《多项式乘以多项式》教学设计
人教版数学八年级上册14.1.4.2 《多项式乘多项式》教案

人教版数学八年级上册14.1.4.2 《多项式乘多项式》教案一. 教材分析《多项式乘多项式》是人教版数学八年级上册第14章的一部分,主要目的是让学生掌握多项式乘以多项式的运算法则。
本节课是在学生已经掌握了整式的乘法、单项式乘以多项式的基础上进行学习的,对于学生来说,这是一个由浅入深的过程。
教材通过具体的例子,引导学生探究多项式乘以多项式的规律,进而总结出运算法则。
二. 学情分析学生在进入八年级之前,已经学习过了整式的乘法和单项式乘以多项式,对于这部分知识有了一定的了解。
但是,多项式乘以多项式的运算规则较为复杂,需要学生通过实际的例题,去探究和理解。
此外,学生对于新知识的接受能力不同,有的学生可能需要更多的引导和帮助。
三. 教学目标1.让学生掌握多项式乘以多项式的运算法则。
2.培养学生独立思考、合作交流的能力。
3.提高学生的数学逻辑思维能力。
四. 教学重难点1.教学重点:掌握多项式乘以多项式的运算法则。
2.教学难点:理解多项式乘以多项式的过程中,各项的系数和指数的变化规律。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考;通过具体的案例,让学生理解和掌握运算法则;通过小组合作学习,培养学生之间的沟通和合作能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,用于展示和讲解。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾整式的乘法和单项式乘以多项式的知识,为新课的学习做好铺垫。
2.呈现(15分钟)展示几个多项式乘以多项式的案例,让学生观察和分析,引导学生发现其中的规律。
3.操练(20分钟)让学生通过计算,进一步理解和掌握多项式乘以多项式的运算法则。
在这个过程中,教师应及时给予指导和帮助,确保学生能够正确地完成练习。
4.巩固(15分钟)通过一些具有代表性的练习题,让学生巩固所学知识,提高解题能力。
5.拓展(10分钟)引导学生思考:多项式乘以多项式的运算法则能否推广到更高次的多项式?让学生进行一些拓展性的思考。
多项式乘多项式 优秀教案

多项式乘多项式【教学目标】1.知识与能力目标:理解多项式与多项式的乘法法则,掌握多项式与多项式相乘的运算。
2.过程与方法目标:由求一个长方形的面积的不同方法,引出多项式与多项式的乘法法则,体会数形之间的统一。
3.情感、态度与价值观目标:在探究“法则”的过程中,培养学生观察,概括与抽象的能力。
【教学重难点】重点:多项式与多项式相乘的乘法法则及法则的推导。
难点:在运算中遇到各种细节处理,比如相乘时的符号处理等问题。
【教学过程】一、自主学习(约8分钟)1.问题引入:一个矩形的长为(m+n)米,宽为(a+b)米,则它的面积为米²。
2.结合图形,发现(m+n)(a+b)=3.讨论如何计算:(m+n)(a+b)=?多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的分别乘以另一个多项式的,再把。
注意:每一项必须连同前面的符号相乘。
二、自测(1)(a+b)(c+d)= ;(2)(m+n)(x+y)= ;(3)(m+n)(a-b)= ;(4)(x-1)(y-2)= ;练习(1)(2x+1) (x+3) (2)(m+2n)(m-3n) (3)(a-1)²(4)(2x²-1)(x-4) (5)(x²+3)(2x-5) (6)(3x-1)(2x+1)三、小组合作探究并展示(约5分钟)(1)两项式乘以两项式,结果一定是两项式吗?(2)项数多于两项的多项式乘多项式,能用多项式乘以多项式的法则进行计算吗?(3)二项式乘以三项式,展开是几项式?例:计算)32(222y xy x y x -+-)(四、当堂训练(约12分钟)要求:认真、规范、独立完成习题,注意知识与方法额应用、书写认真,步骤规范,成绩计入小组量化。
(A 组为必做题,做完的同学请举手示意,B 组为选做题)(一)计算1.(3m-n)(m-2n) 2.(2x-3)(x+4) 3.(x+y) 24.(-x+3y+4)(x-y) 5.(x -1)(x²-2x +3) 6.(3a-2)(a-1)+(a+1)(a+2)7.解方程 5x(x+1)=3x ²+2(x 2-5)8.若(x ²+ax +8)(x ²-3x +b )的乘积中不含x ²和x ³项,则a =_______,b =_______。
《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标:1. 让学生理解多项式乘以多项式的概念和意义。
2. 让学生掌握多项式乘以多项式的计算方法和步骤。
3. 培养学生运用多项式乘以多项式解决实际问题的能力。
二、教学内容:1. 多项式乘以多项式的概念和意义。
2. 多项式乘以多项式的计算方法和步骤。
3. 多项式乘以多项式在实际问题中的应用。
三、教学重点与难点:1. 教学重点:多项式乘以多项式的计算方法和步骤。
2. 教学难点:多项式乘以多项式在实际问题中的应用。
四、教学方法:1. 采用讲解法,让学生理解多项式乘以多项式的概念和意义。
2. 采用演示法,让学生掌握多项式乘以多项式的计算方法和步骤。
3. 采用案例分析法,培养学生运用多项式乘以多项式解决实际问题的能力。
五、教学过程:1. 引入新课:通过复习多项式的基本概念,引导学生进入多项式乘以多项式的新课。
2. 讲解多项式乘以多项式的概念和意义:解释多项式乘以多项式的定义,让学生理解其意义。
3. 演示多项式乘以多项式的计算方法和步骤:通过示例,让学生掌握多项式乘以多项式的计算方法。
4. 练习与巩固:布置一些练习题,让学生运用所学知识进行计算,巩固所学内容。
5. 案例分析:给出一些实际问题,让学生运用多项式乘以多项式的方法进行解决,培养学生的应用能力。
6. 小结与总结:对本节课的内容进行总结,强调多项式乘以多项式的计算方法和实际应用。
7. 作业布置:布置一些课后作业,巩固所学知识。
六、教学评价:1. 通过课堂讲解和练习,评估学生对多项式乘以多项式的概念和意义的理解程度。
2. 通过计算练习题,评估学生对多项式乘以多项式的计算方法和步骤的掌握情况。
3. 通过案例分析,评估学生运用多项式乘以多项式解决实际问题的能力。
七、教学资源:1. 多项式乘以多项式的教材和教学指导书。
2. 多媒体教学设备,如投影仪和白板。
3. 练习题和案例分析题的资料。
八、教学进度安排:1. 第1周:讲解多项式乘以多项式的概念和意义。
多项式乘以多项式教案

多项式乘以多项式教案教案标题:多项式乘以多项式教案目标:1. 理解多项式的概念和特点;2. 掌握多项式相乘的方法和技巧;3. 能够应用多项式相乘解决实际问题。
教案步骤:一、引入(5分钟)1. 引导学生回顾多项式的定义和基本术语,如项、系数、次数等;2. 提出多项式相乘的问题,激发学生的思考。
二、讲解(15分钟)1. 介绍多项式相乘的基本原理,即将每一项的系数分别相乘,指数相加;2. 通过示例演示多项式相乘的步骤和方法;3. 强调注意项的次数和系数的运算。
三、练习(20分钟)1. 分发练习题,让学生独立完成多项式相乘的计算;2. 引导学生发现规律,总结多项式相乘的技巧和注意事项;3. 鼓励学生解答其他学生的问题,促进合作学习。
四、应用(10分钟)1. 提供实际问题,让学生应用多项式相乘解决;2. 引导学生分析问题,确定解题思路;3. 学生展示解题过程和答案,进行讨论和评价。
五、总结(5分钟)1. 回顾多项式相乘的基本原理和方法;2. 强调多项式相乘在数学和实际问题中的应用;3. 鼓励学生继续探索多项式相乘的相关知识。
教案评估:1. 在练习环节中观察学生的解题过程和答案,评估他们对多项式相乘的掌握程度;2. 在应用环节中观察学生的解题思路和表达能力,评估他们能否将多项式相乘应用于实际问题中;3. 针对学生的表现,及时给予指导和反馈,帮助他们提高。
教案扩展:1. 引导学生探索多项式相乘的性质和规律,拓展他们的数学思维;2. 深入讨论多项式相乘的应用领域,如代数方程、几何问题等;3. 提供更多的练习和挑战,巩固学生的多项式相乘技巧。
注意事项:1. 让学生在实际问题中灵活运用多项式相乘,培养他们的问题解决能力;2. 鼓励学生合作学习,促进彼此之间的交流和学习进步;3. 根据学生的实际情况,适当调整教学内容和难度,保证教学效果。
《多项式乘以多项式》教案

教案【教学目标】:知识与技能:理解并掌握多项式乘以多项式的法则.过程与方法:经历探索多项式与多项式相乘的过程,通过导图,理解多项与多项式的结果,能够按多项式乘法步骤进行简单的多项式乘法的运算,达到熟练进行多项式的乘法运算的目的.情感与态度:培养数学感知,体验数学在实际应用中的价值,树立良好的学习态度.【教学重点】:多项式乘以多项式法则的形成过程以及理解和应用【教学难点】:多项式乘以多项式法则正确使用【教学关键】:多项式的乘法应先转化为单项式与多项式相乘进行运算,进一步再转化为单项式的乘法,紧紧扣住这一线索.【教具】:多媒体课件【教学过程】:一、情境导入(一)回顾旧知识。
1.教师引导学生复习单项式乘以多项式运算法则.并通过练习加以巩固:(1)(-2a)(2a2-3a+1)???(2)?ab(ab2-2ab)(二)问题探索式子p(a+b)=pa+pb中的p,可以是单项式,也可以是多项式。
如果p=m+n,那么p(a+b)就成了(m+n)(a+b),这就是今天我们所要讲的多项式与多项式相乘的问题。
(由此引出课题。
)二、探索法则与应用。
问题:某地区在退耕还林期间,有一块原长m米、宽a米的长方形林区增长了n 米,加宽了b米。
请你表示这块林区现在的面积。
问题:(1)如何表示扩大后的林区的面积(2)用不同的方法表示出来后的等式为什么是相等的呢(学生分组讨论,相互交流得出答案。
)学生得到了两种不同的表示方法,一个是(m+n)(a+n)平方米;另一个是(ma +mb+na+nb)米平方,以上的两个结果都是正确的。
问:你从计算中发现了什么?由于(m+n)(a+b)和(ma+mb+na+nb)表示同一个量,故有(m+n)(a+b)=ma+mb+na+nb问:你会计算这个式子吗你是怎样计算的?学生讨论得:由繁化简,把m+n看作一个整体,使之转化为单项式乘以多项式,即:[(m+n)(a+b)=(m+n)a+(m+n)b=ma+mb+na+nb。
《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生理解多项式乘以多项式的概念和意义。
2. 培养学生掌握多项式乘以多项式的运算方法和技巧。
3. 提高学生解决实际问题的能力,培养学生的数学思维。
二、教学内容1. 多项式乘以多项式的定义和性质。
2. 多项式乘以多项式的运算规则。
3. 多项式乘以多项式的例题解析和练习。
三、教学重点与难点1. 重点:多项式乘以多项式的运算方法和技巧。
2. 难点:理解多项式乘以多项式的概念和运算规则。
四、教学方法1. 采用讲解法,引导学生理解多项式乘以多项式的概念和意义。
2. 采用示例法,展示多项式乘以多项式的运算过程,让学生直观感受。
3. 采用练习法,让学生通过多做例题和练习题,巩固所学知识。
五、教学过程1. 导入:通过简单的数学问题,引入多项式乘以多项式的概念。
2. 新课讲解:讲解多项式乘以多项式的定义、性质和运算规则。
3. 示例解析:分析并解答几个多项式乘以多项式的例题。
4. 课堂练习:让学生独立完成一些多项式乘以多项式的练习题。
六、教学评价1. 通过课堂提问,检查学生对多项式乘以多项式的概念和运算规则的理解程度。
2. 通过课后作业和练习题,评估学生掌握多项式乘以多项式的运算方法和技巧的情况。
3. 结合学生的课堂表现和练习情况,综合评价学生的学习效果。
七、教学资源1. 教学PPT:制作多媒体教学课件,展示多项式乘以多项式的定义、性质和运算规则。
2. 练习题库:准备一批多项式乘以多项式的练习题,包括基础题和提高题。
3. 教学辅导书:提供相关的教学辅导书籍,供学生自主学习和复习。
八、教学进度安排1. 第一课时:讲解多项式乘以多项式的定义和性质。
2. 第二课时:讲解多项式乘以多项式的运算规则,示例解析。
3. 第三课时:课堂练习,学生独立完成练习题。
九、课后作业1. 完成课后练习题,巩固多项式乘以多项式的运算方法和技巧。
2. 选择一些提高题,挑战自己的极限,提高解决问题的能力。
北师大版数学七年级下册《多项式乘以多项式》教学设计1

北师大版数学七年级下册《多项式乘以多项式》教学设计1一. 教材分析《多项式乘以多项式》是北师大版数学七年级下册的一章内容。
本章主要介绍了多项式乘以多项式的运算法则,通过实例讲解和练习,使学生掌握多项式乘以多项式的计算方法。
本章内容在数学学习中占有重要地位,为学生后续学习更高级的数学知识打下基础。
二. 学情分析学生在学习本章内容前,已经掌握了整式的加减运算,对整式的概念有一定的了解。
但学生对多项式乘以多项式的计算方法可能存在理解上的困难,需要通过实例讲解和练习来加深理解。
三. 教学目标1.知识与技能:使学生掌握多项式乘以多项式的运算法则,能够正确进行计算。
2.过程与方法:通过实例讲解和练习,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:多项式乘以多项式的运算法则。
2.难点:理解并掌握多项式乘以多项式的计算方法,能够灵活运用。
五. 教学方法采用讲授法、示范法、练习法、讨论法等多种教学方法,以激发学生的学习兴趣,提高学生的学习效果。
六. 教学准备1.教学课件:制作多媒体课件,用于讲解和展示实例。
2.练习题:准备相应的练习题,用于巩固和检验学生的学习效果。
3.黑板:准备黑板,用于板书和展示解题过程。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容,如“已知两个多项式A和B,如何求它们的乘积?”引导学生思考和讨论,激发学生的学习兴趣。
2.呈现(15分钟)讲解多项式乘以多项式的运算法则,并通过示例进行讲解和展示。
例如,给出两个多项式A和B,讲解如何求它们的乘积,并展示计算过程。
3.操练(10分钟)让学生分组进行练习,互相讨论和解答问题。
教师巡回指导,解答学生的问题,并给予鼓励和评价。
4.巩固(10分钟)让学生独立完成一些练习题,检验学生对多项式乘以多项式的计算方法的理解和掌握程度。
教师选取部分学生的作业进行讲解和分析。
《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生掌握多项式乘以多项式的运算法则。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生的数学思维能力和团队协作能力。
二、教学内容1. 多项式乘以多项式的定义和运算法则。
2. 多项式乘以多项式的计算方法。
3. 多项式乘以多项式在实际问题中的应用。
三、教学重点与难点1. 教学重点:多项式乘以多项式的运算法则和计算方法。
2. 教学难点:多项式乘以多项式在实际问题中的应用。
四、教学方法1. 采用讲解法、演示法、练习法、讨论法等教学方法。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 分组讨论,培养学生的团队协作能力。
五、教学步骤1. 导入新课:通过复习单项式乘以单项式的运算法则,引出多项式乘以多项式的概念。
2. 讲解多项式乘以多项式的运算法则,并用多媒体课件展示计算过程。
3. 举例讲解多项式乘以多项式的计算方法,让学生跟随老师一起动手操作。
4. 进行课堂练习,让学生独立完成多项式乘以多项式的计算。
5. 组织学生进行分组讨论,探讨多项式乘以多项式在实际问题中的应用。
6. 总结本节课所学内容,强调多项式乘以多项式的运算法则和计算方法。
7. 布置课后作业,巩固所学知识。
六、教学评价1. 通过课堂讲解、练习和讨论,评价学生对多项式乘以多项式的理解和掌握程度。
2. 评估学生在解决实际问题时,运用多项式乘以多项式的能力。
3. 观察学生在课堂上的参与程度、提问回答和小组合作情况,评价其数学思维能力和团队协作能力。
七、教学资源1. 多媒体课件:用于展示多项式乘以多项式的计算过程和实际应用案例。
2. 练习题库:提供丰富的练习题,帮助学生巩固所学知识。
3. 小组讨论工具:如白板、彩笔等,用于小组内讨论和展示。
八、教学进度安排1. 第1周:导入多项式乘以多项式的概念,讲解运算法则。
2. 第2周:讲解多项式乘以多项式的计算方法,进行课堂练习。
3. 第3周:探讨多项式乘以多项式在实际问题中的应用,进行小组讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《多项式乘以多项式》
教学设计
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
《多项式乘以多项式》教学设计
高清华教学目标:
知识与技能
1、探索多项式与多项式相乘的乘法法则。
2. 能灵活地进行整式的乘法运算。
过程与方法
1、经历探索多项式与多项式相乘的乘法法则的过程,体会乘法分配律的作用以及“整体”和“转化”的数学思想;
2、通过对乘法法则的探索,归纳与描述,发展有条理思考的能力和语言表达能力;
情感、态度与价值观
体验学习和把握数学问题的方法,树立学好数学的信心,培养学习数学的兴趣。
教学重点:多项式的乘法法则及其应用。
教学难点:探索多项式的乘法法则,灵活地进行整式的乘法运算。
关键:多项式的乘法应先转化为单项式与多项式相乘进行运算,进一步转化为单项式的乘法,紧紧扣住这一线索。
教学方法:小组合作,自主学习
教学过程:
一、课前练习
师:前面我们学习了整式的乘法,快速做一做,看看你掌握的怎样?
计算:2232)1(xy x ⋅- )1(2)2(x x --
()x x x +24)3( x x x 9)19
44)(4(2⋅--
生:交流答案
师:同学们看这道题怎样做?())()5(b n a m ++(多媒体展示)他和我们以前所学的有何不同?
生:现在是多项式乘多项式
师:那多项式乘多项式如何去计算呢?这节课我们一起来探究吧! 二、 学习目标(多媒体)
师:看到这个课题你想学习哪些知识呢?
生:交流
师:(多媒体呈现)
1、探究并了解多项式与多项式相乘的法则
2、熟练的运用法则进行运算
三、探求新知
问题助学一:
动手做一做:利用如下的长方形卡片拼成更大的长方形(多媒体)
(学生活动)小组内展评作品,推选出最优秀的同学的作品给全班学生展示。
n
你能用不同的方法表示此长方形的面积吗? 生1:(m+n)(a+b)
生2:ma+mb+na+nb
生3:(m+n)a+(m+n)b
(m+n)(a+b)=(m+n)a+(m+n)b=ma+mb+na+nb
问题助学二:
(多媒体)
1、你能试着说说(m +b )(n +a )=m (n +a ) + b (n +a ) 怎么来的吗?
2、进一步完成m (n +a ) + b (n +a ) 的计算,并说说你的依据
引导学生把其中一个因式()a b +看作一个整体,再利用乘法分配律来理解()m n +与()a b +相乘的结果,从而导出多项式与多项式相乘的法则。
四、诊断指导
归纳、小结多项式乘法法则
(1)文字叙述:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加
(2)用字母表示
法则的形成是本节课的重点之一。
在学生归纳法则的过程中,结合学生讨论的情况,播放法则的形成动画,并在此过程中进行启发讲解,让学生明白两个“每一项”的含义。
五、点拨提升
第一关:(1)(1−x)(0.6−x)(2)(2x+y)(x−y)
设计意图:第一关,目的加强对公式的熟练运用,采用小组合作学习,即先自己动手做一做,再小组讨论兵教兵。
最后一起交流小组学习的收获和应该注意的问题。
随后在课本随堂练习中做了两道题来检测学生小组学习的情况。
第二关:(1)(a+3)·(b+5);(2)(3x-y)(2x+3y);
设计意图:第二关,题目的设置难度稍微加深,并设置了选做题(多媒体)。
第三关:(1)(3x-2)(2x-3)(x+2);(2)(a-b)(a+b)(a2+b2)
第三关,小组竞赛,题目难度有所提升,目的是检测小组整体合作学习水平,并提高学生小组合作的意识。
通过结果评选出优胜小组,奖励相应的分数。
六、课堂小结
1、多项式乘法是用“换元”的方法,将多项式与多项式相乘转化为单项式与多项式相乘。
2、运用法则时,要有序地逐项相乘,做到不重不漏。
3、在含有多项式乘法的混合运算时,要注意运算顺序,计算结果要化简。
七、课堂小测
1、)
+d
+
ax
(-
b
cx
a
(b
)(
x
x+
+ 2、)1
)(
3、2)32(+-x
4、)2)(1()3)(2(-+-+-y x y x
选作题:
已知22()()46,3()2x ay x by x xy y a b ab ++=-++-求代数式的值.
八、板书设计
多项式乘多项式
(m +b )(n +a ) = mn + m a + bn + b a
九、作业布置
必做题:随堂练习1 ; 选做题:配套练习册; 自留作业。