变压器基本工作原理(1)
变压器的规矩

变压器的规矩一、变压器的基本概念变压器啊,就像是电力世界里的一个神奇魔术师呢。
它主要是用来改变电压的大小的。
你可以把它想象成一个能把小电流变成大电流,或者把大电压变成小电压的奇妙盒子。
变压器有两个主要的部分,一个是初级绕组,另一个是次级绕组。
这就好比是两个小伙伴,它们相互配合,才能让变压器发挥作用。
二、变压器的工作原理1. 电磁感应变压器能工作啊,全靠电磁感应这个厉害的原理呢。
当在初级绕组上加上交流电的时候,就会产生一个变化的磁场。
这个磁场就像一阵一阵的风一样,在次级绕组里就会感应出电压来。
这就好比是你在这边敲鼓,那边的鼓也会跟着振动起来一样有趣。
2. 电压和匝数的关系变压器的电压和匝数是有很紧密的关系的。
匝数多的那一边电压就高,匝数少的那一边电压就低。
这就像是搭积木一样,积木块多的塔就高,积木块少的塔就低。
比如说,初级绕组有100匝,次级绕组有50匝,那如果初级电压是220V,次级电压可能就是110V 了。
三、变压器的种类1. 按用途分电力变压器,这个可是在电力系统里的大功臣呢。
它负责把发电厂产生的高电压降低,然后输送到我们的家里、工厂里,让我们能安全地使用电。
就像一个超级快递员,把电力这个包裹准确地送到每个需要的地方。
仪用变压器,这个主要是用在测量仪器里面的。
它能把高电压或者大电流变成适合仪器测量的小电压或者小电流。
就像是一个翻译官,把电力的语言转化成仪器能听懂的语言。
2. 按相数分单相变压器,一般在家庭的小电器里用得比较多。
比如说我们的小台灯变压器,它只需要处理单相的电就可以了。
三相变压器,这个可是在大型的工业设备或者电力传输里的主力。
它能处理三相电,就像三个小伙伴一起干活,力量可大了。
四、变压器的使用和维护1. 使用注意事项要注意变压器的额定电压和额定电流。
如果超过了这个范围,就像是让一个小马拉大车一样,变压器会很累,可能还会坏掉呢。
变压器在工作的时候会发热,所以要给它一个良好的散热环境。
主变压器原理

主变压器原理主变压器是电力系统中常见的一种变压器,它在电力传输和分配中起着至关重要的作用。
主变压器的原理是基于电磁感应的,通过变换电压和电流来实现电能的传输和分配。
在本文中,我们将深入探讨主变压器的原理及其工作过程。
首先,主变压器由铁芯和线圈组成。
铁芯是由硅钢片叠压而成,其目的是增加磁路的磁导率,从而提高变压器的效率。
线圈分为初级线圈和次级线圈,它们分别连接着电源和负载。
当交流电流通过初级线圈时,会在铁芯中产生磁场,这个磁场会穿过次级线圈,从而诱导出次级线圈中的电流。
这就是主变压器的工作原理。
其次,主变压器实现电压变换的原理是基于电磁感应定律。
根据电磁感应定律,当磁通量发生变化时,会在导体中产生感应电动势。
在主变压器中,当交流电流通过初级线圈时,会产生交变磁场,从而在次级线圈中诱导出相应的电压。
通过合适选择初级线圈和次级线圈的匝数比,可以实现电压的升降。
此外,主变压器还具有功率变换的功能。
根据功率守恒定律,功率在输入端和输出端是相等的。
因此,通过主变压器可以实现电压升高而电流降低,或者电压降低而电流升高。
这对于电力传输和分配来说非常重要,可以减小电流的损耗,提高输电效率。
最后,需要注意的是主变压器的工作过程中会产生一定的损耗。
主要包括铁芯损耗和铜损耗。
铁芯损耗是由于铁芯在交变磁场中产生的涡流和焦耳热导致的,而铜损耗则是由于线圈中电流通过导线时产生的电阻导致的。
因此,在设计主变压器时需要考虑如何减小这些损耗,以提高变压器的效率和稳定性。
综上所述,主变压器是电力系统中不可或缺的设备,其原理基于电磁感应,通过变换电压和电流来实现电能的传输和分配。
了解主变压器的原理对于电力系统的设计和运行具有重要意义,希望本文能为读者提供一定的帮助。
变压器知识培训(1)

N1I1 N2 I2 F0 N1I0
N1I0 N1I1L N2I2 N1I0
I1L N1 I2 N2 0
I1L
I2
N2 N1
副边绕组带负载后,副边绕组有电流 I 2,这个电流企图改变变 压器主磁通,原边绕组中会产生相应的电流分量 I1L来阻止主磁 通的改变,这两个电流分量的综合作用效果是磁场保持不变。
二、基本工作原理
单相变压器:两个线圈没有电
的直接联系, 只有磁的耦合。
ZL
原边绕组(一次绕组或初级绕组):两个 线圈中接交流电源的线圈, 其匝数为N1 副边绕组(二次绕组或次级绕组):接到 用电设备上(负载)的线圈,匝数为N2
当原边绕组通入电压u1 i1 交变磁通 , 同时与原、副
绕组交链,在原、副绕组内感应电动势。接通ZL,副边有电流产 生,向负载输出功率。
Lm
N12 m
N12
S
l
X1
L1
N121
N12
0S
l
激磁电抗与原边的漏抗不同,随铁芯的饱和程度变化而变化,
当铁芯饱和时,其值将如何变化?在变压器中铁芯饱和程度由
哪几个量决定?
铁芯饱和,则磁导率下降,故激磁电感下降,但电抗还与频率
有关。
E1 j4.44 f1N1m
一台变压器空载运行,当其原边电压的频率不变,有效值升高 10%后,其励磁电流将如何变化?激励电抗将如何变化?
d dt
(m
sin
t)
N1
m
cos
t
N1m sin( t 900 ) E1m sin( t 900 )
m:主磁通的幅值;E1m:原绕组感应电动势的幅值。
当主磁通按正弦规律变化时,原绕组中感应电动 势也按正弦规律变化, 但相位比主磁通落后900。
变压器绕组(1)

又
ɺ ɺ N E2 = E1 2 N1
ɺ ɺ ɺ ɺ N ɺ ɺ U1 I1L = (− E1 )(− I 2 ) 2 = E2 I 2 N1
原边绕组从电网吸收的功率传递给副边绕组。 副边绕组电流增 加或减小的同时,引起原边电流的增加或减小,吸收的功率也 增大或减小。
负载运行时的基本方程
变压器
变压器是一种静止的电气设备, 根据电磁感应原 理,将一种形态(电压、电流、相数)的交流电 能, 转换成另一种形态的交流电能。
电力变压器(升压、降压、配电) 特种变压器(电炉、整流) 按用途 仪用互感器(电压、电流互感器、 脉冲变压器,阻抗匹配变压器) 实验用变压器(高压、调压) 也可按线圈数目、铁心结 构、相数或变压器冷却方 式划分
超前
ɺ φm
一个很小的
ɺ ɺ (3)把 E 和 I 之间的关系直接用参数形式反映, 可把 1 0 ɺ 流过一个阻抗引起的阻抗压降。 I0
ɺ ɺ ɺ − E1 = I 0 Z m = I 0 (rm + jxm )
ɺ E1写出
rm:变压器的励磁电阻,反映铁耗;
xm:变压器的励磁电抗,反映励磁过程;Zm:变压器的励磁阻抗。
单相: 三相:
S N = U 1 N I1 N = U 2 N I 2 N
S N = 3U1N I1N = 3U 2 N I 2 N
单相变压器的空载运行
变压器的原绕组加上额定电压,副绕组开路,变压器 空载运行。
A
a
X
x
几个概念:空载电流、磁势、主磁通、漏磁通、正方向确定
空载运行的电动势和电压平衡式
1. 磁势平衡
ɺ ɺ ɺ ɺ F1 + F2 = Fm → φ m
500kV变压器原理及结构(自耦变压器)

c)在正常情况下,主变压器不允许超过铭牌的额定值运行。正常运行时,变压器的外加一 次电压可比额定电压高,但不宜超过额定电压的110%。
d)500kV #2主变三侧582167、20267接地开关为快速接地开关,30267为普通接地开关, 合上以后主变三侧接地,只有在主变检修时才能将此三把接地开关合上。
变压器日常巡视检查应包括以下内容:
a)500kV#2主变正常送电时,按调度令从500kV侧对主变充电(充电时不投断路器充电保护) ,空载运行正常后,在220kV侧并列。停电时先停35kV侧、再停220kV侧、最后停 500kV侧。
b)500kV#2主变220kV侧电压互感器、避雷器配备有独立隔离开关和接地开关,编号分别 为2029、2028、20297、20287,主变正常运行时电压互感器、避雷器的独立隔离开 关应合上。隔离开关的作用是当电压互感器或避雷器需要检修时,起到隔离作用。
变压器日常巡视检查应包括以下内容:
j)为了防止油劣化过速以及绝缘老化,强油循环变压器上层油温最高不得超过85℃,绕组 温度最高不得超过105℃;正常监视油面温度不超过75℃,绕组温度不超过95℃。
k)长期停用及检修后的变压器,投入运行前,应对变压器及其保护,信号装置进行全面的 检查,应核对保护连接片投切是否正确。
自耦变压器运行原理 结构及运行注意事项
1
第一节 工作原理、分类及结构
一、变压器的工作原理 • 变压器是利用电磁感应原理从一个电路向另一个
电路传递能量或传输信号的一种电器
要部件——铁心和套在铁心上的两个绕组。两绕 组只有磁耦合而没有电的联系
变压器原理及基础知识 (1)

变压器原理:电磁感应原理,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流),从而起到传输能量,变换交流电压、电流和阻抗,电气绝缘隔离的作用。
要产生电磁感应,原边绕组必须加交变电压,不可能有直流电压作工作电源的变压器。
变压器不论工作频率高低,都是通过电磁感应来传输能量的。
传输能量的大小,与变压器所用的材料、结构、尺寸和工作频率有关。
如果传输的能量为定值,工作频率高,在一定时间内传输能量的次数多,每一次传输的能量可以少,则变压器用的材料少,结构尺寸小。
变压器组成:变压器由磁性材料(铁芯或磁芯)和电性材料(线圈)及绝缘材料三大部分组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,通常用P表示,次级线圈用N表示,绝缘材料包括骨架(BOBBIN),聚酯胶纸,纹纸,套管及绝缘油漆等材料.技术参数a、电压比:变压器两组线圈圈数分别为N1 和N2,N1 为初级,N2 为次级。
在初级线圈上加一交流电压,在次级线圈两端就会产生感应电动势。
当N2>N1 时,其感应电动势要比初级所加的电压还要高,这种变压器称为升压变压器:当N2<N1 时,其感应电动势低于初级电压,这种变压器称为降变压器。
初级次级电压和线圈圈数间具有下列关系。
式中n 称为电压比(圈数比) 。
当n<1 时,则N1>N2,V1>V2,该变压器为降压变压器。
反之则为升压变压器。
b、变压器的效率:在额定功率时,变压器的输出功率和输入功率的比值,叫做变压器的效率,即式中η 为变压器的效率;P1 为输入功率,P2 为输出功率。
当变压器的输出功率P2 等于输入功率P1 时,效率η 等于100%,变压器将不产生任何损耗。
但实际上这种变压器是没有的。
变压器传输电能时总要产生损耗,当变压器的初级绕组通电后,线圈所产生的磁通在铁心流动,因为铁心本身也是导体,在垂直于磁力线的平面上就会感应电势,这个电势在铁心的断面上形成闭合回路并产生电流,好像一个旋涡所以称为“涡流”。
第五章 第一节变压器原理

(2)绕组 一般用绝缘扁铜线或圆铜线在绕线模上绕 制而成。 绕组套装在变压器铁心柱上,一般低压绕 组在内层,高压绕组套装在低压绕组外层, 以便于提高绝缘性能。
(3)油、油箱、冷却及安全装置 器身装在油箱内,油箱内充满变压器油。 变压器油是一种矿物油,具有很好的绝缘性能。 变压器油起两个作用:①在变压器绕组与绕组、 绕组与铁心及油箱之间起绝缘作用。②变压器油 受热后产生对流,对变压器铁心和绕组起散热作 用。 油箱有许多散热油管,以增大散热面积。 为了加快散热,有的大型变压器采用内部油泵强 迫油循环,外部用变压器风扇吹风或用自来水冲 淋变压器油箱。这些都是变压器的冷却装置。
二、变压器的基本工作原理
图5.1 双绕组变压器的工作原理示意图 (1)原理图 一个铁心:提供磁通的闭合路径。 两个绕组:一次侧绕组(原边)N1,二次侧绕组(副边)N2。 (2)工作原理 当一次绕组接交流电压后,就有激磁电流i存在,该电流在铁心中可产生一个 交变的主磁通Φ。 Ф在两个绕组中分别产生感应电势e1和e2
I 0 I m I 0 I 0a
图5.9给出了对应主磁路的相量图和等效电路。
(5-12)
图5.9 变压器主磁路的相量图和等效电路
由图5.9b得:
E1 (rm jxm )I m zm I m
2
(5-13)
r 式中,m 为激磁电阻,它反映了铁心内部的损耗即: pFe I m rm ;xm Lm 为激磁电 抗,它表征了主磁路铁心的磁化性能,其中,激磁电感 Lm 可由下式给出:
,称 S U1 I1 U 2 I 2 为视在容量。
由此可见,变压器在实现变压的同时也实现了变流。此外,变压器还可以实现阻抗变 换的功能。可以看出,若固定U1,只要改变匝数比即可达到改变电压的目的了,即: 若使 N2>N1,则为升压变压器(step-up transformer); 若使 N2<N1,则为降压变压器(step-down transformer)。 图5.1中,二次侧的负载阻抗为:
第五章变压器1

按用途分:电力变压器和特种变压器。 按绕组数目分:单绕组(自耦)变压器、双绕组变压器、 三绕组变压器和多绕组变压器。 按相数分:单相变压器、三相变压器和多相变压器。 按铁心结构分:心式变压器和壳式变压器。 按调压方式分:无励磁调压变压器和有载调压变压器。 按冷却介质和冷却方式分:干式变压器、油浸式变压器和 充气式变压器。
电工学 第五章
三、 变压器的结构
变压器由铁心和绕组两个基本部分组成, 另 外还有油箱等辅助设备, 现分别介绍如下。
1. 铁心 铁心构成变压器的磁路部分。 变压器的铁心
大多用0.35~0.5 mm厚的硅钢片交错叠装而成, 叠装之前, 硅钢片上还需涂一层绝缘漆。 交错 叠装即将每层硅钢片的接缝错开, 这样可以减小 铁心中的磁滞和涡流损耗。 图5-2为几种常见铁 心的形状。
e1、 e2与Φ符合右手螺旋法则。
电工学 第五章
由于副边开路, 这时变压器的原边电路相当于一个 交流铁心线圈电路。其磁动势i10N1在铁心中产生主磁 通Φ, 主磁通Φ通过闭合铁心, 在原、 副绕组中分别 感应出电动势e1、 e2。 根据电磁感应定律可得
e1
N1
d dt
e2
N2
d dt
电工学 第五章
一般小容量变压器的绕组用高强度漆包线绕制而 成, 大容量变压器可用绝缘扁铜线或铝线绕制。 绕 组的形状有筒型和盘型两种, 如图5-3所示。 筒型绕 组又称同心式绕组, 原、 副绕组套在一起, 一般低 压绕组在里面, 高压绕组在外面, 这样排列可降低 绕组对铁心的绝缘要求。 盘型绕组又称交叠式绕组, 原、 副绕组分层交叠在一起。
i 10
i 20
u1
e1
N1 N2
e2
u 20