辽宁省大连市2021届高三1月(八省联考)双基测试 数学

合集下载

2021年1月(八省联考)数学试题

2021年1月(八省联考)数学试题

2021年1月普通高等学校招生全国统一考试适应性测试(八省联考)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知,M N 均为R 的子集,且RM N ⊆,则()M N ⋃=R ( )A .∅B .MC .ND .R2.在3张卡片上分别写上3位同学的学号后,再把卡片随机分给这3位同学,每人1张,则恰有1位学生分到写有自己学号卡片的概率为( ) A .16B .13C .12D .233.关于x 的方程20x ax b ++=,有下列四个命题:甲:1x =是该方程的根;乙:3x =是该方程的根;丙:该方程两根之和为2;丁:该方程两根异号.如果只有一个假命题,则该命题是( ) A .甲B .乙C .丙D .丁4.椭圆()2222101x y m m m+=>+的焦点为1F 、2F ,上顶点为A ,若123F AF π∠=,则m =( )A .1B C D .25.已知单位向量,a b 满足0a b ⋅=,若向量72c a b =+,则sin ,a c 〈〉=( )A B .3C D .96.()()()239111x x x ++++++的展开式中2x 的系数是( )A .60B .80C .84D .1207.已知抛物线22y px =上三点(2,2),,A B C ,直线,AB AC 是圆22(2)1x y -+=的两条切线,则直线BC 的方程为( ) A .210x y ++= B .3640x y ++= C .2630x y ++= D .320x y ++=8.已知5a <且5e 5e ,4a a b =<且44,3b be e c =<且3e 3e c c =,则( )A .c b a <<B .b c a <<C .a c b <<D .a b c <<二、多选题9.已知函数()ln(1)f x x x =+,则( ) A .()f x 在(0,)+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数 10.设123,,z z z 为复数,10z ≠.下列命题中正确的是( )A .若23z z =,则23z z =±B .若1213z z z z =,则23z z =C .若23z z =,则1213z z z z =D .若2121z z z =,则12z z =11.下图是一个正方体的平面展开图,则在该正方体中( )A .//AE CDB .//CH BEC .DG BH ⊥D .BG DE ⊥12.设函数cos 2()2sin cos xf x x x=+,则( )A .()()f x f x π=+B .()f x 的最大值为12C .()f x 在,04π⎛⎫- ⎪⎝⎭单调递增 D .()f x 在0,4π⎛⎫⎪⎝⎭单调递减三、填空题13.圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为______.14.写出一个最小正周期为2的奇函数()f x =________.15.对一个物理量做n 次测量,并以测量结果的平均值作为该物理量的最后结果.已知最后结果的误差2~0,n N n ε⎛⎫⎪⎝⎭,为使误差n ε在(0.5,0.5)-的概率不小于0.9545,至少要测量_____次(若()2~,X N μσ,则(||2)0.9545)P X μσ-<=).四、双空题16.若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为______,_____.五、解答题17.已知各项都为正数的数列{}n a 满足2123n n n a a a ++=+. (1)证明:数列{}1n n a a ++为等比数列; (2)若1213,22a a ==,求{}n a 的通项公式. 18.在四边形ABCD 中,//AB CD ,1AD CD BD ===. (1)若32AB =,求BC ; (2)若2AB BC =,求cos BDC ∠.19.一台设备由三个部件构成,假设在一天的运转中,部件1,2,3需要调整的概率分别为0.1,0.2,0.3,各部件的状态相互独立.(1)求设备在一天的运转中,部件1,2中至少有1个需要调整的概率;(2)记设备在一天的运转中需要调整的部件个数为X ,求X 的分布列及数学期望. 20.北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在各顶点的曲率为233πππ-⨯=,故其总曲率为4π.(1)求四棱锥的总曲率;(2)若多面体满足:顶点数-棱数+面数2=,证明:这类多面体的总曲率是常数.21.双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,右焦点为F ,动点B 在C 上.当BF AF ⊥时,||||AF BF =.(1)求C 的离心率;(2)若B 在第一象限,证明:2BFA BAF ∠=∠. 22.已知函数()e sin cos ,()e sin cos x x f x x x g x x x =--=++.(1)证明:当54x π>-时,()0f x ; (2)若()2g x ax +,求a .参考答案1.B 【分析】由题意利用集合的包含关系或者画出Venn 图,结合Venn 图即可确定集合的运算结果. 【详解】 解法一:RM N ⊆,RM N ∴⊇,据此可得()RMN M ∴=.故选:B.解法二:如图所示,设矩形ABCD 表示全集R ,矩形区域ABHE 表示集合M ,则矩形区域CDEH 表示集合RM ,矩形区域CDFG 表示集合N ,满足RM N ⊆,结合图形可得:()RM N M =.故选:B.2.C 【分析】由题意列出所有可能的结果,然后利用古典概型计算公式即可求得满足题意的概率值. 【详解】设三位同学分别为,,A B C ,他们的学号分别为1,2,3,用有序实数列表示三人拿到的卡片种类,如()1,3,2表示A 同学拿到1号,B 同学拿到3号,C 同学拿到2号.三人可能拿到的卡片结果为:()()()()()()1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1,共6种,其中满足题意的结果有()()()1,3,2,2,1,3,3,2,1,共3种, 结合古典概型计算公式可得满足题意的概率值为:3162p ==. 故选:C. 【点睛】 方法点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数. (1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏. (2)注意区分排列与组合,以及计数原理的正确使用. 3.A 【分析】对甲、乙、丙、丁分别是假命题进行分类讨论,分析各种情况下方程20x ax b ++=的两根,进而可得出结论. 【详解】若甲是假命题,则乙丙丁是真命题,则关于x 的方程20x ax b ++=的一根为3, 由于两根之和为2,则该方程的另一根为1-,两根异号,合乎题意; 若乙是假命题,则甲丙丁是真命题,则1x =是方程20x ax b ++=的一根, 由于两根之和为2,则另一根也为1,两根同号,不合乎题意;若丙是假命题,则甲乙丁是真命题,则关于x 的方程20x ax b ++=的两根为1和3,两根同号,不合乎题意;若丁是假命题,则甲乙丙是真命题,则关于x 的方程20x ax b ++=的两根为1和3, 两根之和为4,不合乎题意. 综上所述,甲命题为假命题. 故选:A. 【点睛】关键点点睛:本题考查命题真假的判断,解题的关键就是对甲、乙、丙、丁分别是假命题进行分类讨论,结合已知条件求出方程的两根,再结合各命题的真假进行判断. 4.C【分析】分析出12F AF 为等边三角形,可得出2a c =,进而可得出关于m 的等式,即可解得m 的值. 【详解】在椭圆()2222101x y m m m+=>+中,a =,b m =,1c ==,如下图所示:因为椭圆()2222101x y m m m+=>+的上顶点为点A ,焦点为1F 、2F ,所以12AF AF a ==,123F AF π∠=,12F AF ∴△为等边三角形,则112AF F F =,即22a c ===,因此,m . 故选:C. 5.B 【分析】本题借助cos ,a c a c a c⋅〈〉=⋅将72c a b =+代入化简即可.【详解】因为,a b 是单位向量,所以1a b ==. 因为72c a b =+,所以()2227272723c a b a ba b =+=+=+=.所以()2727277cos ,=3a ab ac a a ba c a ca ca cc⋅+⋅+⋅〈〉====⋅⋅⋅ 所以sin ,13a c ⎛〈〉=-= .故选:B. 6.D 【分析】()()()239111x x x ++++++的展开式中2x 的系数是22222349C C C C ++++,借助组合公式:11m m mnn n C C C -++=,逐一计算即可.【详解】()()()239111x x x ++++++的展开式中2x 的系数是22222349C C C C ++++因为11m m m nn n C C C -++=且2323C C =,所以2232323334C C C C C +=+=,所以222233234445C C C C C C ++=+=,以此类推,2222323234999101098120321C C C C C C C ⨯⨯++++=+===⨯⨯.故选:D. 【点睛】本题关键点在于使用组合公式:11m m m n n n C C C -++=,以达到简化运算的作用.7.B 【分析】先利用点(2,2)A 求抛物线方程,利用相切关系求切线AB ,AC ,再分别联立直线和抛物线求出点,B C ,即求出直线BC 方程. 【详解】(2,2)A 在抛物线22y px =上,故2222p =⨯,即1p =,抛物线方程为22y x =,设过点(2,2)A 与圆22(2)1x y -+=相切的直线的方程为:()22y k x -=-,即220kx y k -+-=,则圆心()2,0到切线的距离1d ==,解得k =如图,直线):22AB y x -=-,直线):22AC y x -=-.联立)2222y x y x⎧-=-⎪⎨=⎪⎩,得()2314160x x ++-=,故A B x x =,由2A x =得B x =,故B y =联立)2222y x y x⎧-=-⎪⎨=⎪⎩,得()2314160x x -++=,故163A C x x +=,由2A x =得83C x +=,故63C y -=,故66433B C y y -+=+=-,又由,B C 在抛物线上可知, 直线BC 的斜率为22221114222B C B C BC B C B C B C y y y y k x x y y y y --=====--+-- ,故直线BC的方程为12y x ⎛=- ⎝⎭,即3640x y ++=. 故选:B. 【点睛】方法点睛:求圆的切线的方程的求法:(1)几何法:设直线的方程,利用圆心到直线的距离等于半径构建关系求出参数,即得方程;(2)代数法:设直线的方程,联立直线与圆的方程,使判别式等于零解出参数,即可得方程. 8.D 【分析】令(),0xe f x x x=>,利用导数研究其单调性后可得,,a b c 的大小.【详解】 因为5e 5e ,5aa a =<,故0a >,同理0,0bc >>,令(),0xe f x x x =>,则()()21x e x f x x-'=, 当01x <<时,()0f x '<,当1x >时,()0f x '>, 故()f x 在()0,1为减函数,在()1,+∞为增函数,因为5e 5e ,5aa a =<,故5e e 5aa=,即()()5f f a =,而05a <<,故01a <<,同理01b <<,01c <<,()()4f f b =,()()3f f c = 因为()()()543f f f >>,故()()()f a f b f c >>, 所以01a b c <<<<. 故选:D . 【点睛】思路点睛:导数背景下的大小比较问题,应根据代数式的特征合理构建函数,再利用导数讨论其单调性,此类问题,代数式变形很关键. 9.AC 【分析】根据函数的定义域可判断D ,利用函数的导数的正负可判断A ,利用导数的几何意义可判断C ,根据函数值的情况及零点定义可判断B. 【详解】由()ln(1)f x x x =+知函数的定义域为(1,)-+∞,)ln(1)1(x x f xx =+'++, 当(0,)x ∈+∞时,ln(1)0,01xx x+>>+,()0f x '∴>, 故()f x 在(0,)+∞单调递增,A 正确;由(0)0f =,当10x -<<时,ln(1)0,()ln(1)0x f x x x +<=+>, 当ln(1)0,()0x f x +>>,所以()f x 只有0一个零点,B 错误;令12x =-,1)ln 1ln 2121(2f =-=---',故曲线()y f x =在点11,22f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2--,C 正确;由函数的定义域为(1,)-+∞,不关于原点对称知,()f x 不是偶函数,D 错误. 故选:AC 【点睛】关键点点睛:解决本题时,利用函数的导数判断函数的增减性,利用导数的几何意义求切线的斜率,属于中档题. 10.BC 【分析】取特殊值法可判断AD 错误,根据复数的运算及复数模的性质可判断BC. 【详解】由复数模的概念可知,23z z =不能得到23z z =±,例如23,11i i z z =+=-,A 错误;由1213z z z z =可得123()0z z z -=,因为10z ≠,所以230z z -=,即23z z =,B 正确; 因为2121||||z z z z =,1313||||z z z z =,而23z z =,所以232||||||z z z ==,所以1213z z z z =,C 正确; 取121,1z i z i =+=-,显然满足2121z z z =,但12z z ≠,D 错误.故选:BC11.BCD 【分析】由平面展开图还原为正方体,根据正方体性质即可求解. 【详解】由正方体的平面展开图还原正方体如图,由图形可知,AE CD ⊥,故A 错误;由//,HE H BC E BC =,四边形BCHE 为平行四边形,所以//CH BE ,故B 正确; 因为,DG HC DG BC ⊥⊥,HC BC C =,所以DG ⊥平面BHC ,所以DG BH ⊥,故C正确;因为//BG AH ,而DE AH ⊥,所以BG DE ⊥,故D 正确. 故选:BCD 12.AD 【分析】先证明()f x 为周期函数,周期为π,从而A 正确,再利用辅助角公式可判断B 的正误,结合导数的符号可判断C D 的正误. 【详解】()f x 的定义域为R ,且cos 2()2sin cos xf x x x=+,()()()()cos 22cos 2()2sin cos 2sin cos x xf x f x x x x xππππ++===++++,故A 正确.又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2xy x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故y ≤≤,当y =时,有1cos 4ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max 15y =,故B 错误. ()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈-⎪⎝⎭时,1sin 20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈-⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数,所以()14sin 2h x x =+在,04π⎛⎫-⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫-⎪⎝⎭有唯一解0x , 故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 故选:AD 【点睛】方法点睛:与三角函数有关的复杂函数的研究,一般先研究其奇偶性和周期性,而单调性的研究需看函数解析式的形式,比如正弦型函数或余弦型函数可利用整体法来研究,而分式形式则可利用导数来研究,注意辅助角公式在求最值中的应用. 13.61π【分析】由题意首先确定几何体的空间结构特征,求得圆台的高,然后利用圆台的体积公式即可求得其体积. 【详解】圆台的下底面半径为5,故下底面在外接球的大圆上,如图所示,设球的球心为O ,圆台上底面的圆心为'O ,则圆台的高'3OO ===, 据此可得圆台的体积:()22135544613V ππ=⨯⨯+⨯+=. 故答案为:61π. 【点睛】关键点点睛:本题考查圆台与球的切接问题,解题的关键在于确定下底面与球的关系,然后利用几何关系确定圆台的高度即可求得其体积. 14.()sin f x x π= 【分析】根据奇函数性质可考虑正弦型函数()sin f x A x ω=,()0A ≠,再利用周期计算ω,选择一个作答即可. 【详解】由最小正周期为2,可考虑三角函数中的正弦型函数()sin f x A x ω=,()0A ≠, 满足()sin ()f x x f x ω-=-=-,即是奇函数; 根据最小正周期22T πω==,可得ωπ=.故函数可以是()sin f x A x π=()0A ≠中任一个,可取()sin f x x π=. 故答案为:()sin f x x π=. 15.32 【分析】因为2~0,n N n ε⎛⎫ ⎪⎝⎭,得到0μ=,σ=要使误差n ε在(0.5,0.5)-的概率不小于0.9545, 则()()2,20.5,0.5μσμσ-+⊂-,得到不等式计算即可. 【详解】根据正态曲线的对称性知:要使误差n ε在(0.5,0.5)-的概率不小于0.9545,则()()2,20.5,0.5μσμσ-+⊂-且0μ=,σ=所以0.532n ≥⇒≥. 故答案为:32. 【点睛】本题是对正态分布的考查,关键点在于能从2~0,n N n ε⎛⎫⎪⎝⎭读出所需信息. 16.133- 【分析】先设对角线所在直线的倾斜角θ,利用斜率定义列关系tan 2θ=,结合正方形性质求得直线OA 与直线OB 的倾斜角,计算正切值求斜率即可. 【详解】正方形OABC 中,对角线OB 所在直线的斜率为2,建立如图直角坐标系,设对角线OB 所在直线的倾斜角为θ,则tan 2θ=,由正方形性质可知,直线OA 的倾斜角为45θ-︒,直线OB 的倾斜角为45θ+︒,故()tan tan 45211tan 451tan tan 45123OA k θθθ-︒-=-︒===+︒+,()tan tan 4521tan 4531tan tan 4512OB k θθθ+︒+=+︒===--︒-.故答案为:13;3-.【点睛】 方法点睛: 求直线斜率的方法:(1)定义式:倾斜角为θ,对应斜率为tan θk;(2)两点式:已知两点坐标()()1122,,,A x y B x y ,则过两点的直线的斜率2121AB y y k x x -=-.17.(1)证明见解析;(2)132n n a -=(n +∈N )【分析】(1)两边同时加上1n a +即可得到数列{}1n n a a ++为等比数列;(2)利用待定系数法构造()21133n n n n a a k a a +++-=-,通过整理解出1k =-,进而得到()21133n n n n a a a a +++-=--,所以{}n a 是以112a =为首项,3为公比的等比数列,即可得到答案. 【详解】(1)由2123n n n a a a ++=+可得:()2111333n n n n n n a a a a a a +++++=+=+ 因为各项都为正数,所以120a a +>,所以{}1n n a a ++是公比为3的等比数列.(2)构造()21133n n n n a a k a a +++-=-,整理得:()2133n n n a k a ka ++=+- 所以1k =-,即()21133n n n n a a a a +++-=-- 所以11303n n n n a a a a ++-=⇒=,所以{}n a 是以112a =为首项,3为公比的等比数列. 所以132n n a -=(n +∈N )【点睛】本题关键点在于第(2)问中的待定构造,能够根据特征,构造出()21133n n n n a a k a a +++-=-是关键.18.(1)BC ;(2)cos 1BDC ∠=.【分析】(1)利用余弦定理计算得出cos ABD ∠,进而可得出cos BDC ∠,然后在BCD △中,利用余弦定理可计算出BC ;(2)设BC x =,利用余弦定理结合BDC ABD ∠=∠可得出关于x 的方程,进而可解得x 的值,即可求得cos BDC ∠. 【详解】(1)在ABD △中,由余弦定理可得2223cos 24AB BD AD ABD AB BD +-∠==⋅,//CD AB ,BDC ABD ∴∠=∠,在BCD △中,由余弦定理可得22212cos 2BC BD CD BD CD BDC =+-⋅∠=,BC =; (2)设BC x =,则2AB x =,在ABD △中,22224cos 24AB BD AD x ABD x AB BD x +-∠===⋅,在BCD △中,22222cos 22BD CD BC x BDC BD CD +--∠==⋅, 由(1)可知,BDC ABD ∠=∠,所以,cos cos BDC ABD ∠=∠,即222x x -=,整理可得2220x x +-=,因为0x >,解得1x =,因此,cos cos 1BDC ABD x ∠=∠==. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理. 19.(1)0.28;(2)分布列见解析,()0.6E X =. 【分析】(1)由题意利用对立事件概率公式即可求得满足题意的概率值;(2)首先确定X 可能的取值,然后分别求解其概率值,最后确定其分布列并求解数学期望即可. 【详解】(1)设部件1需要调整为事件A ,部件2需要调整为事件B ,部件3需要调整为事件C , 由题意可知:()()()0.1,0.2,0.3P A P B P C ===. 部件1,2中至少有1个需要调整的概率为:()()11110.90.810.720.28P A P B ⎡⎤⎡⎤---=-⨯=-=⎣⎦⎣⎦.(2)由题意可知X 的取值为0,1,2,3.且:()()()()0111P X P A P B P C ⎡⎤⎡⎤⎡⎤==---⎣⎦⎣⎦⎣⎦()()()10.110.210.3=-⨯-⨯-0.504=,()()()()111P X P A P B P C ⎡⎤⎡⎤==--⎣⎦⎣⎦()()()11P A P B P C ⎡⎤⎡⎤+--⎣⎦⎣⎦()()()11P A P B P C ⎡⎤⎡⎤+--⎣⎦⎣⎦0.10.80.7=⨯⨯0.90.20.7+⨯⨯0.90.80.3+⨯⨯ 0.398=,()()()()21P X P A P B P C ⎡⎤==-⎣⎦()()()1P A P B P C ⎡⎤+-⎣⎦()()()1P A P C P B ⎡⎤+-⎣⎦0.10.20.7=⨯⨯0.10.80.3+⨯⨯0.90.20.3+⨯⨯ 0.092=.()()()()30.10.20.30.006P X P A P B P C ===⨯⨯=,故X 的分布列为:其数学期望:()0.50400.39810.09220.00630.6E X =⨯+⨯+⨯+⨯=. 【点睛】 思路点晴:求离散型随机变量X 的数学期望的一般步骤:(1)先分析X 的可取值,根据可取值求解出对应的概率; (2)根据(1)中概率值,得到X 的分布列;(3)结合(2)中分布列,根据期望的计算公式求解出X 的数学期望. 20.(1)4π;(2)证明见解析. 【分析】(1)四棱锥的总曲率等于四棱锥各顶点的曲率之和,写出多边形表面的所有内角即可.(2)设顶点数、棱数、面数分别为n 、l 、m ,设第i 个面的棱数为i x ,所以122m x x x l +++=,按照公式计算总曲率即可. 【详解】(1)由题可知:四棱锥的总曲率等于四棱锥各顶点的曲率之和.可以从整个多面体的角度考虑,所有顶点相关的面角就是多面体的所有多边形表面的内角的集合.由图可知:四棱锥共有5个顶点,5个面,其中4个为三角形,1个为四边形. 所以四棱锥的表面内角和由4个为三角形,1个为四边形组成, 则其总曲率为:()25424ππππ⨯-+=.(2)设顶点数、棱数、面数分别为n 、l 、m ,所以有2n l m -+= 设第i 个面的棱数为i x ,所以122m x x x l +++=所以总曲率为:()()()122222m n x x x ππ--+-++-⎡⎤⎣⎦()222n l m ππ=-- ()24n l m ππ=-+=所以这类多面体的总曲率是常数. 【点睛】本题考查立体几何的新定义问题,能够正确读懂“曲率”的概率是解决问题的关键. 21.(1)2;(2)见解析. 【分析】(1)根据已知条件可得2b a c a=+,据此可求离心率.(2)设()00,B x y ,则00tan y BFA x c∠=--,00tan y BAF x a ∠=+,再计算tan 2BAF ∠,利用点在双曲线上化简后可得tan 2tan BAF BFA ∠=∠,从而可得结论成立. 【详解】(1)设双曲线的半焦距为c ,则(),0F c ,2,b B c a ⎛⎫± ⎪⎝⎭,因为||||AF BF =,故2b ac a=+,故2220c ac a --=,即220e e --=,故2e =.(2)设()00,B x y ,其中00,0x a y >>. 因为2e =,故2c a =,b =,故渐近线方程为:y =,所以0,3BAF π⎛⎫∠∈ ⎪⎝⎭,20,3BFA π⎛⎫∠∈ ⎪⎝⎭, 当00,2x a x a >≠时, 又0000t n 2a y y BFA x c x a ∠=-=---,00tan y BAF x a∠=+, 所以()()()()000002222220000020222tan 121y y x a y x a x a BAF x x a y y x a b a x a +++∠===⎛⎫+-⎛⎫+--- ⎪⎪+⎝⎭⎝⎭()()()()()()()0000022222200000022223331y x a y x a y x a x a x x a x a x a a a ++===+--⎛⎫+--+-- ⎪⎝⎭02tan y BFA x a=-=∠-,因为故220,3BAF π⎛⎫∠∈ ⎪⎝⎭, 故BFA ∠2BAF =∠.当02x a =,由(1)可得,24BFA FAB ππ∠=∠=,故BFA ∠2BAF =∠.综上,BFA ∠2BAF =∠. 【点睛】方法点睛:(1)圆锥曲线中离心率的计算,关键是找到,,a b c 一组等量关系(齐次式). (2)圆锥曲线中与有角有关的计算,注意通过动点的坐标来刻画角的大小,还要注意结合点在曲线上满足的方程化简目标代数式. 22.(1)证明见解析;(2)2a =. 【分析】(1)由题意分类讨论当45,4x ππ⎛⎤∈-- ⎥⎝⎦,,04x π⎛⎫∈- ⎪⎝⎭,[)0,x ∈+∞,几种情况即可证得题中的结论.(2)观察(1)中的结论,首先讨论54x π>-时a 的取值,然后验证当54x π-时不等式成立即可求得实数a 的值. 【详解】 (1)分类讨论:①.当45,4x ππ⎛⎤∈-- ⎥⎝⎦,()04x f x e x π⎛⎫=+> ⎪⎝⎭;②.当,04x π⎛⎫∈-⎪⎝⎭时,()()cos sin ,00x f x e x x f ''=-+=, ()sin cos 04x x f x e x x e x π⎛⎫''=++=++> ⎪⎝⎭,则函数()f x '在,04π⎛⎫-⎪⎝⎭上单调增,则()()00f x f ''<=, 则函数()f x 在,04π⎛⎫-⎪⎝⎭上单调减,则()()00f x f >=; ③.当0x =时,由函数的解析式可知()01010f =--=,当[)0,x ∈+∞时,令()()sin 0H x x x x =-+≥,则()'cos 10H x x =-+≥, 故函数()H x 在区间[)0,+∞上单调递增,从而:()()00H x H ≥=, 即sin 0,sin x x x x -+≥-≥-,从而函数()sin cos 1xxf x e x x e x =--≥--,令1x y e x =--,则:1xy e '=-,当0x ≥时,0y '≥,故1xy e x =--在[)0,+∞单调递增,故函数的最小值为0min 010y e =--=,从而:10x e x --≥.从而函数()sin cos 10xxf x e x x e x =--≥--≥;综上可得,题中的结论成立. (2) 当54x π>-时, 令()()2sin cos 2xh x g x ax e x x ax =--=++--﹐则()cos sin xh x e x x a '=+--, ()()0h x f x ''=>,故()h x '单调递增,当 2a >时,()020h a '=-<,()()()ln 22ln 204h a a π⎡⎤'+=+->⎢⎥⎣⎦,()()10,ln 2x a ∃∈+使得()10h x '=,当10x x <<时,()()0,h x h x '<单调递减,()()00h x h <=不符合题意; 当2a <时,()00h '>, 若在5,04x π⎛⎫∈-⎪⎝⎭上,总有()0h x '≥(不恒为零), 则()h x 在5,4π⎛⎫-+∞ ⎪⎝⎭上为增函数,但()00h =, 故当5,04x π⎛⎫∈-⎪⎝⎭时,()0h x <,不合题意. 故在5,04x π⎛⎫∈-⎪⎝⎭上,()0h x '<有解, 故25,04x π⎛∃∈⎫-⎪⎝⎭,使得()20h x '=, 且当20x x <<时,()()0,h x h x '>单调递增, 故当()2,0x x ∈时,()(0)0h x h <=,不符合题意;故2a <不符合题意,当a =2时,()cos sin 2xh x e x x '=+--,由于()h x '单调递增,()00h '=,故:504x π-<<时,()()0,h x h x '<单调递减; 0x >时,()()0,h x h x '>单调递增,此时()()00h x h ≥=﹔当54x π-时,()5sin cos 220202xh x e x x x π=++--≥->, 综上可得,a =2. 【点睛】对于利用导数研究不等式问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;3、根据恒成求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求岀最值点的情况,通常要设出导数的零点,难度较大.。

辽宁省大连市普通高中2021届高三毕业班1月(八省联考)双基测试英语试题(解析版)

辽宁省大连市普通高中2021届高三毕业班1月(八省联考)双基测试英语试题(解析版)

绝密★启用前辽宁省大连市普通高中2021届高三毕业班上学期1月(八省联考)双基测试英语试题(解析版)2021年1月注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后, 再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

第一部分听力(共两节,满分 30 分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共 5 小题;每小题 1.5 分,满分 7.5 分)听下面 5 段对话。

每段对话后有一个小题,从题中所给的 A、B、C 三个选项中选出最佳选项。

听完每段对话后,你都有 10 秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £19.15.B. £9.18.C. £9.15.答案是 C。

1. What does the man offer to do?A. Go to 7th street.B. Show another shirt.C. Call another branch.2. What is the cause of the woman’s quietness?A. The violent film.B. Her tiredness.C. The crowded theater.3. How does the man know about animals?A. From books.B. On TV.C. Through the Internet.4. Where are the speakers?A. At a shop.B. In a restaurant.C. At home.5. What does the woman do? A. A nurse. B. A waitress. C. A saleswoman. 第二节 (共 15 小题;每小题 1.5 分,满分 22.5 分) 听下面 5 段对话或独白。

辽宁省大连市2021届高三1月(八省联考)双基测试+物理+Word版含答案

辽宁省大连市2021届高三1月(八省联考)双基测试+物理+Word版含答案

2021年大连市高三双基测试卷物理注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

满分100分,考试时间75分钟。

答卷前,考生务必将自己的姓名、考号填写在答题卡上,并将条形码粘贴在答题卡指定位置。

2.回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试题卷上无效。

3.回答第II卷时,用黑色笔写在答题卡指定位置上。

写在本试题卷上无效。

4.考试结束后,考生将答题卡交回。

第I卷(选择题共46分)一、选择题(本题共10小题。

在每小题给出的四个选项中,第1~7题只有一项符合题目要求,每个小题4分;第8~10题有多项符合题目要求,全部选对的得6分,选对但不全的得3分,有错选或不答的得0分)1.如图所示,吊环运动员做支撑动作,在使其两胳膊同时缓慢靠近身体且吊绳还未达到竖直的过程中,以下说法中正确的是A.每根吊绳上的作用力都在变小B.每根吊绳上的作用力都在变大C.两根吊绳对人的作用力合力在变小D.两根吊绳对人的作用力合力在变大2.如图甲是某燃气灶点火装置的原理图。

转换器能够将直流电压转换为图乙所示的正弦交流电压,并加在一理想变压器的原线圈上,电压表为交流电表。

当变压器副线圈电压的瞬时值大于5000V时,就会在钢针和金属板间引发电火花进而点燃气体,则A.稳定工作时电压表的示数是5VB.稳定工作时电压表的示数是52VC.变压器原副线圈的匝数比是1:900可满足点火要求D.变压器原副线圈的匝数比是1:1100可满足点火要求3.如图所示,虚线O’O垂直于半圆柱体玻璃砖的截面直径,光线a、b平行虚线O’O从两侧对称入射,从玻璃砖下表面射出后与虚线O’O分别交于P、Q,则下列说法正确的是A.玻璃对两种光的折射率关系为n a<n bB.a光比b光穿过该半圆柱体玻璃砖所需时间长C.a、b光分别从该玻璃砖射向真空时,a光发生全反射的临界角较大D.在相同条件下进行双缝干涉实验,a光的条纹间距比b光宽4.2020年12月4日,我国新一代可控核聚变研究装置“中国环流器二号M”(HL-2M)在成都正式建成放电,标志我国正式跨入全球可控核聚变研究前列,“HL-2M”将进一步加快人类探索未来能源的步伐。

精品解析:辽宁省大连市2021届高三1月(八省联考)双基测试化学试题(解析版)

精品解析:辽宁省大连市2021届高三1月(八省联考)双基测试化学试题(解析版)

2021 年大连市高三双基测试卷化学注意事项:1.考试时间为75 分钟,试卷满分100 分。

2.按照要求填写答题纸,答案必须写在答题纸上,写在试卷上不得分。

可能用到的相对原子质量:H-1 C-12 O-16 N-14 S-32 Cl-35.5 Fe-56第I卷(选择题,共45分)一、选择题:本题共15小题,每小题3分,共45分。

在每小题给出的4个选项中,只有一项是符合题目要求的。

1. 化学与生产、生活密切相关。

下列叙述正确的是A. 加碘盐不能使淀粉溶液变蓝色B. 氯碱工业是电解熔融氯化钠,在阳极得到氯气C. 用玉米酿酒的原理是通过蒸馏的方法将玉米中含有的乙醇分离出来D. 纯碱和汽油的去污原理相同【答案】A【解析】【分析】【详解】A.加碘盐中碘元素以KIO3形式存在,不能使淀粉溶液变蓝色,故A正确;B.氯碱工业是电解氯化钠溶液,阳极上Cl-发生氧化反应生成Cl2,故B错误;C.用玉米酿酒的原理是通过酶将淀粉分解为葡萄糖,葡萄糖在酒化酶作用下生成乙醇,故C错误;D.纯碱去污是利用纯碱溶液的碱性,汽油去污是利用相似相溶,二者原理不同,故D错误;故答案为A。

2. 下列实验不宜使用锥形瓶的是A. 蒸馏B. 用高锰酸钾与浓盐酸制Cl2C. 中和滴定D. 配制500mL 0.2 mol·L-1的H2SO4溶液【答案】D【解析】【分析】【详解】A. 蒸馏时尾气接收装置需用锥形瓶,不符合题意,A项不选;B. 用高锰酸钾与浓盐酸制Cl2,采用的发生装置为固液不加热装置,因此可以用锥形瓶,不符合题意,B项不选;C. 中和滴定时,使用锥形瓶盛放待测液,不符合题意,C项不选;D. 配制500mL 0.2 mol·L-1的H2SO4溶液,根据配制步骤可知,使用的玻璃仪器主要有:500mL容量瓶、量筒、烧杯、胶头滴管等,但不需要锥形瓶,D项选;答案选D。

3. 下列化学用语或图示表达正确的是A. 氯离子的结构示意图:B. 基态H的电子排布式为1p1C. CO2的电子式:D. CH4 的空间充填(比例)模型:【答案】D 【解析】【分析】【详解】A.氯离子核内质子数为17,核外电子数为18,其结构示意图为,故A错误;B.基态H的核外电子数为1,电子位于1s能级,其电子排布式为1s1,故B错误;C.CO2中C与O原子之间存在2对共用电子对,其电子式为,故C错误;D.CH4为正四面体结构,C原子半径大于H原子半径,因此其空间充填(比例)模型为,故D正确;综上所述,正确的是D项,故答案为D。

辽宁省大连市2021届高三1月(八省联考)双基测试化学试题(含答案解析)

辽宁省大连市2021届高三1月(八省联考)双基测试化学试题(含答案解析)

辽宁省大连市2021届高三1月(八省联考)双基测试化学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.化学与生产、生活密切相关。

下列叙述正确的是 A .加碘盐不能使淀粉溶液变蓝色B .氯碱工业是电解熔融氯化钠,在阳极得到氯气C .用玉米酿酒的原理是通过蒸馏的方法将玉米中含有的乙醇分离出来D .纯碱和汽油的去污原理相同 2.下列实验不宜使用锥形瓶的是 A .蒸馏 B .用高锰酸钾与浓盐酸制Cl 2C .中和滴定D .配制500mL 0.2 mol·L -1的H 2SO 4溶液3.下列化学用语或图示表达正确的是 A .氯离子的结构示意图:B .基态H 的电子排布式为1p 1C .CO 2的电子式:D .CH 4 的空间充填(比例)模型:4.新冠疫情的防控已经成为常态,日常消毒必不可少。

下列物质不适合用来消毒的是 A .95%的酒精B .过氧乙酸C .双氧水D .84消毒液5.用N A 表示阿伏加德罗常数的值。

下列说法正确的是A .在O 2参与的反应中,1molO 2作氧化剂时得到的电子数一定是4N AB .28gC 2H 4中含有4N A 个σ键C .标准状况下,22.4LSO 3所含氧原子数为3N AD .向2mL0.5mol·L −1Na 2SiO 3溶液中滴加稀盐酸制硅酸胶体,所含胶体粒子数目小于0.001N A6.下列物质间的转化不能通过一步反应实现的是 A .2Ca CaO CaCl →→ B .23NaOH Na CO NaCl →→ C .223C CO Na CO →→D .2233O Fe O Fe(OH)→→7.下列离子可以大量共存的是A .使甲基橙变红色的溶液中:Na +、NH 4+、S 2O 23-、SO 24-B .c(Fe 2+)=1.0mol/L 的溶液中:K +、NH 4+、MnO 4-、S 2-C .c(H +)/c(OH −)=1.0×10−12的溶液:K +、Na +、CO 23-、AlO 2-D .水电离出来的c(OH −)=1.0×10−13mol/L 的溶液:K +、HCO 3-、Br -、Ba 2+8.下列说法正确的是A .基态钙原子核外有2个未成对电子B .CaTiO 3晶体中与每个Ti 4+最邻近的O 2−有12个(如图是其晶胞结构模型)C .分子晶体中都存在共价键D .金属晶体的熔点都比分子晶体的熔点高9.W 、X 、Y 、Z 是同周期主族元素,Y 的最外层电子数是X 次外层电子数的3倍,四种元素与锂组成的盐是一种新型锂离子电池的电解质,结构如图。

辽宁省大连市2021届高三1月(八省联考)双基测试英语试卷

辽宁省大连市2021届高三1月(八省联考)双基测试英语试卷

注意事项:2021 年大连市高三双基测试卷英语1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后, 再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

第一部分听力(共两节,满分 30 分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5 小题;每小题1.5 分,满分7.5分)听下面 5 段对话。

每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项。

听完每段对话后,你都有10 秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A.£19.15.B.£9.18.C.£9.15.答案是C。

1.What does the man offer todo?A. Go to7th street.B. Showanothershirt.C. Call anotherbranch.2.What is the cause of the woman’s quietness?A. Theviolentfilm.B.Her tiredness.C. The crowdedtheater.3.How does the man know aboutanimals?A. Frombooks.B.OnTV.C. Through theInternet.4.Where are thespeakers?A. Ata shop.B. Inarestaurant.C. Athome.5.What does the womando?A.Anurse.B.Awaitress.C. Asaleswoman.第二节(共15 小题;每小题 1.5 分,满分22.5 分)听下面5段对话或独白。

辽宁省部分重点高中2021届高三第一学期联考数学试题及答案

辽宁省部分重点高中2021届高三第一学期联考数学试题及答案

高三考试数学试卷考生注意:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分.考试时间120分钟.2.请将各大题答案填写在答题卡上.3.本试卷主要考试内容:集合与常用逻辑用语、函数与导数、三角函数与解三角形、向量、数列、复数、不等式、立体几体、解析几何.第I卷一、选择题1.设集合A = {x∖-2<x≤∖}, B = {x∣-x2-3x + 4>θ},则ACB=()2. "Λ∈Q"是^XeZ f9的(A. (-4J)B. (-2,1] D. (—2,1)A.充分不必要条件B. 必要不充分条件C.充要条件D. 既不充分也不必要条件3・复数的虚部为((1 +万A.4.A.丄2λ C rιl Sin^-2cos^若tan6> = 3> 则-----------3 sin + cos4B. —一110B. C. 1・-I2D.D.1・-Z2310 5.已知向量α = (2,4), b= (l√ι) > 若Clllb则3a - Hb =()A. B.A. /(x)图象的对称中心为(——+ —^-,0∈ Z)7. 朱载境是明太祖朱元璋的九世孙,虽然贵为藩王世子,却自幼俭朴敦本,聪颖好学,遂成为明代著名的 律学家,历学家、音乐家.朱载1育对文艺的最大贡献是他创建下十二平均律,亦称“十二等程律”.十二平 均律是将八度的音程按频率比例分成十二等份,也就是说,半单比例应该是2吉,如果12音阶中第一个音 的频率是F ,那么第二个音的频率就是2⅛F ,第三个单的频率就是2⅛y7 ,第四个音的频率是2⅛f .……, 第十二个音的频率是2詈尸,第十三个音的频率是2罟尸,就是2F.在该问题中,从第二个音到第十三个 音,这十二个音的频率之和为( ).8 •如图,在四而体ABCD 中,AB = CD = 3, AC = BD = 皿 AD = BC = 2® ΛABC 的重心为0, 则 DO=( ).二. 选择题9.已知命题p :Vx>0, InX>0,贝∣J ( A. rP 是真命题 -n/?:3x>0, lav≤O10.已知函数Z(X) = 2COS 2 6yχ + √3 sin 2ωx(ω > 0),若/⑴ 的最小正周期为G 则下列说法正确的有 B. 函数y = ∕(χ)-2在[O,刃上有且只有两个零点A. 2FC.——2π-lC."是真命题C./(X)的单调递增区间为一£ +炽,? +畑(ZceZ).3 6 」D.将函数y = 2sin2x+1的图象向左平移+个单位长度,可得到/(x)的图彖1厶11.已知正方体ABCD-A^CP X的棱长为2, E, F分别是AA , CCI的中点,过f, F的平而α与该正方体的每条棱所成的角均相等,以平而Q截该正方体得到的截而为底而,以为顶点的棱锥记为棱锥 C,则( )A.正方体ABCD-A I B I C I D I的外接球的体积为4血4B.正方体ABCD-A I B I C i D l的内切球的表而积为一穴C.棱锥Q的体积为33D.棱锥G的体积为=22 212.已知双曲线C:二一二= l(α>O">O)与直线y = d交于A, B两点,点P为C上一动点,记直线Cr ∖yPA, PB的斜率分別为紡…kp li, C的左、右焦点分別为F^F2.若k pλ∙k pii=^t且C的焦点到渐近线的距离为1,则下列说法正确的是( )A. a = 2B.C的离心率为2C.若P斤丄PF2,则斤巧的而积为2D.若片佗的面积为2巧,则济竹为钝角三角形第II卷三、填空题[2v,x≤0. X13.已知函数/U) = 「,则/(6)= ________ .J (x-3),x >0214.已知直线/与直线x-y + 2 = 0平行,且与曲线y = ∖nx一一 + 1相切,则直线/的方程是_____ ・X15.若nι>Of n >0^ m+n = Smn-I > 贝∣J"7+"的最小值为__________16.已知直线x + 3y-7 = O 与椭圆—+ C = 1(O<∕9<3)相交于4〃两点•椭圆的两个焦点分别是F p F., 9 Ir线段AB 的中点为C(l,2),则△(?斤佗的面积为 _________ 四、解答题I — 1 1 /1 λ0_ 17. (1)化简:√82+ Iog 9 8XIog 2 27 + 0.064 3-164 + - 一扬T .7 >(2)已知T = 3 , 2" =5,求Iogi 2 20(用加皿表示)・18・在φa + c = y ∕3b 且 2sir√ B = 3sin AsinC ,® (SinA -SinC)2=sin 2B-SinASinC, (^)ΛABC 的 而积S = W -U这三个条件中任选一个,补充到下面问题中,并作答.4问题:在AABC 中,内角A,B,C 所对的边分别为gb,c,且 _____________ .(1)求 sinB :(2)若a = 2c,且厶ABC 的而积为2√3>求厶ABC 的周长・ 注:如果选择多个条件解答,按第一个解答计分. 19 •设正项数列{©}的前刃项和为a l =l 9且S^=S tt +2y ∣S^ + ∖. (1)证明:数列{、何]是等差数列并求数列{©}的通项公式;⑵已知化=詁「,数列{$}的前"项的和为人,若T n <λ LJn 求久的取值范用・20. 如图,在四棱锥P-ABCD 底而ABCD 是正方形,侧而PAD 是边长为2的正三角形,PD 丄CD •点E 为线段PC 的中点,点F 是43上的点.21. 已知函数/(x ) = (x-l )e r(1)求/(x )的最值:—+ 一js,)对一切 n ∈ N* 恒成立,(1)当F 为43中点时,证明:平而DEF 丄平而PCD(2)若/(x) +JnInX+ x + "对xw(0,+oo)恒成立,求"的取值范用.22.抛物线C-.x2 =2Py(P >0)的焦点为F ,过F且垂直于,轴的直线交抛物线C于M, N两点,。

辽宁省大连市2021届上学期高三年级1月(八省联考)双基测试英语试卷

辽宁省大连市2021届上学期高三年级1月(八省联考)双基测试英语试卷
B
【答案】4B 5D 6B 7A
【解析】
【分析】这是一篇说明文。作者通过讲述自己的职业目标的转变及女子足球运动今昔情况的对比,充分说明了社会的进步是与时俱进的。
【详解】1细节理解题。从文章第二段中的“ First, I wanted, in 1999, to be a “farmer”, soon archaeologist, then driving instructor and somewhere along the way, footballer”可知,首先,在1999年,我想成为一个“农民”,很快成为一个考古学家,然后是驾驶教练,在成长过程中,又想做足球运动员。所以可知,作者的职业目标是变化的。选项B与文意相符,故选B。
AIt lowers the quality of artwors
BIt involves common bining technology with art
ARegretfulBObjective
CDisamon goals, teaching one another survival sills, and “babysitting” each other’s idsNow, some researchers at Largo, Florida have discovered another thing the intelligent animals share with humans — a love for the television!
For their research, Kelly AWinshies a habitThings are going to flash into your head — comes easy, you can move on to more difficult sentences
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档