基于Multisim的实用低频功率放大器仿真设计
基于multisim10下的音响放大器设计与仿真

基于multisim10下的音响放大器设计与仿真信息工程学院课程设计报告书题目: 基于multisim10下的音响放大器设计与仿真课程:电子线路课程设计专业:电气工程及其自动化班级:学号:学生姓名:指导教师:2015年01月 07日信息工程学院课程设计任务书2015年1月7日信息工程学院课程设计成绩评定表信息工程学院课程设计报告书题目: 基于multisim10下的音响放大器设计与仿真课程:电子线路课程设计专业:电气工程及其自动化班级:学号:学生姓名:指导教师:2015年01月 07日信息工程学院课程设计任务书2015年1月7日信息工程学院课程设计成绩评定表摘要在Multisim 10软件环境下,采用运算放大集成电路模块和功率放大集成电路模块设计音频功率放大器,并根据其结构模块提出设计思路及论证,再通过仿真验证方案的正确性。
再根据其交流电源联想提出由Multisim 10设计一种由运算放大器构成的精确可控矩形波信号发生器,结合系统电路原理图重点阐述了各参数指标的实现与测试方法。
最后,简单介绍了直流稳压电源的构成及其简单仿真设计。
关键词:运算放大集成电路,模块,功率放大集成电路,矩形波,直流稳压源。
AbstractIn the Multisim 10 software environment, using an operational amplifier integrated circuit module and apower amplifying integrated circuit module design of the audio power amplifier, and puts forward the design ideas and arguments according to its structure module, and then through the correctness of thesimulation verification scheme. According to the AC power supply association proposed by Multisim 10 to design a composed of operational amplifier precisely controllable rectangular wave signal generator, combined with the circuit diagram of the system focuses on the realization and test method of each parameter index. Finally, briefly introduces design consists of DC regulated power supply and a simple simulation.Key word: An operational amplifier integrated circuit,,Modular,Power amplifier integrated circuit,Rectangular wave,DC voltage stabilized source。
基于multisim的音频功率放大电路分析与设计

图 7 输出信号电压波形
信息技术与信息化 电子与通信技术
摘 要 关键词
网络安全监测装置的设计与应用
刘晓亮 * 杨广建 刘志国 许文波 LIU Xiao-liang YANG Guang-jian LIU Zhi-guo XU Wen-bo
电力作为关系国计民生的重要基础设施领域 , 已被不少国家视为“网络战”首选攻击目标,电力监控系 统的网络安全形势日益严峻。国家各部委及国家电网公司相继出台了相关的政策来要求及指导电力监控 系统网络安全管理体系的建设。本文首先对电力监控系统网络安全监测装置的建设背景进行介绍,并对 PNSMD-1000 装置整体设计及关键技术进行详细的分析。目前装置已在全国各地部署应用,运行结果验 证了装置的可行性及有效性。
,
,
,如图 3 所示。由于
电路对称
,则有
,
, 则有:
Q4 管静态工作点合适时,UCE 为电源电压的近一半,即 ,则有:
差分放大电路、恒流源电路的三极管可以选取 2N5551,
其参数为
,
,
,可以电
路满足要求。R8、R14、C2 组成级间负反馈网络,使电路频带展宽, 电路稳定性提高。
按照设计要求,通过以上电路设计、元器件的选取和
,则有:
1.1 电压激励电路的确定 电压激励级可以采用共射组态放大电路,差分放大电路
和集成运算放大电路。共射组态放大电路即能放大电压,也 能放大电流。差分放大电路采用对称的共射放大电路,射级 连接在一起,对抑制零点漂移起到了很好的作用,因此电路 性能稳定。集成运算放大电路内部采用差分放大电路、中间 电压放大电路、输出电路和偏置电路组成,电路性能稳定且 功率消耗小。对于该电路设计由于功率放大电路采用 OCL 电 路是双电源分立元件电路,故电压激励级采用双电源的差分 放大电路,前后级电路均为双电源,电路设计和应用较为方 便。
两级低频放大器MUTISIM仿真(优秀范文五篇)

两级低频放大器MUTISIM仿真(优秀范文五篇)第一篇:两级低频放大器MUTISIM仿真V1R8100kΩ50%Key=A29R220kΩ R101412 V 1.0kΩ50%Key=A11R11kΩ 4C110uF R310kΩ C310uF 6BJT_NPN_4T_VIRTUALR6100 Ω C25R7100uF 1kΩ 15R131kΩ R91kΩ 713Q1J1A10Key = A 12R121kΩ 13Q2C51uF 0XMM1XFG1R52.4kΩ 8XSC1Ext Trig+_A+_+B_20kΩ BJT_NPN_4T_VIRTUALR141kΩ R11C41kΩ 1uF R40两级低频放大器26第二篇:单管低频放大器单管低频放大器一、实验目的(1)学习元器件的放置和手动、自动连线方法。
(2)熟悉元件标号及虚拟元件值的修改方法。
(3)熟悉节点及标注文字的放置方法。
(4)熟悉电位器的调整方法。
(5)熟悉信号源的设置方法。
(6)熟悉示波器的方法。
(7)熟悉放大器主要性能指标的测试方法。
(8)掌握示波器、信号源、万用表、电压表、电流表的应用方法。
(9)学习实验报告的书写方法。
二、分压式偏置电路的工作计算对于如图所示的小信号低频放大电路,若已知负载电阻RL、电源电压EC、集电极电流ICO和晶体管的电流放大系数β,则偏置电路元件可按照下列经验公式计算,凡是按经验公式计算结果的各个元件参数,一般应取标准值,然后在实验中,必要时适当修改电路元件参数,进行调整。
(1)基极直流工作点电路IbQ IbQ≈ICQ/β(2)分压电流I1 I1≈E C/(R1+R2)=(5~10)IbQ(3)发射极电压UeQ UeQ=0.2EC或取UeQ=1~3V(4)发射极电阻ReRe≈UeQ/ICQ(5)基极电压Ubo=Uco+UbeQ式中,硅管的UbeQ≈0.7V,锗管的UbeQ≈0.2V。
(6)分压器电阻R1和R2R1≈(EC-UbQ)/IbQ R2≈UbQ/I1(7)集电极电阻RC RC =(1~5)RL(8)输入电阻Ri和输出电阻RO的测量方法见第三章第二节的例一。
信号放大器的设计基于Multisim的电路仿真

3.效率η
, :直流电源供给的平均功率。理想情况下, 。在实验中,可测量电源供给的平均电流 ,从而求得 ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。
仿真值:%
实测值:η=%
(四)综合测量方案
1、测量系统电路的输入输出电阻以及通频带
测量值:输入电阻486KΩ
输出电阻Ω
图3-2 RC正弦波振荡电路图
图3-3 RC正弦震荡产生的波形图
仿真数据:F=1kHZ
T1
UB
(V)
UE
(V)
UC
(V)
IC
(MA)
UO
(V)
T2
UB
V)
UE
(V)
UC
(V)
IC
(MA)
实测数据:F=
T1
UB
(V)
UE
(V)
UC
(V)
IC
(MA)
UO
(V)
T2
UB
V)
UE
(V)
UC
(V)
IC
(MA)
2、闭合开关S1,并记录波形
(三)功率放大器电路方案
功率放大器的主要作用是向负荷提供功率,要求输出功率尽可能大,转换效率尽可能高,非线性失真尽可能小。这里我们采用OTL功率放大电路。电路原理图如下:
1.静态工作点的调整
分别调整R4和R1滑动变阻器器,使得万用表XMM2和XMM3的数据分别为5---10mA和,然后测试各级静态工作点填入下表:
1.调节放大器零点
把开关S1和S2闭合,S3打在最左端,启动仿真,调节滑动变阻器的阻值,使得万用表的数据为0(尽量接近0,如果不好调节,可以减小滑动变阻器的Increment值),填表一:
实验3.10 低频OTL功率放大电路Multisim仿真实验

实验3.10 低频OTL功率放大电路
二、实验设备及材料
1. 装有Multisim 14的计算机。 2. 函数信号发生器。 3. 双通道示波器。 4. 数字万用表。 5. 模拟电路实验箱。 .10 低频OTL功率放大电路
三、实验原理
图3-128 单电源OTL功率放大电路
实验3.10 低频OTL功率放大电路
一、实验目的
1. 掌握应用Multisim 14软件对乙类推挽功率放大电路的仿真分析。 2. 掌握乙类互补推挽功率放大电路静态工作点的调试和最大不失真输出电压的测试。 3. 观察输出波形的交越失真,学习消除交越失真的方法。 4. 掌握最大不失真输出功率和效率的测量和计算方法。 5. 熟悉Multisim中的各种电路的分析方法。
图3-131 低频OTL功率放大器实验操作电路板
实验3.10 低频OTL功率放大电路
三、实验原理
实验3.10 低频OTL功率放大电路
四、计算机仿真实验内容
图3-129 单电源OTL功率放大仿真电路
实验3.10 低频OTL功率放大电路
五、实验室操作实验内容
1. 静态工作点的调试
2. 3.
最效大率输η出的功测率试Pom的测试
4. 输入灵敏度测试 5. 频率响应测试 6. 噪声电压测试
低频功率放大器仿真实例

图7.21
图7.22
模拟电子技术
• 交越失真 在V1处加入电压大小合适的正弦信号,观 察输出波形,若有交越失真(如图7.21所示,此时R 8取5﹪,R10取98﹪),可适当增大R8,并微调R10, 保证输入为零时输出为零,经反复调整,可以达到 比较理想的效果。【仿真图】
• 自举电路 调整输入信号的峰峰值为0.02V,频率为1 KHz时,并将R8取63﹪,R10取87﹪,输出信号峰峰 值约为7.0V,失真0.177﹪,如图7.22所示。【仿真图】模拟源自子技术低频功率放大器仿真实例
【例7.2】分析OCL功率放大电路
解:利用Multisim仿真如图7.17所示的OCL功率放大电路。图中R5为平衡电阻,以弥补
NPN和PNP管电流放大倍数的差异,使复合管具有比较接近的输入阻抗。
图7.17
• 静态调整 首先将输入置为零,R8置为最小值(实际调试时必须如此,否则易烧毁输 出管)。慢慢增大R8,使输出管电流在5mA左右(处于微导通状态)。然后调整R10, 使输出电压为零。
图7.18
图7.19
【例7.3】分析OTL功率放大电路
解:利用Multisim仿真如图7.20所示的OTL功率放大电路。
图7.20
• 静态调整 首先将输入置为零,R8置为最小值(实际 调试时必须如此,否则易烧毁输出管)。慢慢增大R 8,使输出管电流在5mA左右(处于微导通状态)。 然后调整R10,使输出电压为零。
• 交越失真 在V1处加入电压大小合适的正弦信号,观察输出波形,若有交越失真(如 图7.18所示,此时R8取10﹪,R10取93﹪),可适当增大R8,并微调R10,保证输入 为零时输出为零,经反复调整,可以达到比较理想的效果。 【仿真图】
• 自举电路 调整输入信号的峰峰值为0.02V,频率为1KHz时,并将R8取63﹪,R10取 98﹪,输出信号峰峰值约为7.8V,失真0.828﹪,如图7.19所示。若断开自举电容C4, 则输出峰峰值下降至约3.6V,且失真上升至1.765﹪。若要降低失真,则需增大偏置 电阻R8,这会使电路工作状态趋于甲类,电路效率下降,可见,自举电路可以提高 电路的工作效率。 【仿真图】
基于Multisim的音频功率放大器设计与仿真

信息工程学院课程设计报告书题目: 基于Multisimde 音频功率放大器设计与仿真课程:电子线路课程设计专业:班级:学号:学生姓名:指导教师:2015 年 1 月 3 日信息工程学院课程设计任务书信息工程学院课程设计成绩评定表摘要TDA2030功率放大电路具有失真小、功率大、所需元件少、制作简单、效果良好等优点,用它来做电脑有源音箱的功率放大部分或MP4等小型功放再合适不过,本论文便是用TDA2030来制作音频功率放大器原件。
高效率的音频功率放大器不仅仅是在便携式设备中需要,在大功率的设备中也占有较大的比重。
随着人们居住条件的改善,高保真音响设备和高档的家庭影院也逐渐兴起。
音频功率放大器在这些设备中起到了很重要的作用。
关键字:TDA2030功率放大电路、音频功率放大器、高效率AbstractTDA2030 power amplifier circuit with small distortion, high power, which needs few components, simple fabrication, the advantages of good effect, can use it to make power computer amplifying part or MP4 small power is again appropriate however, this thesis is to make use of TDA2030 audio poweramplifier original. Audio power amplifier with high efficiency is not only the need in portable devices, also account for a large proportion in high power devices. With the development of people's living conditions improve, high fidelity audio equipment and high-end home theater also gradually on the rise. Audio poweramplifier plays a very important role in these devices.Keywords: TDA2030 power amplifier circuit, audio power amplifier, high efficiency目录1前言 (1)1.1音频放大器的发展 (1)1.2 音频放大器设计背景 (1)1.3 音频放大器设计意义 (1)2任务与条件 (3)2.1初始条件 (3)2.2要求完成的主要任务 (3)2.3设计方案 (3)3选择器件与参数运算 (4)3.1运放NE5532介绍 (4)3.2 TDA 2030介绍 (5)3.3功率计算 (6)4单元电路设计 (7)4.1主电源电路 (7)4.2调音电路 (7)4.3功率放大电路 (8)5电路设计仿真 (10)5.1仿真电路图 (10)5.2仿真结果 (10)总结 (12)参考文献 (13)1前言1.1音频放大器的发展上个世纪80 年代以前,输出功率仅几瓦的声频功率放大器都要采用分立元件来制作。
利用Multisim10.0对OTL音频功率放大器进行仿真实验

i 应 用 ,其 对 于 硬件 电路 设 计 有 着 极 为 重 要
: :
一 V p s i n J —
T : 仅 有
,
避免交越失真现象的发生 ,其输 出功率也有所 增加, 电源 电流变大 。另外 ,在输 出电压为达 到 电源 电压时,功率放大器效率已 %。
大器 电路 的仿真结果 进行分析 ,结果显示 AB 类功率放大器能够将 V 4 、Vs 电压改为 O ・ 7 5 V,
, 、
{ 功率放大器 实验结构不够理想 ,这在很 大 上是 由于 电路 性能参数误差及 电路参数选
间管耗计算公式为:
; 当造成的。当前,Mu h i s i ml 0 . 0仿真软件 p n 。 e z i c 2
半周导通 ,平均管耗计算公式为
一
.
:
} 导作用。
时,
2 丌. I o ‘‘
积 4 ,当
I t "
2仿真实验 Mu 1 t i s i m 1 0 o仿 真 软 件对 O T L音频 功 率
.
l T L 音频 功率放大器 电性 能理论推导 分
【 m a x J } , 输出 最 大 功 率 ( ~ )  ̄ c c , 放 大 器 性 能 的 实 验 仿 真 电 路 如 图I 所 示 , 在
上 述推 导并 未考 虑 B类放 大 电路 受功 能 如 图 3所 示, 当 处 于 4 0 H z  ̄ 1 ・ 4 5 MH z的 条 件
下 ,通 频 带 能 够 通 过 增 大 电路 中 的 电 容值 延 伸
f 形则 与之相 反 ,可 以得 出负载 R T电压:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统的最大增益为
系统的最小增益为
所以在整个放大电路的增益应该在27.7dB~71dB范围内可调。为了保证放大器的性能,单级放大器的增益不宜过高,通常20~40dB(放大倍数在10~100倍之间)
的带宽能保证信号在低中高频均能不失真的输出,使电路的整体指标大大提高
内部结构图:
他效果器的输入部分设计都用到了这个电路,正格输入级电路图如下;
六、 …………………………总体电路
第三部分问题与分析
结束语
参考文献
正文
1.1
摘要
1.2
低频功率的理念
低频功率放大器是一种能量转换电路,在输入信号的作用下,电路把直流电源的能量,通过前置放大级,功率放大级,转换成随输入信号变化的输出功率送给负载。
功率放大器不仅仅是消费产品中不可缺少的部分,例如音响,还广泛应用于控制系统和测量系统中,用途相当的广泛。在科学技术日新月异的今天,低频功率放大器已经是一个技术相当成熟的领域。很多年以来,人们付出了不懈的努力,使它无论是在线路技术方面还是在元器件方面乃至思想认识上都取得了长足的进步。
输入级输出为:
考虑到时题目所给的正弦信号入电压幅度范围很宽,为了均衡放大并使大多数类型的音源处于低噪声工作状态,所以前置放大级的电压增益分成两档,用开关K2控制。
当开关K2断开时,要求电路增益大于16dB,用于放大V1为40-700mV时的信号,当K2闭合时,电路增益大于35 dB,用于放大V1为5-40mV时的信号,故得电路2.2.2。
因此,所设计的低频功率放大电路,既能有效实现隔离,完成电路阻抗匹配,又能在一个频率范围内进行信号均衡放大的实用性电路。
均衡部分,借鉴了音频放大电路的音调控制电路,将音调控制的输出信号送入功放,提升到所需的额定输出功率。作为信号电路,还有波形变换电路,来增加对称方波的输出功能,故得设计的方框原里图:1.2.1;
由于低频功率放大器运行中的信号幅度,如电压、电流都很大,其突出的问题是要解决非线性失真和各种瞬态失真。因为,功率放大器的主要任务是在不失真的前提下放大信号的功率。
一般在功放电路结构上可采用不同的形式,以满足人们对音响设备的不同要求。
1.2
设计框架的形式
常见的音频功率放大器电路可以分为甲类,乙类和甲乙类三种。另外为了完全消除甲乙类和乙类功率放大器产生的交越失真,又出现了超甲类放大器和直流放大器等等。可供选择的方案有很多。根据设计题目要求,功率放大可由分立元件组成,也可以由集成电路完成。当然如果电路选择的好,参数恰当,元件性能优越,制作调试得好,则由分立元件组成的功放的性能还有可能高过集成功率放大器。
由于本设计不是对单一信号频率实施放大,而是对一个输入电压变化幅度大(5~700mV),频带范围宽(50~10000Hz )的频带信号实施功率放大,所以不能只从简单的功率放大上考虑。至少应从以下几方面作较为全面的考虑:
1,解决本设计的电路对信号源,尤其是信号幅度小的影响。
2, 要求对整个频带内不同频率范围i,不同电压幅值信号都能均匀放大。
基于Multisim的
实用低频功率放大器仿真设计
学员:
指导教员:
单位:
第一部分摘要、引言
一 …………………………………
二、 …………………………………低频功放的概念
三、…………………………………设计框架的形式
四 …………………………………系统总增益
第二部分各部分电路的选择与设计
一、 …………………………………输入级的设计
其中,变换电路负责执行波形变换,前置放大级主要完成信号电压的分幅度范围放大任务
音调控制电路实施完成对几段音调控制中心频率电平控制;功率放大级则是实现对信号的电压和电流放大任务。直流稳压电源部分则是为整个电路提供能量。下面作介绍。
1.3
系统总增益
由于任务要求额定功率不小于10W,考虑流出50%的裕量,所以输出功率应该在15W以上,同时输出电阻负载为8Ω。
二、 ………………………………前置放大级的设计
1,电路的设计
2,电路参数的计算
三、 ………………………………音频控制级的设计
1,反馈式高低音电功率放大级的设计
1,基本要求
2,电路形式的要求
3,末级功放参数计算
五、 …………………………供电电路与接地
其耦合电容等,考虑信号低频率低,均采用耐压50V、容量为33μ的电解电容。
输入端电阻R1取100kΩ电阻(应远大于前级输出阻抗),并一个小电容改善输入特性。
2.3音调控制级的设计
人们在欣赏音乐时,总希望听到悦耳的声音,但是由于爱好不一,有的喜欢音浑厚深沉,有的人则喜欢清脆嘹亮。而低频功率放大器是一般音响设备中最为重要的一部分,这就要求在该级中对信号频率特性进行人为控制,使频率特性中某一频率的功率增益增加或是降低达到音调控制的效果,这就是音量调节控制。
设计的整个电路有正弦信号源,放大通道,直流电源,负载部分组成。在放大通道的正弦信号输入幅值大约在5——700mv,在等效负载电阻RL为8偶的情况下,其放大通道的额定功率应大于或等于10W。通道带宽大于或等于50——10000Hz,在额定功率小剑侠非线性失真小于或等于3%
系统组成:系统主要是有
输入级,前置放大、音调控制,功率放大器级等几个部分组成。
在一般音响设备中都装有音调控制电路,普通收音机中音调控制电路比较简单,高质量的收录机、扩音机中电路则比较复杂。音调控制又称音质调节,按其调节的频率范围分,有高低音音质和多频音质调节。高低音音质调节,即在通频带的两端进行频率特性调节时,例如100Hz左右,10KHz左右,并且要求在进行高低音调节时,中音频率(一般指1KHz)附近频率特性应该保持基本不变,以保持音量。多频段音质调节,如五频段其调节频段一般在60Hz、250Hz 、1KHz、5KHz、15KHz附近,十频段调节频段100Hz、180Hz、310Hz、550Hz、1.8KHz、3.1KHz、5.5KHz、10KHz、16KHz各频率附近。
2.2.2电路参数的计算
因为开关的K2的闭合和断开,有两种情况下,下面分别对应其断开和闭合两种情况对电路参数进行确定。
因为当输入信号在40—700nV时,K2断开,要求20 lgA≥16dB
有
若取
则可得:
取标称值为
又因为当输入在5~40mV时,开关闭合,要求:
故:
取标称值470Ω。最后经过核算,能够达到设计要求。