2+23+25+…+22n-1-n×22n+1,即S n=19[(3n-1)22n+1+2].。
【新学案】高二数学人教A版必修5(浙江专用)课件2.3.2 等差数列的综合应用

Sn,S2n,S3n 不一定成等差数列,这一点要切记 ! (2)若项数为 2n,则 S 偶-S 奇=a2+a4+a6+…+a2n-a1-a3-a5-…-a2n-1=d+d+…+d=nd,
S奇 S偶
n (a +a ) 2 1 2n-1 n (a +a ) 2 2 2n
=
=
2an 2an+1
=
an an+1
又 S100-S10=10-100=-90,∴ a1+a110=-2. ∴ S110=
110(a1+a110) =-110. 2
题型一
题型二
题型三
(1)利用已知求出 a1,d,然后再求所求的量,是基本解法,有时运算量大 些,如本题解法一. (2)我们也可以利用等差数列前 n 项和的性质,或利用等差数列通项公式的 性质,这两种解法可简化运算,为最优解法,如本题解法三和解法四.
5 3
C.-2
D.3
等差数列前 n 项和的性质 剖析:数列 {an}是公差为 d 的等差数列,其前 n 项和具有下列性质 : (1)Sn=a1+a2+…+an, S2n-Sn=an+1+an+2+…+a2n, S3n-S2n=a2n+1+a2n+2+…+a3n, 则 Sn,S2n-Sn,S3n-S2n 是公差为 n2d 的等差数列,且有 Sn+S3n-S2n=2(S2n-Sn).
题型一
等差数列前 n 项和的性质应用
【例 1】 一个等差数列的前 10 项之和为 100,前 100 项之和为 10,求其前 110 项之和. 分析:本题基本解法是求 a1,d 或令 Sn=an2+bn,先求 Sn,再求 S110,或利用 性质. 解法一:设等差数列 {an}的公差为 d,前 n 项和为 Sn, 则 Sn=na1+
高中数学人教A版三维设计浙江专版必修4讲义:第一章 1.3 第一课时 诱导公式(一) Word版含答案

三角函数的诱导公式第一课时诱导公式(一)预习课本P23~25,思考并完成以下问题(1)π±α,-α的终边与α的终边有怎样的对称关系?(2)诱导公式的内容是什么?(3)诱导公式1~4有哪些结构特征?[新知初探]1.诱导公式二(1)角π+α与角α的终边关于原点对称.如图所示.(2)公式:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan_α.2.诱导公式三(1)角-α与角α的终边关于x轴对称.如图所示.(2)公式:sin(-α)=-sin_α.cos(-α)=cos_α.tan(-α)=-tan_α.3.诱导公式四(1)角π-α与角α的终边关于y 轴对称. 如图所示.(2)公式:sin(π-α)=sin_α. cos(π-α)=-cos_α. tan(π-α)=-tan_α.4.α+k ·2π(k ∈Z),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)诱导公式中角α是任意角.( )(2)公式sin(-α)=-sin α,α是锐角才成立.( ) (3)公式tan(π+α)=tan α中,α=π2不成立.( )答案:(1)× (2)× (3)√ 2.已知cos(π+θ)=36,则cos θ=( ) A .36 B .-36 C .336D .-336答案:B3.若sin(π+α)=13,则sin α等于( )A .13B .-13C .3D .-3答案:B4.已知tan α=4,则tan(π-α)=________. 答案:-4给角求值问题[典例] 求下列三角函数值:(1)sin(-1 200°);(2)tan 945°;(3)cos 119π6.[解] (1)sin(-1 200°)=-sin 1 200°=-sin(3×360°+120°)=-sin 120°=-sin(180°-60°)=-sin 60°=-32. (2)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1. (3)cos 119π6=cos ⎝⎛⎭⎫20π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32.利用诱导公式解决给角求值问题的步骤[活学活用] 求下列各式的值:(1)cos(-120°)sin(-150°)+tan 855°; (2)sin4π3·cos 19π6·tan 21π4. 解:(1)原式=cos 120°(-sin 150°)+tan 855°=-cos(180°-60°)sin(180°-30°)+tan(135°+2×360°) =cos 60°sin 30°+tan 135° =cos 60°sin 30°+tan(180°-45°) =cos 60°sin 30°-tan 45°=12×12-1=-34.(2)原式=sin 4π3·cos ⎝⎛⎭⎫2π+7π6·tan ⎝⎛⎭⎫4π+5π4 =sin4π3·cos 7π6·tan 5π4=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π+π6·tan ⎝⎛⎭⎫π+π4 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·tan π4=⎛⎫⎪⎪⎝⎭3-2×⎛⎫⎪⎪⎝⎭3-2×1=34.化简求值问题[典例]化简:(1)cos(-α)tan(7π+α)sin(π-α);(2)sin(1 440°+α)·cos(α-1 080°)cos(-180°-α)·sin(-α-180°).[解](1)cos(-α)tan(7π+α)sin(π-α)=cos αtan(π+α)sin α=cos α·tan αsin α=sin αsin α=1.(2)原式=sin(4×360°+α)·cos(3×360°-α)cos(180°+α)·[-sin(180°+α)]=sin α·cos(-α)(-cos α)·sin α=cos α-cos α=-1.利用诱导公式一~四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切.[活学活用]化简下列各式:(1)cos(α+π)sin2(α+3π)tan(α+π)cos3(-α-π);(2)sin(kπ-α)cos[(k-1)π-α]sin[(k+1)π+α]cos(kπ+α)(k∈Z).解:(1)原式=-cos α·sin2α-tan α·cos3α=tan2αtan α=tan α .(2)当k=2n(n∈Z)时,原式=sin(2nπ-α)cos[(2n-1)π-α]sin[(2n+1)π+α]cos(2nπ+α)=sin(-α)·cos(-π-α)sin(π+α)·cos α=-sin α·(-cos α)-sin α·cos α=-1;当k=2n+1(n∈Z)时,原式=sin[(2n+1)π-α]·cos[(2n+1-1)π-α]sin[(2n+1+1)π+α]·cos[(2n+1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α·(-cos α)=-1.综上,原式=-1.给值(或式)求值问题[典例] 已知cos ⎝⎛⎭⎫π6-α=3,求cos ⎝⎛⎭⎫5π6+α的值. [解] 因为cos ⎝⎛⎭⎫5π6+α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α =-cos ⎝⎛⎭⎫π6-α=-33. [一题多变]1.[变设问]在本例条件下,求: (1)cos ⎝⎛⎭⎫α-13π6的值; (2)sin 2⎝⎛⎭⎫α-π6的值. 解:(1)cos ⎝⎛⎭⎫α-13π6=cos ⎝⎛⎭⎫13π6-α=cos ⎝⎛⎭⎫π6-α=33. (2)sin 2⎝⎛⎭⎫α-π6=sin 2⎣⎡⎦⎤-⎝⎛⎭⎫π6-α=sin 2⎝⎛⎭⎫π6-α =1-cos 2⎝⎛⎭⎫π6-α=1-23⎛⎫ ⎪ ⎪⎝⎭=23. 2.[变条件]若将本例中条件“cos ⎝⎛⎭⎫π6-α=33”改为“sin ⎝⎛⎭⎫α-π6=33,α∈⎝⎛⎭⎫2π3,7π6”,则结论如何?解:因为α∈⎝⎛⎭⎫2π3,7π6,则α-π6∈⎝⎛⎭⎫π2,π. cos ⎝⎛⎭⎫5π6+α=-cos ⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫α-π6 =1-sin 2⎝⎛⎭⎫α-π6= 1-13=63. 3.[变条件,变设问]tan ⎝⎛⎭⎫π6-α=33,求tan ⎝⎛⎭⎫5π6+α. 解:tan ⎝⎛⎭⎫5π6+α=-tan ⎣⎡⎦⎤π-⎝⎛⎭⎫5π6+α =-tan ⎝⎛⎭⎫π6-α=-33.解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.层级一 学业水平达标1.sin 600°的值是( ) A .12B .-12C .32D .-32解析:选D sin 600°=sin(360°+240°)=sin 240° =sin(180°+60°)=-sin 60°=-32. 2.若sin(π+α)=-12,则sin(4π-α)的值是( )A .12B .-12C .-32D .32解析:选B 由题知,sin α=12,所以sin(4π-α)=-sin α=-12.3.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( )A .-255B .-55C .55 D .255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55. 4.已知tan ⎝⎛⎭⎫π3-α=13,则tan ⎝⎛⎭⎫2π3+α=( ) A .13B .-13C .233D .-233解析:选B ∵tan ⎝⎛⎭⎫2π3+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-α =-tan ⎝⎛⎭⎫π3-α, ∴tan ⎝⎛⎭⎫2π3+α=-13. 5.设tan(5π+α)=m ,则sin (α+3π)+cos (π+α)sin (-α)-cos (π+α)的值等于( )A .m +1m -1B .m -1m +1C .-1D .1解析:选A ∵tan(5π+α)=tan [4π+(π+α)] =tan(π+α)=tan α,∴tan α=m ,∴原式=sin (π+α)-cos α-sin α+cos α=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1,故选A. 6.求值:(1)cos 29π6=______;(2)tan(-855°)=______. 解析:(1)cos29π6=cos ⎝⎛⎭⎫4π+5π6=cos 5π6=cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (2)tan(-855°)=-tan 855°=-tan(2×360°+135°)=-tan 135°=-tan(180°-45°)=tan 45°=1.答案:(1)-32(2)1 7.已知sin(π-α)=log 814,且α∈⎝⎛⎭⎫-π2,0,则tan(2π-α)的值为________. 解析:sin(π-α)=sin α=log 814=-23,又α∈⎝⎛⎭⎫-π2,0, 所以cos α=1-sin 2α=53,tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255. 答案:2558.已知cos(508°-α)=1213,则cos(212°+α)=________.解析:由于cos(508°-α)=cos(360°+148°-α)=cos(148°-α)=1213,所以cos(212°+α)=cos(360°+α-148°)=cos(α-148°)=cos(148°-α)=1213. 答案:12139.求下列各三角函数值:(1)sin ⎝⎛⎭⎫-8π3;(2)cos 23π6;(3)tan 37π6. 解:(1)sin ⎝⎛⎭⎫-8π3=sin ⎝⎛⎭⎫-4π+4π3=sin 4π3 =sin ⎝⎛⎭⎫π+π3=-sin π3=-32. (2)cos 23π6=cos ⎝⎛⎭⎫4π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32. (3)tan 37π6=tan ⎝⎛⎭⎫6π+π6=tan π6=33. 10.若cos α=23,α是第四象限角,求sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.解:由已知cos α=23,α是第四象限角得sin α=-53,故sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)=sin α-sin αcos α-cos α+cos 2α=52. 层级二 应试能力达标1.已知cos(π-α)=-35,且α是第一象限角,则sin(-2π-α)的值是( )A .45B .-45C .±45D .35解析:选B ∵cos(π-α)=-cos α,∴cos α=35.∵α是第一象限角,∴sin α>0, ∴sin α=1-cos 2α=1-⎝⎛⎭⎫352=45.∴sin(-2π-α)=sin(-α)=-sin α=-45.2.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,若f (2 015)=5,则f (2 016)等于( )A .4B .3C .-5D .5解析:选C ∵f (2 015)=a sin(2 015π+α)+b cos(2 015π+β)=-a sin α-b cos β=5,∴f (2 016)=a sin(2 016π+α)+b cos(2 016π+β)=a sin α+b cos β=-5.3.若α,β的终边关于y 轴对称,则下列等式成立的是( ) A .sin α=sin β B .cos α=cos β C .tan α=tan βD .sin α=-sin β解析:选A 法一:∵α,β的终边关于y 轴对称, ∴α+β=π+2k π或α+β=-π+2k π,k ∈Z , ∴α=2k π+π-β或α=2k π-π-β,k ∈Z , ∴sin α=sin β.法二:设角α终边上一点P (x ,y ),则点P 关于y 轴对称的点为P ′(-x ,y ),且点P 与点P ′到原点的距离相等,设为r ,则sin α=sin β=yr.4.下列三角函数式:①sin ⎝⎛⎭⎫2n π+3π4;②cos ⎝⎛⎭⎫2n π-π6;③sin ⎝⎛⎭⎫2n π+π3; ④cos ⎣⎡⎦⎤(2n +1)π-π6;⑤sin ⎣⎡⎦⎤(2n -1)π-π3. 其中n ∈Z ,则函数值与sin π3的值相同的是( )A .①②B .①③④C .②③⑤D .①③⑤解析:选C ①中sin ⎝⎛⎭⎫2n π+3π4=sin 3π4≠sin π3;②中,cos ⎝⎛⎭⎫2n π-π6=cos π6=sin π3;③中,sin ⎝⎛⎭⎫2n π+π3=sin π3;④中,cos ⎣⎡⎦⎤(2n +1)π-π6=cos ⎝⎛⎭⎫π-π6=-cos π6≠sin π3;⑤中,sin ⎣⎡⎦⎤(2n -1)π-π3=sin ⎝⎛⎭⎫-π-π3=-sin ⎝⎛⎭⎫π+π3=sin π3. 5.化简:cos (-585°)sin 495°+sin (-570°)的值是________.解析:原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2. 答案:2-26.已知f (x )=⎩⎪⎨⎪⎧sin πx , x <0,f (x -1)-1, x >0,则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. 解析:因为f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6 =sin ⎝⎛⎭⎫-2π+π6=sin π6=12; f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-12-2=-52. 所以f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116=-2. 答案:-2 7.计算与化简(1)tan (2π-θ)sin (2π-θ)cos (6π-θ)(-cos θ)sin (5π+θ);(2)sin 420°cos 330°+sin(-690°)cos(-660°).解:(1)原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)sin (π+θ)=tan θsin θcos θcos θsin θ=tan θ.(2)原式=sin(360°+60°)cos(360°-30°)+sin(-2×360°+30°)cos(-2×360°+60°)=sin 60°cos 30°+sin 30°cos 60°=32×32+12×12=1.8.已知1+tan (θ+720°)1-tan (θ-360°)=3+22,求:[cos 2(π-θ)+sin(π+θ)·cos(π-θ)+2sin 2(θ-π)]·1cos 2(-θ-2π)的值. 解:由1+tan (θ+720°)1-tan (θ-360°)=3+22,得(4+22)tan θ=2+22, 所以tan θ=2+224+22=22,故[cos 2(π-θ)+sin(π+θ)·cos(π-θ)+2sin 2(θ-π)]·1cos 2(-θ-2π)=(cos 2θ+sin θcos θ+2sin 2θ)·1cos 2θ=1+tan θ+2tan 2θ=1+22+2×⎝⎛⎭⎫222=2+22.11。
2019-2020学年高中数学三维设计人教A版浙江专版必修5讲义:第三章 3.4 基本不等式 Word版含答案.doc

基本不等式: ab ≤a +b2[新知初探]1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝⎛⎭⎫a +b 22≤a 2+b22,a +b ≥2ab (其中a >0,b >0,当且仅当a =b 时等号成立).[点睛] 基本不等式成立的条件:a >0且b >0;其中等号成立的条件:当且仅当a =b 时取等号,即若a ≠b 时,则ab ≠a +b 2,即只能有ab <a +b2. 预习课本P97~100,思考并完成以下问题[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立( ) (2)若a ≠0,则a +4a≥2a ·4a=4( ) (3)若a >0,b >0,则ab ≤⎝⎛⎭⎫a +b 22( )解析:(1)错误.任意a ,b ∈R ,有a 2+b 2≥2ab 成立,当a ,b 都为正数时,不等式a +b ≥2ab 成立.(2)错误.只有当a >0时,根据基本不等式,才有不等式a +4a ≥2a ·4a=4成立. (3)正确.因为ab ≤a +b 2,所以ab ≤⎝⎛⎭⎫a +b 22.答案:(1)× (2)× (3)√2.若a >b >0,则下列不等式成立的是( ) A .a >b >a +b2>ab B .a >a +b2>ab >b C .a >a +b2>b >abD .a >ab >a +b2>b解析:选B a =a +a 2>a +b2>ab >b ·b =b ,因此B 项正确. 3.若x >0,则x +9x +2有( )A .最小值6B .最小值8C .最大值8D .最大值3解析:选B 由x +9x +2≥2x ·9x +2=8(当且仅当x =9x,即x =3时,取等号),故选B.4.利用基本不等式求最值,下列运用正确的是( ) A .y =|x |2+4|x |≥2|x |2·4|x |=4|x |≥0B .y =sin x +4sin x≥2sin x ·4sin x =4(x 为锐角)C .已知ab ≠0,a b +ba ≥2a b ·b a =2D .y =3x +43x ≥23x ·43x =4 解析:选D 在A 中,4|x |不是常数,故A 选项错误;在B 中,sin x =4sin x 时无解,y 取不到最小值4,故B 选项错误;在C 中,a b ,ba 未必为正,故C 选项错误;在D 中,3x ,43x 均为正,且3x=43x 时,y 取最小值4,故D 选项正确.利用基本不等式比较大小[典例] (1)已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定(2)若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.[解析] (1)因为a >2,所以a -2>0,又因为m =a +1a -2=(a -2)+1a -2+2,所以m ≥2(a -2)·1a -2+2=4,由b ≠0,得b 2≠0,所以2-b 2<2,n =22-b 2<4,综上可知m >n .(2)因为a >b >1,所以lg a >lg b >0, 所以Q =12(lg a +lg b )>lg a ·lg b =P ;Q =12(lg a +lg b )=lg a +lg b =lg ab <lg a +b 2=R .所以P <Q <R .[答案] (1)A (2)P <Q <R已知a ,b ,c 都是非负实数,试比较a 2+b 2+b 2+c 2+c 2+a 2与2(a +b +c )的大小.解:因为a 2+b 2≥2ab ,所以2(a 2+b 2)≥(a +b )2, 所以 a 2+b 2≥22(a +b ), 同理 b 2+c 2≥22(b +c ), c 2+a 2≥22(c +a ), 所以a 2+b 2+b 2+c 2+c 2+a 2≥22[(a +b )+(b +c )+(c +a )], 即a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ),当且仅当a =b =c 时,等号成立.[典例] 已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.[证明] ∵a ,b ,c 均为正实数,∴2b a +a2b ≥2(当且仅当a =2b 时等号成立), 3c a +a3c≥2(当且仅当a =3c 时等号成立), 3c 2b +2b3c≥2(当且仅当2b =3c 时等号成立), 将上述三式相加得⎝⎛⎭⎫2b a +a 2b +⎝⎛⎭⎫3c a +a 3c +⎝⎛⎭⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c 时等号成立),∴⎝⎛⎭⎫2b a +a 2b -1+⎝⎛⎭⎫3c a +a 3c -1+⎝⎛⎭⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立), 即2b +3c -a a +a +3c -2b 2b +a +2b -3c3c≥3(当且仅当a =2b =3c 时等号成立).已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2ab c . 上述三个不等式两边均为正,相乘得⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥2bc a ·2ac b ·2ab c =8,当且仅当a =b =c =13时,取等号.[典例] (1)已知lg a +lg b =2,求a +b 的最小值. (2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. (3)已知x >0,y >0,1x +9y =1,求x +y 的最小值. [解] (1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. (2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎫2x +3y 22=16·⎝⎛⎭⎫622=32, 当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32.(3)∵1x +9y =1,∴x +y =(x +y )·⎝⎛⎭⎫1x +9y =1+9x y +y x +9=y x +9xy +10,又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立.由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎪⎨⎪⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.1.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5解析:选C 由已知,可得6⎝⎛⎭⎫2a +1b =1,∴2a +b =6⎝⎛⎭⎫2a +1b ·(2a +b )=6⎝⎛⎭⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2ba时等号成立,∴9m ≤54,即m ≤6,故选C. 2.设a >b >0,则a 2+1ab +1a (a -b )的最小值是( ) A .1 B .2 C .3D .4解析:选D 因为a >b >0,所以a -b >0, 所以a 2+1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab≥2a (a -b )·1a (a -b )+2ab ·1ab =4,当且仅当a (a -b )=1a (a -b )且ab =1ab ,即a =2,b =22时等号成立.[典例] 不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? [解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),求当每台机器运转多少年时,年平均利润最大,最大值是多少.解:每台机器运转x 年的年平均利润为y x =18-⎝⎛⎭⎫x +25x ,而x >0,故yx≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元. 故当每台机器运转5年时,年平均利润最大,最大值为8万元.层级一 学业水平达标1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x≥2解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C.3.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥2解析:选B 因为ab ≤⎝⎛⎭⎫a +b 22≤⎝⎛⎭⎫422=4,所以1a +1b ≥21ab≥214=1. 4.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d 2>bcB.a +d 2<bcC.a +d 2=bcD.a +d 2≤bc解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.若x >0,y >0,且2x +8y =1,则xy 有( ) A .最大值64 B .最小值164C .最小值12D .最小值64解析:选D 由题意xy =⎝⎛⎭⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.若a >0,b >0,且1a +1b =ab ,则a 3+b 3的最小值为________.解析:∵a >0,b >0,∴ab =1a +1b≥21ab,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.答案:4 27.已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是________. 解析:由题意得,y =3-x 22x,∴2x +y =2x +3-x 22x =3x 2+32x =32⎝⎛⎭⎫x +1x ≥3,当且仅当x =y =1时,等号成立. 答案:38.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有x x 2+3x +1=1x +1x +3≤12+3=15,即x x 2+3x +1的最大值为15,故a ≥15.答案:⎣⎡⎭⎫15,+∞ 9.(1)已知x <3,求f (x )=4x -3+x 的最大值;(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值.解:(1)∵x <3, ∴x -3<0, ∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎡⎦⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x =3-x ,即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝⎛⎭⎫1x +3y =4+⎝⎛⎭⎫y x +3x y ≥4+2 3. 当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32,故1x +3y 的最小值为1+32.10.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc ≥6. 证明:因为a >0,b >0,c >0, 所以b a +a b ≥2,c a +a c ≥2,b c +cb ≥2,所以⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫b c +c b ≥6, 当且仅当b a =a b ,c a =a c ,c b =b c ,即a =b =c 时,等号成立. 所以b +c a +c +a b +a +b c≥6.层级二 应试能力达标1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab |D .a 2+b 2>2|ab |解析:选A ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立).2.已知实数a ,b ,c 满足条件a >b >c 且a +b +c =0,abc >0,则1a +1b +1c的值( ) A .一定是正数B .一定是负数C .可能是0D .正负不确定解析:选B 因为a >b >c 且a +b +c =0,abc >0,所以a >0,b <0,c <0,且a =-(b +c ),所以1a +1b +1c =-1b +c+1b +1c , 因为b <0,c <0,所以b +c ≤-2bc ,所以-1b +c ≤12bc ,又1b +1c ≤-21bc , 所以-1b +c +1b +1c ≤12bc -21bc =-32bc<0,故选B. 3.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b )2cd 的最小值为( )A .0B .1C .2D .4解析:选D 由题意,知⎩⎪⎨⎪⎧a +b =x +y ,cd =xy ,所以(a +b )2cd =(x +y )2xy =x 2+y 2+2xy xy =x 2+y 2xy +2≥2+2=4,当且仅当x =y 时,等号成立.4.若实数x ,y 满足xy >0,则x x +y +2y x +2y 的最大值为( ) A .2-2B .2+ 2C .4+2 2D .4-2 2解析:选Dx x +y +2y x +2y =11+y x +2·y x 1+2·y x , 设t =y x >0,∴原式=11+t +2t 2t +1=1t +1+2t +1-12t +1=1+t (t +1)(2t +1)=1+12t +1 t +3. ∵2t +1t ≥22,∴最大值为1+122+3=4-2 2. 5.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是________.解析:因为不等式x +y 4<m 2-3m 有解,所以⎝⎛⎭⎫x +y 4min <m 2-3m ,因为x >0,y >0,且1x +4y =1,所以x +y 4=⎝⎛⎭⎫x +y 4⎝⎛⎭⎫1x +4y =4x y +y 4x +2≥24x y ·y 4x +2=4,当且仅当4x y =y 4x,即x =2,y =8时,等号是成立的,所以⎝⎛⎭⎫x +y 4min =4,所以m 2-3m >4,即(m +1)(m -4)>0,解得m <-1或m >4.答案:(-∞,-1)∪(4,+∞)6.若正数a ,b 满足a +b =1,则13a +2+13b +2的最小值为________. 解析:由a +b =1,知13a +2+13b +2=3b +2+3a +2(3a +2)(3b +2)=79ab +10,又ab ≤⎝⎛⎭⎫a +b 22=14(当且仅当a =b =12时等号成立),∴9ab +10≤494,∴79ab +10≥47. 答案:477.某厂家拟在2016年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-k m +1(k 为常数),如果不举行促销活动,该产品的年销售量是1万件.已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2016年该产品的利润y (单位:万元)表示为年促销费用m 的函数;(2)该厂家2016年的促销费用为多少万元时,厂家的利润最大?解:(1)由题意,可知当m =0时,x =1,∴1=3-k ,解得k =2,∴x =3-2m +1, 又每件产品的销售价格为1.5×8+16x x 元, ∴y =x ⎝⎛⎭⎫1.5×8+16x x -(8+16x +m )=4+8x -m =4+8⎝⎛⎭⎫3-2m +1-m =-⎣⎡⎦⎤16m +1+(m +1)+29(m ≥0).(2)∵m ≥0,16m +1+(m +1)≥216=8,当且仅当16m +1=m +1,即m =3时等号成立, ∴y ≤-8+29=21,∴y max =21.故该厂家2016年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.8.已知k >16,若对任意正数x ,y ,不等式⎝⎛⎭⎫3k -12x +ky ≥2xy 恒成立,求实数k 的最小值.解:∵x >0,y >0,∴不等式⎝⎛⎭⎫3k -12x +ky ≥2xy 恒成立等价于⎝⎛⎭⎫3k -12x y +k y x ≥2恒成立. 又k >16, ∴⎝⎛⎭⎫3k -12x y +k y x ≥2k ⎝⎛⎭⎫3k -12, ∴2k ⎝⎛⎭⎫3k -12≥2,解得k ≤-13(舍去)或k ≥12, ∴k min =12.。
【三维设计】高中数学 第1部分 2.2第2课时 等差数列的性质课时跟踪检测 新人教a版必修5

课时跟踪检测(八) 等差数列的性质一、选择题1.等差数列{a n }的公差为d ,则数列{ca n },(c 常数且c ≠0)是( ) A .公差为d 的等差数列 B .公差为cd 的等差数列 C .不是等差数列D .以上都不对2.若{a n }是等差数列,且a 1+a 4+7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9=( ) A .39 B .20 C .19.5D .333.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=( ) A .0 B .37 C .100D .-374.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根 B .有两个相等实根 C .有两个不等实根D .不能确定有无实根5.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 等于( )A .8B .4C .6D .12二、填空题6.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为__________.7.已知数列{a n }满足a 1=1,若点⎝ ⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n =________.8.某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,需要支付车费________.三、简答题9.已知5个数成等差数列,它们的和为25,它们的平方和为165,求这五个数.10.已知无穷等差数列{a n}中,首项a1=3,公差d=-5,依次取出序号能被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第503项是{a n}中的第几项?答案课时跟踪检测(八)1.选B 设b n=ca n,则b n+1-b n=ca n+1-ca n=c(a n+1-a n)=cd.2.选D 由等差数列的性质,得a1+a4+a7=3a4=45,a2+a5+a8=3a5=39,a3+a6+a9=3a6.又3a5×2=3a4+3a6,解得3a6=33,即a3+a6+a9=33.3.选C 设c n=a n+b n,由于{a n},{b n}都是等差数列,则{c n}也是等差数列,且c1=a1+b1=25+75=100,c2=a2+b2=100,∴{c n}的公差d=c2-c1=0.∴c37=100.4.选A 由于a4+a6=a2+a8=2a5,即3a 5=9,∴a 5=3,方程为x 2+6x +10=0, 无实数解.5.选A 因为a 3+a 6+a 10+a 13=4a 8=32,所以a 8=8,即m =8. 6.解析:不妨设角A =120°,c <b , 则a =b +4,c =b -4, 于是cos 120°=b 2+b -2-b +22b b -=-12,解得b =10,所以S =12bc sin 120°=15 3.答案:15 37.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a n n =1,所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a nn=n ,所以a n =n 2.答案:n 28.解析:根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km ,乘客需要支付1.2元.所以可以建立一个等差数列{a n }来计算车费.令a 1=11.2,表示4 km 处的车费,公差d =1.2那么当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元).答案:23.2元9.解:设这5个数依次为a -2d ,a -d ,a ,a +d ,a +2d ,由题意可得⎩⎪⎨⎪⎧a -2d +a -d +a +a +d +a +2d =25,a -2d2+a -d2+a 2+a +d2+a +2d2=165,解得⎩⎪⎨⎪⎧a =5,d =±2.所以这5个数为1,3,5,7,9或9,7,5,3,1.10.解:数列{b n }是数列{a n }的一个子数列,其序号构成以3为首项,4为公差的等差数列,由于{a n }是等差数列,则{b n }也是等差数列.(1)∵a 1=3,d =-5,∴a n =3+(n -1)×(-5)=8-5n .数列{a n }中序号被4除余3的项是{a n }中的第3项,第7项,第11项,…,∴b 1=a 3=-7,b 2=a 7=-27.(2)设{a n }中的第m 项是{b n }中的第n 项,即b n =a m ,则m=3+4(n-1)=4n-1,∴b n=a m=a4n-1=8-5×(4n-1)=13-20n,即{b n}的通项公式为b n=13-20n.(3)b503=13-20×503=-10 047,设它是{a n}中的第m项,则-10 047=8-5m,解得m=2 011,即{b n}中的第503项是{a n}中的第2 011项.。
高中数学人教A版三维设计浙江专版必修讲义第一章 应用举例含答案

6
在△ABC 中,由余弦定理,得
AB2=AC2+BC2-2AC·BCcos 45°
33
3 6 23
=4+8-2× 2 × 4 × 2 =8.
6 ∴AB= 4 (km).
∴A,B 两点间的距离为
6 4
km.
当 A,B 两点之间的距离不能直接测量时,求 AB 的距离分为以下三类: (1)两点间不可通又不可视(如图①):可取某点 C,使得 A,B 与 C 之间的距离可直接 测量,测出 AC=b,BC=a 以及∠ACB=γ,利用余弦定理得: AB= a2+b2-2abcos γ. (2)两点间可视但不可到达(如图②):可选取与 B 同侧的点 C,测出 BC=a 以及∠ABC 和∠ACB,先使用内角和定理求出∠BAC,再利用正弦定理求出 AB. (3)两点都不可到达(如图③):在河边测量对岸两个建筑物之间的距离,可先在一侧选 取两点 C,D,测出 CD=m,∠ACB,∠BCD,∠ADC,∠ADB,再在△BCD 中求出 BC,在△ADC 中求出 AC,最后在△ABC 中,由余弦定理求出 AB.
而 β=30°,∴α=90°-45°-30°=15°.
∴点 A 在点 B 的北偏西 15°.故选 B.
3.从 A 处望 B 处的仰角为 α,从 B 处望 A 处的俯角为 β,则 α,β 的关系为( )
A.α>β
B.α=β
C.α+β=90°
D.α+β=180°
解析:选 B 根据题意和仰角、俯角的概念画出草图,如图.知 α=β,故应选 B.
3 若测得 CD= 2 km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求 A,B 两点间的距离. 解:∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°, ∴∠DAC=60°,
高中数学人教A版三维设计浙江专版必修讲义第二章 等比数列含答案

(1)若一个数列从第二项起每一项与前一项的比为常数,则该数列为等比数列( )
(2)等比数列的首项不能为零,但公比可以为零( )
(3)常数列一定为等比数列( )
(4)任何两个数都有等比中项( )
解析:(1)错误,根据等比数列的定义,只有比值为同一个常数时,该数列才是等比数
列.
(2)错误,当公比为零时,根据等比数列的定义,数列中的项也为零.
(2)证明:因为 b 是 a,c 的等比中项,
所以 b2=ac,且 a,b,c 均不为零,
又(a2+b2)(b2+c2)=a2b2+a2c2+b4+b2c2=a2b2+2a2c2+b2c2,(ab+bc)2=a2b2+2ab2c+
b2c2=a2b2+2a2c2+b2c2,所以(ab+bc)2=(a2+b2)(b2+c2),
(2)法一:因为Error!
3
④
1
由得 ③
q= ,从而 2
a1=32.
( ) 1
又 an=1,所以 32× 2
n-1=1,
即 26-n=20,所以 n=6.
1
法二:因为
a3+a6=q(a2+a5),所以
q= . 2
由 a1q+a1q4=18,得 a1=32.
由 an=a1qn-1=1,得 n=6.
等比数列的判定与证明
[典例] 在数列{an}中,若 an>0,且 an+1=2an+3(n∈N*).证明:数列{an+3}是等比数 列.
证明:[法一 定义法]
∵an>0,∴an+3>0.
又∵an+1=2an+3,
an+1+3 2an+3+3 2an+3
∴
=
an+3
an+3
= an+3 =2.
【三维设计】高考数学(文科,人教版)第二轮专题辅导与测试课件专题三 第一讲 等差数列、等

(1)判断一个数列是等差 等比数列,还有通项公式法及 前 n 项和公式法,但不作为证明方法; (2)若要判断一个数列不是等差等比数列,只需判断存 在连续三项不成等差等比数列即可;
* (3)a2 = a a n ≥ 2 , n ∈ N 是{an}为等比数列的必要而 - + n n 1 n 1
a11-qk+2 a11-qk+1 Sk+2+Sk+1= + 1-q 1-q a12-qk 2-qk 1 = . 1-q
+ +
2a11-qk a12-qk+2-qk+1 2Sk-(Sk+2+Sk+1)= - 1-q 1-q a1 = [2(1-qk)-(2-qk+2-qk+1)] 1-q a1qk 2 = (q +q-2)=0, 1-q 因此,对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
专题三 数列
第一讲 等差数列、等比数列
等差、等比数列的基本运算
一、基础知识要记牢
等差数列 通项 公式 前n项 和 an=a1+(n-1)d
na1+an Sn= = 2 nn-1 na1+ d 2
等比数列 an=a1qn-1(q≠0)
a11-qn (1)q≠1,Sn= = 1-q a1-anq 1-q (2)q=1,Sn=na1
(2)证明:法一:对任意k∈N*, Sk+2+Sk+1-2Sk=(Sk+2-Sk)+(Sk+1-Sk) =ak+1+ak+2+ak+1 =2ak+1+ak+1· (-2) =0, 所以,对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
k 2 a 1 - q 1 *, 法二:对任意k∈N 2Sk= , 1-q
(2)∵数列{cn}是首项为 a,公比为 p 的等比数列, ∴cn=c1· p
n-1
=a· p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时 等差数列的概念及通项公式如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.[点睛] (1)“从第2项起”是指第1项前面没有项,无法与后续条件中“与前一项的差”相吻合.(2)“每一项与它的前一项的差”这一运算要求是指“相邻且后项减去前项”,强调了:①作差的顺序;②这两项必须相邻.(3)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列.2.等差中项如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.这三个数满足的关系式是A =a +b2. 3.等差数列的通项公式已知等差数列{a n }的首项为a 1,公差为d .[点睛] n 1n 1p =d ,q =a 1-d ,那么a n =pn +q ,其中p ,q 是常数.当p ≠0时,a n 是关于n 的一次函数;当p =0时,a n =q ,等差数列为常数列.1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列( )(2)等差数列{a n }的单调性与公差d 有关( )(3)根据等差数列的通项公式,可以求出数列中的任意一项( ) (4)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列( )解析:(1)错误.若这些常数都相等,则这个数列是等差数列;若这些常数不全相等,则这个数列就不是等差数列.(2)正确.当d >0时为递增数列;d =0时为常数列;d <0时为递减数列.(3)正确.只需将项数n 代入即可求出数列中的任意一项.(4)正确.若a ,b ,c 满足2b =a +c ,即b -a =c -b ,故a ,b ,c 为等差数列. 答案:(1)× (2)√ (3)√ (4)√2.等差数列{a n }中,a 1=1,d =3,a n =298,则n 的值等于( ) A .98 B .100 C .99D .101解析:选B a n =a 1+(n -1)d =3n -2,令a n =298,即3n -2=298?n =100. 3.在等差数列{a n }中,若a 1·a 3=8,a 2=3,则公差d =( ) A .1 B .-1 C .±1D .±2解析:选C 由已知得,⎩⎪⎨⎪⎧a 1?a 1+2d ?=8,a 1+d =3,解得d =±1.4.若log 32,log 3(2x -1),log 3(2x +11)成等差数列.则x 的值为________.解析:由log 3(2x +11)-log 3(2x -1)=log 3(2x -1)-log 32,得:(2x )2-4·2x -21=0,∴2x=7,∴x =log 27.答案:log 27[典例] n (1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9. [解] (1)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧ a 1+4d =-1,a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5,d =1.(2)设数列{a n }的公差为d .由已知得,⎩⎪⎨⎪⎧ a 1+a 1+5d =12,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=1,d =2.∴a n =1+(n -1)×2=2n -1, ∴a 9=2×9-1=17.1.2 016是等差数列4,6,8,…的( ) A .第1 006项B .第1 007项C .第1 008项D .第1 009项解析:选B ∵此等差数列的公差d =2,∴a n =4+(n -1)×2,a n =2n +2,即2 016=2n +2,∴n =1 007.2.已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?解:设首项为a 1,公差为d ,则a n =a 1+(n -1)d ,由已知⎩⎪⎨⎪⎧a 1+?15-1?d =33,a 1+?61-1?d =217,解得⎩⎪⎨⎪⎧a 1=-23,d =4.所以a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,解得n =45∈N *,所以153是所给数列的第45项.[典例] n 234234{a n }的通项公式.[解] 在等差数列{a n }中,∵ a 2+a 3+a 4=18,∴3a 3=18,a 3=6.∴⎩⎪⎨⎪⎧ a 2+a 4=12,a 2·a 4=11,解得⎩⎪⎨⎪⎧ a 2=11,a 4=1或⎩⎪⎨⎪⎧a 2=1,a 4=11. 当⎩⎪⎨⎪⎧a 2=11,a 4=1时,a 1=16,d =-5. a n =a 1+(n -1)d =16+(n -1)·(-5)=-5n +21.当⎩⎪⎨⎪⎧a 2=1,a 4=11时,a 1=-4,d =5. a n =a 1+(n -1)d =-4+(n -1)·5=5n -9.1.已知数列8,a,2,b ,c 是等差数列,则a ,b ,c 的值分别为________,________,________.解析:因为8,a,2,b ,c 是等差数列, 所以⎩⎪⎨⎪⎧8+2=2a ,a +b =2×2,2+c =2b .解得⎩⎪⎨⎪⎧a =5,b =-1,c =-4.答案:5 -1 -42.已知数列{a n }中,a 3=2,a 7=1,且数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则a 5=________.解析:由数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则有1a 3+1+1a 7+1=2a 5+1,可解得a 5=75.答案:75[典例] 已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.求证:数列{b n }是等差数列.证明:[法一 定义法] ∵b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n 2?a n -2?,∴b n +1-b n =a n 2?a n -2?-1a n -2=a n -22?a n -2?=12,为常数(n ∈N *).又b 1=1a 1-2=12, ∴数列{b n }是首项为12,公差为12的等差数列.[法二 等差中项法] ∵b n =1a n -2, ∴b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n-2=a n 2?a n -2?.∴b n +2=a n +12?a n +1-2?=4-4a n 2⎝⎛⎭⎫4-4a n -2=a n -1a n -2.∴b n +b n +2-2b n +1=1a n -2+a n -1a n -2-2×a n 2?a n -2?=0. ∴b n +b n +2=2b n +1(n ∈N *), ∴数列{b n }是等差数列.已知1a ,1b ,1c 成等差数列,并且a +c ,a -c ,a +c -2b 均为正数,求证:lg(a +c ),lg(a-c ),lg(a +c -2b )也成等差数列.解:∵1a ,1b ,1c 成等差数列,∴2b =1a +1c ,∴2b =a +cac ,即2ac =b (a +c ).(a +c )(a +c -2b )=(a +c )2-2b (a +c )=(a +c )2-2×2ac =a 2+c 2+2ac -4ac =(a -c )2. ∵a +c ,a +c -2b ,a -c 均为正数,上式左右两边同时取对数得,lg[(a +c )(a +c -2b )]=lg(a -c )2,即lg(a +c )+lg(a +c -2b )=2lg(a -c ),∴lg(a +c ),lg(a -c ),lg(a +c -2b )成等差数列.层级一 学业水平达标1.已知等差数列{a n }的通项公式为a n =3-2n ,则它的公差为( ) A .2 B .3 C .-2D .-3解析:选C ∵a n =3-2n =1+(n -1)×(-2),∴d =-2,故选C. 2.若等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =35,则n =( )A .50B .51C .52D .53解析:选D 依题意,a 2+a 5=a 1+d +a 1+4d =4,代入a 1=13,得d =23.所以a n =a 1+(n -1)d =13+(n -1)×23=23n -13,令a n =35,解得n =53.3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a ,b 的关系是( ) A .a =-b B .a =3b C .a =-b 或a =3bD .a =b =0 解析:选C 由等差中项的定义知:x =a +b2, x 2=a 2-b 22, ∴a 2-b 22=⎝⎛⎭⎫a +b 22,即a 2-2ab -3b 2=0. 故a =-b 或a =3b .4.数列{a n }中,a 1=2,2a n +1=2a n +1,则a 2 015的值是( ) A .1 006 B .1 007 C .1 008D .1 009解析:选D 由2a n +1=2a n +1,得a n +1-a n =12,所以{a n }是等差数列,首项a 1=2,公差d =12,所以a n =2+12(n -1)=n +32,所以a 2 015=2 015+32=1 009.5.等差数列{a n }的首项为70,公差为-9,则这个数列中绝对值最小的一项为( ) A .a 8 B .a 9 C .a 10D .a 11解析:选B |a n |=|70+(n -1)×(-9)|=|79-9n |=9⎪⎪⎪⎪879-n ,∴n =9时,|a n |最小. 6.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 解析:设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧a 1+2d =7,a 1+4d =a 1+d +6.解得⎩⎪⎨⎪⎧a 1=3,d =2.∴a n =a 1+(n -1)d =3+(n -1)×2=2n +1. ∴a 6=2×6+1=13. 答案:137.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________. 解析:根据题意得:a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1, ∴a 1=1.又a 3=a 1+2d =1+2d =0, ∴d =-12.答案:-128.已知数列{a n }满足:a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________. 解析:根据已知条件a 2n +1=a 2n +4,即a 2n +1-a 2n =4.∴数列{a 2n }是公差为4的等差数列,则a 2n =a 21+(n -1)×4=4n -3. ∵a n >0,∴a n =4n -3. 答案:4n -39.已知数列{a n }满足a 1=2,a n +1=2a na n +2,则数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.解:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:因为a 1=2,a n +1=2a na n +2, 所以1a n +1=a n +22a n =12+1a n , 所以1a n +1-1a n =12(常数). 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=12为首项,公差为12的等差数列.10.若1b +c ,1a +c ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列. 证明:由已知得1b +c +1a +b =2a +c ,通分有2b +a +c ?b +c ??a +b ?=2a +c. 进一步变形有2(b +c )(a +b )=(2b +a +c )(a +c ),整理,得a 2+c 2=2b 2, 所以a 2,b 2,c 2成等差数列.层级二 应试能力达标1.若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q 为( ) A .p +q B .0 C .-(p +q )D.p +q2解析:选B ∵a p =a 1+(p -1)d ,a q =a 1+(q -1)d ,∴⎩⎪⎨⎪⎧a 1+?p -1?d =q , ①a 1+?q -1?d =p . ② ①-②,得(p -q )d =q -p . ∵p ≠q ,∴d =-1.代入①,有a 1+(p -1)×(-1)=q ,∴a 1=p +q -1. ∴a p +q =a 1+(p +q -1)d =p +q -1+(p +q -1)×(-1)=0.2.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( )A.m nB.m +1n +1C.n mD.n +1m +1解析:选D 设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项,∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -x n +1.这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1. 3.已知数列{a n },对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,则{a n }为( ) A .公差为2的等差数列 B .公差为1的等差数列 C .公差为-2的等差数列D .非等差数列解析:选A 由题意知a n =2n +1,∴a n +1-a n =2,应选A.4.如果a 1,a 2,…,a 8为各项都大于零的等差数列,且公差d ≠0,则( ) A .a 3a 6>a 4a 5 B .a 3a 6<a 4a 5 C .a 3+a 6>a 4+a 5D .a 3a 6=a 4a 5解析:选B 由通项公式,得a 3=a 1+2d ,a 6=a 1+5d ,那么a 3+a 6=2a 1+7d ,a 3a 6=(a 1+2d )(a 1+5d )=a 21+7a 1d +10d 2,同理a 4+a 5=2a 1+7d ,a 4a 5=a 21+7a 1d +12d 2,显然a 3a 6-a 4a 5=-2d 2<0,故选B.5.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为________.解析:a n =2+(n -1)×3=3n -1, b n =-2+(n -1)×4=4n -6, 令a n =b n ,得3n -1=4n -6,∴n =5. 答案:56.在数列{a n }中,a 1=3,且对于任意大于1的正整数n ,点(a n , a n -1)都在直线x-y -3=0上,则a n =________.解析:由题意得a n -a n -1=3,所以数列{a n }是首项为3,公差为3的等差数列,所以a n =3n ,a n =3n 2.答案:3n 27.已知数列{a n }满足a 1=1,且a n =2a n -1+2n (n ≥2,且∈N *). (1)求a 2,a 3;(2)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(3)求数列{a n }的通项公式a n .解:(1)a 2=2a 1+22=6,a 3=2a 2+23=20. (2)证明:∵a n =2a n -1+2n (n ≥2,且n ∈N *), ∴a n 2n =a n -12n -1+1(n ≥2,且n ∈N *),即a n 2n -a n -12n -1=1(n ≥2,且n ∈N *), ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 121=12,公差d =1的等差数列.(3)由(2),得a n 2n =12+(n -1)×1=n -12,∴a n =⎝⎛⎭⎫n -12·2n.8.数列{a n }满足a 1=2,a n +1=(λ-3)a n +2n (n ∈N *). (1)当a 2=-1时,求λ及a 3的值;(2)是否存在λ的值,使数列{a n }为等差数列?若存在求其通项公式;若不存在说明理由. 解:(1)∵a 1=2,a 2=-1,a 2=(λ-3)a 1+2,∴λ=32.∴a 3=-32a 2+22,∴a 3=112.(2)∵a 1=2,a n +1=(λ-3)a n +2n , ∴a 2=(λ-3)a 1+2=2λ-4. a 3=(λ-3)a 2+4=2λ2-10λ+16. 若数列{a n }为等差数列,则a 1+a 3=2a 2. 即λ2-7λ+13=0.∵Δ=49-4×13<0,∴方程无实数解.∴λ值不存在.∴不存在λ的值使{a n }成等差数列.第二课时 等差数列的性质2.若{a n }是公差为d 的等差数列,正整数m ,n ,p ,q 满足m +n =p +q ,则a m +a n =a p+a q .(1)特别地,当m +n =2k (m ,n ,k ∈N *)时,a m +a n =2a k .(2)对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a 1+a n=a 2+a n -1=…=a k +a n -k +1=….(3)若{a n}是公差为d的等差数列,则①{c+a n}(c为任一常数)是公差为d的等差数列;②{ca n}(c为任一常数)是公差为cd的等差数列;③{a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.(4)若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若{a n}是等差数列,则{|a n|}也是等差数列()(2)若{|a n|}是等差数列,则{a n}也是等差数列()(3)若{a n}是等差数列,则对任意n∈N*都有2a n+1=a n+a n+2()(4)数列{a n}的通项公式为a n=3n+5,则数列{a n}的公差与函数y=3x+5的图象的斜率相等()解析:(1)错误.如-2,-1,0,1,2是等差数列,但其绝对值就不是等差数列.(2)错误.如数列-1,2,-3,4,-5其绝对值为等差数列,但其本身不是等差数列.(3)正确.根据等差数列的通项可判定对任意n∈N*,都有2a n+1=a n+a n+2成立.(4)正确.因为a n=3n+5的公差d=3,而直线y=3x+5的斜率也是3.答案:(1)×(2)×(3)√(4)√2.在等差数列{a n}中,若a5=6,a8=15,则a14等于()A.32B.33C.-33 D.29解析:选B∵数列{a n}是等差数列,∴a5,a8,a11,a14也成等差数列且公差为9,∴a14=6+9×3=33.3.在等差数列{a n}中,已知a3+a4+a5+a6+a7=450,则a2+a8=()A.90 B.270C.180 D.360解析:选C因为a3+a4+a5+a6+a7=5a5=450,所以a5=90,所以a2+a8=2a5=2×90=180.4.在等差数列{a n}中,已知a2+2a8+a14=120,则2a9-a10的值为________.解析:∵a2+a14=2a8,∴a2+2a8+a14=4a8=120,∴a8=30.∴2a9-a10=(a8+a10)-a10=a8=30.答案:30[典例](1)n2412345=()A .30B .15C .5 6D .10 6(2)设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=( ) A .0 B .37 C .100D .-37[解析] (1)∵数列{a n }为等差数列,∴a 1+a 2+a 3+a 4+a 5=(a 1+a 5)+(a 2+a 4)+a 3=52(a 2+a 4)=52×6=15.(2)设c n =a n +b n ,由于{a n },{b n }都是等差数列, 则{c n }也是等差数列,且c 1=a 1+b 1=25+75=100, c 2=a 2+b 2=100, ∴{c n }的公差d =c 2-c 1=0. ∴c 37=100,即a 37+b 37=100. [答案] (1)B (2)C1.已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( ) A .-12B .-32C.12D.32解析:选A a 1+a 5+a 9=3a 5=π,所以a 5=π3,而a 2+a 8=2a 5=2π3,所以cos(a 2+a 8)=cos2π3=-12,故选A. 2.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=( ) A .10 B .18 C .20D .28解析:选C 由等差数列的性质得:3a 5+a 7=2a 5+(a 5+a 7)=2a 5+(2a 6)=2(a 5+a 6)=2(a 3+a 8)=20,故选C.[典例] (1)倍,求这三个数. (2)四个数成递增等差数列,中间两项的和为2,首末两项的积为-8,求这四个数. [解] (1)设这三个数依次为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧?a -d ?+a +?a +d ?=9,?a -d ?a =6?a +d ?, 解得⎩⎪⎨⎪⎧a =3,d =-1.∴这三个数为4,3,2.(2)法一:设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ), 依题意,2a =2,且(a -3d )(a +3d )=-8, 即a =1,a 2-9d 2=-8, ∴d 2=1,∴d =1或d =-1.又四个数成递增等差数列,所以d >0, ∴d =1,故所求的四个数为-2,0,2,4.法二:若设这四个数为a ,a +d ,a +2d ,a +3d (公差为d ), 依题意,2a +3d =2,且a (a +3d )=-8, 把a =1-32d 代入a (a +3d )=-8,得⎝⎛⎭⎫1-32d ⎝⎛⎭⎫1+32d =-8, 即1-94d 2=-8,化简得d 2=4,所以d =2或-2.又四个数成递增等差数列,所以d >0,所以d =2, a =-2.故所求的四个数为-2,0,2,4.已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列.解:设这四个数依次为a -3d ,a -d ,a +d ,a +3d (公差为2d ).由题设知解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.∴这个数列为2,5,8,11或11,8,5,2.[典例] 方面的原因,其利润每年比上一年减少20万元,按照这一规律,如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?[解] 设从第一年起,第n 年的利润为a n 万元, 则a 1=200,a n +1-a n =-20(n ∈N *), ∴每年的利润构成一个等差数列{a n },从而a n =a 1+(n -1)d =200+(n -1)×(-20)=220-20n . 若a n <0,则该公司经销这一产品将亏损. ∴由a n =220-20n <0,得n >11,即从第12年起,该公司经销此产品将亏损.某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,需要支付车费________元.解析:根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km ,乘客需要支付1.2元.所以可以建立一个等差数列{a n }来计算车费.令a 1=11.2,表示4 km 处的车费,公差d =1.2,那么当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元).答案:23.2层级一 学业水平达标1.在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( ) A .12 B .16 C .20D .24解析:选B 因为数列{a n }是等差数列,所以a 2+a 10=a 4+a 8=16.2.在等差数列{a n }中,a 1+a 9=10,则a 5的值为( ) A .5 B .6 C .8D .10解析:选A 由等差数列的性质,得a 1+a 9=2a 5, 又∵a 1+a 9=10,即2a 5=10, ∴a 5=5.3.下列说法中正确的是( )A .若a ,b ,c 成等差数列,则a 2,b 2,c 2成等差数列B .若a ,b ,c 成等差数列,则log 2a ,log 2b ,log 2c 成等差数列C .若a ,b ,c 成等差数列,则a +2,b +2,c +2成等差数列D .若a ,b ,c 成等差数列,则2a,2b,2c 成等差数列 解析:选C 因为a ,b ,c 成等差数列,则2b =a +c , 所以2b +4=a +c +4, 即2(b +2)=(a +2)+(c +2), 所以a +2,b +2,c +2成等差数列.4.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10D .14解析:选B 由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 5.等差数列{a n }中, a 2+a 5+a 8=9,那么方程x 2+(a 4+a 6)x +10=0的根的情况( ) A .没有实根 B .两个相等实根 C .两个不等实根D .无法判断解析:选A 由a 2+a 5+a 8=9得a 5=3,∴a 4+a 6=6,方程转化为x 2+6x +10=0.因为Δ<0,所以方程没有实根.6.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________. 解析:设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧a -d +a +a +d =9,?a -d ?2+a 2+?a +d ?2=59. 解得⎩⎪⎨⎪⎧ a =3,d =4或⎩⎪⎨⎪⎧a =3,d =-4.∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21. 答案:-217.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________.解析:∵a,b,c成等差数列,∴2b=a+c,∴Δ=4b2-4ac=(a+c)2-4ac=(a-c)2≥0.∴二次函数y=ax2-2bx+c的图象与x轴的交点个数为1或2.答案:1或28.已知等差数列{a n}满足a m-1+a m+1-a2m-1=0,且m>1,则a1+a2m-1=________.解析:因为数列{a n}为等差数列,则a m-1+a m+1=2a m,则a m-1+a m+1-a2m-1=0可化为2a m-a2m-1=0,解得a m=1,所以a1+a2m-1=2a m=2.答案:29.在等差数列{a n}中,若a1+a2+…+a5=30,a6+a7+…+a10=80,求a11+a12+…+a15.解:法一:由等差数列的性质得a1+a11=2a6,a2+a12=2a7,…,a5+a15=2a10.∴(a1+a2+…+a5)+(a11+a12+…+a15)=2(a6+a7+…+a10).∴a11+a12+…+a15=2(a6+a7+…+a10)-(a1+a2+…+a5)=2×80-30=130.法二:∵数列{a n}是等差数列,∴a1+a2+…+a5,a6+a7+…+a10,a11+a12+…+a15也成等差数列,即30,80,a11+a12+…+a15成等差数列.∴30+(a11+a12+…+a15)=2×80,∴a11+a12+…+a15=130.10.有一批影碟机原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原价的75%销售.某单位购买一批此类影碟机,问去哪家商场买花费较少.解:设单位需购买影碟机n台,在甲商场购买每台售价不低于440元,售价依台数n 成等差数列.设该数列为{a n}.a n=780+(n-1)(-20)=800-20n,解不等式a n≥440,即800-20n≥440,得n≤18.当购买台数小于等于18台时,每台售价为(800-20n)元,当台数大于18台时,每台售价为440元.到乙商场购买,每台售价为800×75%=600元.作差:(800-20n)n-600n=20n(10-n),当n<10时,600n<(800-20n)n,当n=10时,600n=(800-20n)n,当10<n≤18时,(800-20n)n<600n,当n>18时,440n<600n.即当购买少于10台时到乙商场花费较少,当购买10台时到两商场购买花费相同,当购买多于10台时到甲商场购买花费较少.层级二 应试能力达标1.已知等差数列{a n }:1,0,-1,-2,…;等差数列{b n }:0,20,40,60,…,则数列{a n+b n }是( )A .公差为-1的等差数列B .公差为20的等差数列C .公差为-20的等差数列D .公差为19的等差数列解析:选D (a 2+b 2)-(a 1+b 1)=(a 2-a 1)+(b 2-b 1)=-1+20=19.2.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为( ) A. 3 B .±3 C .-33D .- 3解析:选D 由等差数列的性质得a 1+a 7+a 13=3a 7=4π,∴a 7=4π3. ∴tan(a 2+a 12)=tan(2a 7)=tan8π3=tan 2π3=- 3. 3.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A .1 B.34 C.12D.38解析:选C 设方程的四个根a 1,a 2,a 3,a 4依次成等差数列,则a 1+a 4=a 2+a 3=2, 再设此等差数列的公差为d ,则2a 1+3d =2, ∵a 1=14,∴d =12,∴a 2=14+12=34,a 3=14+1=54,a 4=14+32=74,∴|m -n |=|a 1a 4-a 2a 3| =⎪⎪⎪⎪14×74-34×54=12.4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .1升 B.6766升 C.4744升 D.3733升解析:选B 设所构成的等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4, 即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4.解得⎩⎨⎧a 1=1322,d =766,则a 5=a 1+4d =6766, 故第5节的容积为6766升.5.已知{a n }为等差数列,且a 6=4,则a 4a 7的最大值为________.解析:设等差数列的公差为d ,则a 4a 7=(a 6-2d )(a 6+d )=(4-2d )(4+d )=-2(d +1)2+18,即a 4a 7的最大值为18.答案:186.已知数列{a n }满足a 1=1,若点⎝⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n=________.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a n n =1,所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a nn =n ,所以a n =n 2.答案:n 27.数列{a n }为等差数列,b n =⎝⎛⎭⎫12a n ,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求数列{a n }的通项公式.解:∵b 1+b 2+b 3=⎝⎛⎭⎫12a 1+⎝⎛⎭⎫12a 2+⎝⎛⎭⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎫12a 1+a 2+a 3=18,∴a 1+a 2+a 3=3.∵a 1,a 2,a 3成等差数列,∴a 2=1,故可设a 1=1-d ,a 3=1+d , 由⎝⎛⎭⎫121-d +12+⎝⎛⎭⎫121+d =218,得2d +2-d =174,解得d =2或d =-2.当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3; 当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n +5. 8.下表是一个“等差数阵”:ij (1)写出a 45的值;(2)写出a ij 的计算公式,以及2 017这个数在“等差数阵”中所在的一个位置. 解:通过每行、每列都是等差数列求解. (1)a 45表示数阵中第4行第5列的数.先看第1行,由题意4,7,…,a 15,…成等差数列, 公差d =7-4=3,则a 15=4+(5-1)×3=16. 再看第2行,同理可得a 25=27.最后看第5列,由题意a 15,a 25,…,a 45成等差数列, 所以a 45=a 15+3d =16+3×(27-16)=49.(2)该“等差数阵“的第1行是首项为4,公差为3的等差数列a 1j =4+3(j -1); 第2行是首项为7,公差为5的等差数列a 2j =7+5(j -1); …第i 行是首项为4+3(i -1),公差为2i +1的等差数列, ∴a ij =4+3(i -1)+(2i +1)(j -1) =2ij +i +j =i (2j +1)+j .要求2 017在该“等差数阵”中的位置,也就是要找正整数i ,j ,使得i (2j +1)+j =2 017, ∴j =2 017-i 2i +1.又∵j ∈N *,∴当i =1时,得j =672.∴2 017在“等差数阵”中的一个位置是第1行第672列.。