solidworks有限元分析准确性问题
Solidworks有限元分析

Solidworks 有限元分析有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元是那些集合在一起能够表示实际连续域的离散单元。
有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。
有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。
经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。
有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。
20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz 法+分片函数”,即有限元法是Rayleigh Ritz 法的一种局部化情况。
不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz 法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。
对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。
solidworks有限元分析

solidworks有限元分析您是否曾经对SOLIDWORKS Simulation感兴趣,但不知道从哪里开始?有了如此广泛的设计分析解决方案,对于那些刚接触SOLIDWORKS 产品套件的人来说,Simulation可能是一个令人生畏的产品。
在设计中,理解基本概念以产生可靠的数据很重要。
希望本文能帮您指明正确的方向,以成功完成您的第一个FEA项目。
传统的FEA软件复杂且难以使用,仅保留给最有经验的分析师。
SOLIDWORKS Simulation不仅简单直观”而且还可以轻松处理复杂的模拟。
本文将仔细介绍SOLIDWORKS Simulation有限元分析,以便您可以快速蝴各Simulatio n整合到您的产品开发工作流程中。
SOLIDWORKS Simulation是一个虚拟测试环境,可分析您的设计,评估其性能并制定改善产品质量的决策。
但是,它是如何实现的呢?在幕后,该软件采用了一种称为有限元分析(FEA )的数值技术。
Low«FEA背后的概念是在1940年代初开发的,但是当该方法在台式计算机上实现时,该方法在1980年代和90年代变得更加主流。
如今,FEA 是一种功能强大的工具,已被许多行业的设计师广泛使用。
它实际上用于解决结构,振动和热问题,然后再解决实际问题。
这是您可能没有意识到的有趣事实。
SOUDWORKS CAD的每个座位都包含一个名为SimulationXpress的免费工具,可用于分析具有简单载荷和支撑的单个身体部位。
您可以通过导航到"工具"菜单,然后单击"Xpress产品"来激活。
7WE gkMa*aw<in«» g — *(pn«n»iOMlc为了获得额外的分析功能,SOLIDWORKS 提供了三个模拟软件包,旨 在满足不同用户的需求:Simulation Standard 用于零件和装配体的结构,运动和疲劳分析。
SOliDWORKS有限元分析

有限元分析(FEA,Finite Element Analysis)利用数学近似的方 法对真实物理系统(几何元,就可以用有限数量 的未知量去逼近无限未知量的真实系 统
有限元分析将求解域看成是由许 多称为有限元的小的互连子域组成,
对每一单元假定一个合适的(较简单的)
三、结果分析和输出 应力图 位移图
应变图
右击结果应力,选中编辑定义,在变 型形状区域可以调整变形放大比例
放大24倍
真实
右击应力, 选择图标选 项命令,如 图,选中最 大、小注解, 应力图就会 显示最大和 最小应力的 大小和发生 位置
对应力图解进行ISO 裁剪,能找出零件应 力值等于某个值的所 有区域
近似解,然后推导求解这个域总的满足
条件,从而得到问题的解。这个解不是准 确解,而是近似解,因为实际问题被较简 单的问题所代替。
SOLIDWORKS有限元 分析步骤
一、受力模型建立
二、网格设定和求解
三、结果分析,输出报告
1、设计零件
一、受力模型建立
2、打开solidworks仿真插件simiulation
右击相应图解,在 设定里选中将模型 叠加于变形形状上 可将模型显示
生成分析报告,选择报表, 选择输出包括部分和报表 途径,定义输出格式,就 可以生成报告
3、静态分 析,依次 新算例, 静态命令
6、定义 外加载 荷
4、定义零件的材 料
5、添加夹具,模型必须有合 理的约束,使之无法移动
二、生成网格和求解
1、选择运行菜单下生成网格命令,定义网格密度,自动对零件拆分,网格越 小,计算精度越高
2、运行算例,左击运行命令 后,系统自动求解,并输出应 力、位移和应变图解
基于solidworks的槽钢构建有限元分析、优化设计及对有限元的展望

基于solidworks的槽钢构件有限元分析、优化设计及其发展趋势[ 摘要]:槽钢作为焊接承重架最为重要的部件, 其有限元分析是一个非常有意义的研究领域。
用Solidworks和有限元对微硬盘悬臂梁进行了建模、模态分析,利用理论分析和软件仿真相结合的方式对4. 57 cm微硬盘悬臂梁进行振动模态分析,通过对各阶固有频率下的振型的计算,找出微硬盘悬臂梁中的具有整体弯曲和大摆动的频率点,在进行结构设计和控制方面要避免这些频率点,从而提高微硬盘悬臂梁的整体性能。
本文以63#槽钢为载体, 利用solidworks建立曲轴的三维模型, 并导入cosmos/works有限元分析软件, 计算分析了槽钢的的力学性能, 得到槽钢在极限载荷下的载荷分布情况, 为槽钢焊接构架的优化设计提供了科学依据。
关键词:solidworks软件;槽钢焊件载荷及受力分析;建模;优化设计及展望引言:随着对槽钢焊接件小巧型和可靠性的要求不断提高, 槽钢焊件在保证占最小空间的前提下对强度要求的问题变得十分重要。
本文通过SolidWorks 软件举例建立了槽钢焊件的承载的几何模型, 通过SolidWorks 软件中的有限元分析插件COSMOS/Works 分析了槽钢的力学性能,得出了该槽钢架的载荷分布情况, 为槽钢焊架的优化设计提供重要的科学依据。
目前,市场上流行很多三维设计软件,如Pro /E、UG、CAXA 、SolidWorks等,这些三维设计软件都具有强大的实体建模、参数化特征造型、曲面造型和大型装配处理等功能,它们被广泛用于机械、汽车、航空等领域。
机械产品的设计开发,往往会涉及到许多标准零件,如果每一个标准零件在使用的时候都要重新开始绘图、建模,势必将浪费很多宝贵的时间,如果设计人员能从CAD系统的标准件库中获得满足设计要求的标准件,则可大大减少重复劳动,提高设计效率。
由于大部分三维软件普遍存在一个缺陷,缺少标准零件库,为此,有必要对三维软件进行二次开发,建立标准零件库,以方便用户使用。
SolidWorksSimulation有限元分析培训教程

SolidWorksSimulation有限元分析培训教程SolidWorks Simulation是一种用于进行有限元分析的软件工具,它可以帮助工程师们在设计阶段,预测和模拟产品性能。
这样可以帮助他们提前发现和解决可能存在的问题,更加准确地评估产品的稳定性和可靠性。
在进行SolidWorks Simulation有限元分析之前,首先需要创建CAD模型。
然后,可以使用SolidWorks Simulation中的各种分析工具来模拟和测试产品的行为。
有限元分析是一种通过将复杂的结构分解成许多小的有限元来近似解决方程的方法。
这些有限元是通过将结构分割成离散的区域来建立的,每个区域都可以用简单的数学模型来表示。
然后,通过求解这些模型,可以预测产品在不同载荷下的响应和变形。
在进行分析之前,首先需要定义边界条件和载荷。
边界条件包括固定支撑点、连接约束等;载荷包括力、压力、温度等。
这些条件和载荷的定义将直接影响分析结果。
完成边界条件和载荷的定义后,可以对模型进行网格划分。
网格划分的目的是将有限元分析中所需的离散节点与连续物体的实际形状和尺寸相匹配。
划分网格后,可以通过求解有限元方程组来得到产品在给定条件下的响应和变形。
除了分析结果之外,SolidWorks Simulation还可以提供其他有用的信息,如应力分布、位移图、动画等。
这些信息可以帮助工程师们更好地理解产品的行为,并做出正确的决策。
1. SolidWorks Simulation的基本概念和界面介绍。
包括如何打开SolidWorks Simulation,如何导入CAD模型,如何创建分析模型等。
2.分析前的准备工作。
包括如何定义边界条件和载荷,如何选择适当的分析类型,如何进行网格划分等。
3.分析过程的设置和求解。
包括如何设置参数,如何进行求解,如何查看分析结果等。
4.分析结果的解读和分析。
包括如何分析应力分布、位移图、动画等结果,如何识别问题和改进设计。
solidworks有限元分析

solidworks有限元分析Solidworks有限元分析。
Solidworks是一款广泛应用于工程设计和制造的三维计算机辅助设计软件。
它提供了丰富的工具和功能,可以帮助工程师和设计师进行产品设计、建模和工程分析。
其中,有限元分析是Solidworks中非常重要的一个功能,它可以帮助工程师对产品的结构、应力、变形等进行精确的分析和评估。
本文将介绍Solidworks有限元分析的基本原理、应用和优势。
有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,它通过将复杂的结构分解为许多小的有限元素,然后利用数学方法对每个有限元素进行分析,最终得出整个结构的应力、变形等物理特性。
有限元分析在工程设计和制造中有着广泛的应用,可以帮助工程师评估产品的结构强度、耐久性、安全性等重要性能指标,从而指导产品的设计和改进。
Solidworks的有限元分析功能可以帮助工程师对产品的结构进行精确的分析和评估。
首先,工程师可以在Solidworks中建立产品的三维模型,并将其转换为有限元素模型。
然后,工程师可以对模型进行加载、边界条件等设置,并选择合适的材料属性和分析类型。
最后,Solidworks会自动对模型进行网格划分,并利用数学方法对每个有限元素进行分析,最终得出产品的应力、变形等物理特性。
有限元分析在Solidworks中有着许多应用。
首先,它可以帮助工程师评估产品的结构强度,包括承受的载荷、应力分布等。
其次,它可以帮助工程师评估产品的变形情况,包括挠度、变形量等。
此外,有限元分析还可以帮助工程师评估产品的疲劳寿命、安全性等重要性能指标。
通过有限元分析,工程师可以及时发现产品的设计缺陷和问题,并进行改进和优化,从而提高产品的质量和性能。
Solidworks的有限元分析功能具有许多优势。
首先,它集成在Solidworks软件中,可以直接与产品设计和建模进行无缝对接,节省了工程师的时间和精力。
solidworks有限元分析 (2)

Solidworks有限元分析介绍Solidworks有限元分析(Finite Element Analysis,简称FEA)是一种用于模拟和分析物体结构行为的方法。
它可以帮助工程师们更好地了解产品的性能、强度和耐久性,从而优化设计并减少开发成本。
本文将介绍Solidworks有限元分析的基本概念、步骤和应用场景,并提供一些实际案例来说明其实际应用。
有限元分析的基本概念有限元分析是一种将复杂结构离散化为多个小元素(也称为有限元)的方法,然后对每个小元素进行计算并将其整合到整个结构中的解析技术。
它基于物体受力平衡原理和材料力学行为,利用数值方法求解一系列线性或非线性方程,从而得出结构的应力、变形和振动等特性。
在Solidworks中,用户可以通过插件或内置功能进行有限元分析。
用户需要先导入或创建结构的CAD模型,然后将其转换为有限元模型。
然后,用户可以定义加载条件、约束条件和材料属性等,进行分析并获取结果。
有限元分析的步骤有限元分析通常需要以下步骤:1.导入或创建CAD模型:用户可以通过Solidworks的CAD工具导入现有模型,或使用其设计功能创建新的模型。
2.网格划分:将结构离散化为多个小元素,通常是三角形或四边形的网格。
Solidworks可以自动进行网格划分,也可以手动调整网格密度。
3.定义边界条件:用户需要定义加载条件和约束条件。
加载条件可以是力、压力、温度等,约束条件可以是固定支撑、固定位移等。
4.定义材料属性:用户需要指定每个小元素的材料属性,如杨氏模量、泊松比等。
Solidworks提供了常见材料的数据库,用户可以选择合适的材料。
5.运行分析:用户可以定义分析类型和求解器选项,然后运行有限元分析。
Solidworks会根据用户的设置计算结构的应力、变形和振动等特性。
6.结果分析:分析完成后,用户可以通过Solidworks提供的结果查看工具,如色标图、图表和动画等来分析结果。
用户可以根据结果进行优化设计或验证设计的准确性。
基于SolidWorksSimulation的有限元分析方法

基于SolidWorksSimulation的有限元分析方法SolidWorks Simulation是一种基于有限元分析(FEA)方法的软件,用于进行结构、流体和热传递分析。
该软件提供了一种直观且易于使用的方法,使工程师能够对产品在各种工作条件下的性能进行有效评估。
通过使用SolidWorks Simulation,工程师可以预测产品在真实环境中的行为,并进行系统优化,从而减少实际试验所需的时间和成本。
有限元分析是一种数值模拟技术,用于求解连续介质中的力学问题。
它将复杂的结构分解为多个单元,每个单元都有简化的几何和物理特性。
然后,通过求解每个单元内部的方程,可以得到整个结构的响应。
SolidWorks Simulation使用这种方法来解决各种工程问题,包括结构强度、热传导、振动和流体流动等。
对于结构分析,SolidWorks Simulation可以帮助工程师评估产品的强度、刚度和变形。
它可以模拟应力和应变分布,并显示在模型的各个部分。
通过调整材料属性和几何参数,可以优化产品的设计,以提高其性能并满足设计要求。
此外,SolidWorks Simulation还提供了疲劳分析工具,可以用于评估结构在长期使用后的寿命。
在流体力学方面,SolidWorks Simulation可以模拟空气和液体的流动以及传热过程。
工程师可以分析流体力学特性,如速度、压力、流量和涡旋等,并通过改变几何形状和边界条件来优化产品的设计。
此外,SolidWorks Simulation还可以模拟辐射传热、对流传热和传导传热等热传递过程。
使用SolidWorks Simulation可以帮助工程师提前发现设计中的问题,并减少试验和原型制作所需的成本和时间。
它还可以帮助工程师进行系统优化,以满足性能要求并提高产品的质量和可靠性。
SolidWorks Simulation提供了直观的用户界面和强大的后处理工具,使工程师能够更好地理解和解释分析结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
solidworks有限元分析准确性问题
我们知道,solidworks有限元分析被广泛应用于机械、汽车、家电、电子产品、家具、建筑、医学骨科等产品设计及研发。
其作用是:确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费;是产品设计研发的核心技术。
solidworks有限元分析准应用范围如此广泛,那么solidworks有限元分析的准确性怎么样呢?具有多年项目经验和培训经验的看板网就根据自己的经验讲讲solidworks有限元分析准确性问题,不全之处望各位朋友指正。
solidworks采用的内核就是FEA,也就是俗称的有限元分析他和ANSYS等都同样的内核。
下面分析一下,solidworks有限元分的误差主要来源(也就是准不准的原因):形成数学模型时(俗称理想化,去掉圆角之类的)的建模误差、离散数学模型(俗称网格划分,看你选用什么网格类型,是实体,还是壳,还是混合)的离散误差、最后才是求解过程中的计算误差。
前面两个误差是人为产生的,与你的建模技巧,方法的运用有关系,而后在是每个有限元分析软件都产生的计算误差(通常微乎其微)。
所以,有限元准不准关键还是看你的技巧,而不在软件本身,因为软件本身就像计算器一下,只要你给的数据是准的,计算出来就是准的。