乘法公式地灵活运用
乘法公式应用综合

乘法公式应用综合在咱们的数学世界里,乘法公式那可真是个神奇的存在!就像一把万能钥匙,能帮咱们打开好多难题的锁。
先来说说完全平方公式吧,(a ± b)² = a² ± 2ab + b²,这玩意儿可太有用啦!我记得有一次,我去逛菜市场,看到一个卖水果的摊位。
摊主正在算着成本和利润。
他说一箱苹果进价是 a 元,他打算每箱加价 b 元出售。
那按照完全平方公式,他每箱的利润就是 (a + b)² - a² = 2ab +b²。
这可让他一下子就清楚了自己能赚多少钱。
还有平方差公式 (a + b)(a - b) = a² - b²,也是解决问题的好帮手。
比如在装修房子的时候,要计算房间地面的面积。
如果房间的长是 (a + b) 米,宽是 (a - b) 米,那么地面的面积就是 a² - b²平方米。
乘法公式在代数运算中更是大显身手。
比如化简式子 (x + 2y)² - (x - 2y)²,咱们就可以直接套用公式。
先把前面的 (x + 2y)²展开得到 x² +4xy + 4y²,后面的 (x - 2y)²展开得到 x² - 4xy + 4y²,然后一减,4xy 就抵消掉了,剩下 8xy 。
是不是很简单?再看这道题:已知 a + b = 5 ,ab = 3 ,求 a² + b²的值。
这时候咱们就可以用完全平方公式啦,(a + b)² = a² + 2ab + b²,变形一下,a² + b² = (a + b)² - 2ab ,把数值带进去,5² - 2×3 = 19 。
乘法公式在几何图形中也有出色的表现。
比如说一个正方形的边长增加了 x ,那它的面积增加多少呢?原来正方形的边长是 a ,面积就是 a²。
(完整版)乘法公式的灵活运用

1乘法公式的灵活运用一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m ) =x 2y 2-(z 2+zm +zm +m 2) =x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2 =x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2) =x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
乘法公式

1乘法公式一、复习: (a+b)(a-b)= (a+b)2= (a-b)2=归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=② 符号变化,(-x +y )(-x -y )=③ 指数变化,(x 2+y 2)(x 2-y 2)=④ 系数变化,(2a +b )(2a -b )=⑤ 换式变化,[xy +(z +m )][xy -(z +m )]⑥ 增项变化,(x -y +z )(x -y -z )⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2(1)已知2=+b a ,1=ab ,求22b a +。
(2)已知8=+b a ,2=ab ,求2)(b a -的值。
(3)计算19992-2000×1998 (4)已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
(5)已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
(6)判断(2+1)(22+1)(24+1)……(22048+1)+1的个位数字是几?(7)运用公式简便计算(1)1032 (2)1982(8)计算(1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2)(9)解下列各式(1)已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。
(2)已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。
(3)已知a (a -1)-(a 2-b )=2,求222a b ab +-的值。
(4)已知13x x -=,求441x x +的值。
(10)四个连续自然数的乘积加上1,一定是平方数吗?为什么?(11)计算 (1)(x 2-x +1)2 (2)(3m +n -p )22 二、乘法公式的用法(一)、套用例1. 计算:()()53532222x y x y +- (-2x -y)(2x -y)(二)、连用:连续使用同一公式或连用两个以上公式解题。
乘法公式灵活运用

乘法公式灵活运用乘法公式是数学中常用的一种计算方法,用于求解两个或多个数的乘积。
灵活运用乘法公式可以简化计算,提高解题效率。
本文将从实际问题出发,分析乘法公式的灵活运用方法,以及对应的数学技巧,帮助读者更好地掌握乘法公式的应用。
乘法公式的基本形式是:a×b=c,其中a和b是乘数,c是积。
乘法公式可以用于求解各类数学问题,包括乘法的基本性质、因数分解、最大公约数、公倍数等。
在乘法的基本性质中,乘法公式可以被运用于计算两个数相乘的结果。
例如计算12×35,我们可以使用乘法公式,将12拆解为10+2,35拆解为30+5,然后进行分配律运算:(10+2)×(30+5)=(10×30)+(10×5)+(2×30)+(2×5)=300+50+60+10=420。
这样,我们可以通过分解乘数,将原本复杂的乘法运算简化为几个简单的加法和乘法运算。
乘法公式还可以用于因数分解。
因数分解是将一个数分解为多个乘数的乘积,通过应用乘法公式,可以将这个过程简化。
例如对于数45,我们可以将它分解为3×15,然后继续对15进行因数分解,得到3×5×3、这样,45就可以表示为它的全部因数的乘积。
因数分解在数论、代数等领域有着重要的应用,通过乘法公式,我们可以更轻松地完成这个过程。
乘法公式在解决实际问题时,还可以通过一些数学技巧来进一步灵活运用。
例如在乘法运算中,可以通过重新排序进行简化。
如果要计算3×7×5,我们可以将其按需重新排列,得到5×7×3,然后再进行乘法运算:5×7=35,35×3=105、这样,我们可以通过重新排列乘积的顺序,在保持乘数不变的前提下,使得计算更加简单。
此外,乘法公式还可以和其他数学知识相结合,进一步拓展乘法的应用。
例如在代数中,乘法公式可以用于计算多项式的展开式。
七年级数学下册《乘法公式的综合运用》教案、教学设计

5.教师及时批改作业,了解学生的学习情况,为下一步教学提供依据。
d.总结:引导学生总结乘法公式的特点、应用规律和注意事项。
e.作业:布置适量的课后作业,巩固所学知识。
4.教学评价:
a.过程性评价:关注学生在课堂上的参与程度、思考问题和解决问题的能力。
b.终结性评价:通过课后作业和阶段测试,评价学生对乘法公式的掌握程度。
c.个性化评价:针对学生的个体差异,给予有针对性的指导和鼓励。
2.完全平方公式:继续采用具体数字,让学生观察并归纳出完全平方公式:a² + 2ab + b² = (a + b)²。同时,引导学生了解完全平方公式的变式,如a² - 2ab + b² = (a - b)²。
3.公式的推导与应用:通过几何图形、实际例题等方式,讲解乘法公式的推导过程和应用方法,让学生理解乘法公式的实际意义。
2.情境导入:展示一个与学生生活相关的实际问题,如计算一个正方形与一个长方形的面积差,引发学生思考如何简化计算过程,从而引出乘法公式的学习。
(二)讲授新知
1.平方差公式:以具体的数字为例,引导学生观察并发现两个数的平方差与这两个数的和与差之间的关系。通过实际计算,总结出平方差公式:a² - b² = (a + b)(a - b)。
七年级数学下册《乘法公式的综合运用》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握乘法公式的综合运用,包括平方差公式、完全平方公式以及它们的变式。
2.培养学生运用乘法公式进行简便计算的能力,提高运算速度和准确性。
3.通过对乘法公式的运用,使学生能够解决一些实际问题,如面积计算、速度问题等。
最经典的乘法公式综合应用与拓展分析

最经典的乘法公式综合应用与拓展分析乘法公式是数学中常用的公式之一,它们在各个数学领域中都有广泛的应用。
本文将从学生和教师两个角度综合分析乘法公式的最经典的应用与拓展。
首先,对于学生而言,乘法公式是他们掌握数学知识的基础。
学生在学习数学的过程中,会接触到很多与乘法相关的知识,如乘法口诀、乘法逆元等。
通过乘法公式的学习,学生可以更好地理解和应用乘法的原理和方法。
比如,在解决乘法运算中的复杂问题时,学生可以灵活运用乘法公式,提高解题的效率和准确性。
其次,对于教师而言,乘法公式是他们教学的重要工具。
教师在教授数学知识时,可以通过乘法公式来引导学生掌握乘法的基本操作和运算规则。
此外,乘法公式还可以作为教师讲解和解决数学问题的案例,帮助学生从实践中理解乘法的原理和应用。
例如,在教授高中数学中的二次方程时,教师可以通过乘法公式来引导学生求解方程的根,帮助学生加深对乘法公式的理解和运用。
乘法公式还有很多拓展应用,以下是一些经典的拓展案例:1.方阵乘法:方阵乘法是线性代数中的常用运算,通过乘法公式可以方便地计算两个方阵的乘积。
在实际应用中,方阵乘法广泛用于图像处理、数据压缩等领域。
2.应用于几何图形:通过乘法公式可以计算图形的面积和周长。
例如,计算矩形的面积可以使用乘法公式的形式:面积=长度x宽度。
3.二项式展开:二项式展开是代数中常用的运算,通过乘法公式可以方便地展开一个二项式。
在高中数学中,二项式展开广泛应用于排列组合、概率等问题的求解中。
4.概率与统计:乘法公式在概率和统计中有广泛的应用。
例如,计算多事件的概率时,可以使用乘法公式计算独立事件的联合概率。
此外,在统计学中,乘法公式也被用于计算随机变量的期望和方差等。
总而言之,乘法公式作为数学中的重要工具,在学生和教师的学习和教学中都起到了至关重要的作用。
通过乘法公式的学习和应用,学生可以提高解题的效率和准确性,教师可以引导学生更好地掌握乘法的原理和应用。
此外,乘法公式还有许多拓展应用,可以在其他数学领域中发挥重要作用。
乘法公式的运用技巧

3.解:原式=x2+2kx+k2 由题意得:原式=(x-4)2
或=(x+4)2 解得:k=4 或k=-4
2.若 x2 2kx 9 是一个完全平方公式,则 k ____3___;
3.若 x2 8x k2 是一个完全平方公式,则k ___4____;
1.解:设a=2008,b=2009 原式=a2-2ab+b2 =(a-b)2 把a=2008,b=2009
代入得:(a-b)2=1
2.解:原式=x2+2kx+32 由题意得:原式=(x-3)2
3、逆着用
计算:1.32+2×1.3×8.7+8.72
解:原式=(1.3+8.7)2 =102 =100
公式可逆,左右互换
4.巧着用
①计算: (2+1)(22+1)(24+1) (28+1)
解:原式=(2-1)(2+1)(22+1)(24+1)(28+1) =(22-1)(22+1)(24+1)(28+1) =(24-1)(24+1)(28+1) =(28-1)(28+1) =216-1
②计算: (3+1)(32+1)(34+1) (38+1)…(32048+1) 1
解:原式= 2 (3-1)(3+1)(32+1)(34+1)… (32048+1) = 1 (34096-1)
2 34096 1
=
2
创造条件,灵活运用
三 拓展提升
1. 20082 2 2008 2009 20092 =___1____;
灵活应用乘法公式巧妙解题

乘法 公 式 的灵 活 运 用.
一
、
分 清 平方 差 公 式 中 的a b 对 号入 座 、。
-
例 1计 算 (y x)一2X : 3 一 ( 2 3) y
把 具有 特 殊 形 式 的多 项 式 相 乘 的式 子 及 其 结 果 写 成 公 式 的形式 . 就是 “ 法 公 式 ”它 可 按 多 项 式 乘 以 多项 式 的 法 则 进 乘 . 行推导. “ 法公式” 乘 主要 指 :
解 :3_ (y 2
J
2
x
) 一_y
_ ( [ 一
:
+y [ 了 x -y 3]( 2 3] 一 )
这 两 个 基 本 公 式 应 用 十 分 广 泛 , 巧 性 也 比较 强 . 确 灵 技 正 活 地 应 用 乘 法 公 式 , 以使 运算 简 便 , 半 功 倍 , 而 提 高 学 可 事 从
: X
—
9
2 5
例2 计 算 (— +— )a b c d : a b c d (— —+ ) 分 析 : 两 个 括 号 内 相 同 项 归 纳 为 一 类 作 为 a 把 只 有 符 把 , 号 相 反 的项 归 纳 为 一 类 作 为b 再 用 平 方 差公 式计 算 . , 解 : 式 = (— ) (— ) [a b 一 c d ] 原 [a b + c d ](— ) (— )
:
广 泛 内涵 及 其 变形 . 公式 中 的ab 以 表示 具 体 的数 , 可 以表 、可 也 示 单 项 式 或 多 项 式 , 要 符 合 某 个 公 式 的 结 构 特 征 。 可 以运 只 就 用 这 个 公 式 .在 进 行 整 式 乘 法 运 算 时若 能仔 细 观 察 乘 式 的结 构 特 征 . 据 它 的特 征 选 择 合 适 的 方 法 , 仅 能使 问题 化 繁 为 根 不 简 , 有助于培养学生的创新思维和探索精神 . 面举例说 明 还 下 之 间 有 怎样 的联 系 ? ”是 不 是体 现 了 由量 变到 质 变 的过 程 ? ” “ 在这里 , 师冷静 思考 , 妙捕捉多媒 体的亮点资 源 , 教 巧 并 灵 活 地 调 整 教 学 方 法 , 智 生 成 新 的 教 学 策 略 , 教 学 顺 利 展 机 使
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文案大全乘法公式的灵活运用一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m ) =x 2y 2-(z 2+zm +zm +m 2) =x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2 =x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2) =x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
〖解析〗此题可用完全平方公式的变形得解。
解:a 2+b 2=(a+b)2-2ab=4-2=2 (a-b)2=(a+b)2-4ab=4-4=0文案大全例5:已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
〖解析〗此题若想根据现有条件求出x 、y 、z 的值,比较麻烦,考虑到x 2-z 2是由x+z 和x-z 的积得来的,所以只要求出x-z 的值即可。
解:因为x-y=2,y-z=2,将两式相加得x-z=4,所以x 2-z 2=(x+z )(x-z)=14×4=56。
例6:判断(2+1)(22+1)(24+1)……(22048+1)+1的个位数字是几?〖解析〗此题直接计算是不可能计算出一个数字的答案,故有一定的规律可循。
观察到1=(2-1)和上式可构成循环平方差。
解:(2+1)(22+1)(24+1)……(22048+1)+1 =(2-1)(22+1)(24+1)……(22048+1)+1=24096=161024 因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6。
例7.运用公式简便计算(1)1032(2)1982解:(1)1032=(100+3)2 =1002+2⨯100⨯3+32=10000+600+9 =10609 (2)1982=(200-2)2=2002-2⨯200⨯2+22=40000-800+4 =39204例8.计算(1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2)解:(1)原式=[(a -3c )+4b ][(a -3c )-4b ]=(a -3c )2-(4b )2=a 2-6ac +9c 2-16b 2(2)原式=[3x +(y -2)][3x -(y -2)]=9x 2-( y 2-4y +4)=9x 2-y 2+4y -4例9.解下列各式(1)已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。
(2)已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。
(3)已知a (a -1)-(a 2-b )=2,求222a b ab +-的值。
(4)已知13x x -=,求441x x+的值。
分析:在公式(a +b )2=a 2+b 2+2ab 中,如果把a +b ,a 2+b 2和ab 分别看作是一个整体,则公式中有三个未知数,知道了两个就可以求出第三个。
解:(1)∵a 2+b 2=13,ab =6∴(a +b )2=a 2+b 2+2ab =13+2⨯6=25 (a -b )2=a 2+b 2-2ab =13-2⨯6=1 (2)∵(a +b )2=7,(a -b )2=4∴ a 2+2ab +b 2=7 ① a 2-2ab +b 2=4 ② ①+②得 2(a 2+b 2)=11,即22112a b +=①-②得 4ab =3,即34ab =(3)由a (a -1)-(a 2-b )=2 得a -b =-2()22221222a b ab a b ab +∴-=+-()()22112222a b =-=⨯-=文案大全(4)由13x x -=,得19x x 2⎛⎫-= ⎪⎝⎭ 即22129x x +-= 22111x x ∴+=221121x x 2⎛⎫∴+= ⎪⎝⎭ 即4412121x x ++= 441119x x +=例10.四个连续自然数的乘积加上1,一定是平方数吗?为什么? 分析:由于1⨯2⨯3⨯4+1=25=522⨯3⨯4⨯5+1=121=1123⨯4⨯5⨯6+1=361=192…… 得猜想:任意四个连续自然数的乘积加上1,都是平方数。
解:设n ,n +1,n +2,n +3是四个连续自然数则n (n +1)(n +2)(n +3)+1 =[n (n +3)][(n +1)(n +2)]+1 =(n 2+3n )2+2(n 2+3n )+1=(n 2+3n )(n 2+3n +2)+1 =(n 2+3n +1)2∵n 是整数,∴ n 2,3n 都是整数 ∴ n 2+3n +1一定是整数∴(n 2+3n +1)是一个平方数 ∴四个连续整数的积与1的和必是一个完全平方数。
例11.计算 (1)(x 2-x +1)2(2)(3m +n -p )2解:(1)(x 2-x +1)2=(x 2)2+(-x )2+12+2⋅ x 2⋅(-x )+2⋅x 2⋅1+2⋅(-x )⋅1=x 4+x 2+1-2x 3+2x 2-2x=x 4-2x 3+3x 2-2x +1(2)(3m +n -p )2=(3m )2+n 2+(-p )2+2⋅3m ⋅n +2⋅3m ⋅(-p )+2⋅n ⋅(-p )=9m 2+n 2+p 2+6mn -6mp -2np 分析:两数和的平方的推广(a +b +c )2=[(a +b )+c ]2=(a +b )2+2(a +b )⋅c +c 2=a 2+2ab +b 2+2ac +2bc +c 2=a 2+b 2+c 2+2ab +2bc +2ac 即(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac几个数的和的平方,等于它们的平方和加上每两个数的积的2倍。
二、乘法公式的用法(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础,同时能提高学生的观察能力。
例1. 计算:()()53532222xyxy+- 解:原式()()=-=-53259222244x y x y(二)、连用:连续使用同一公式或连用两个以上公式解题。
例2. 计算:()()()()111124-+++a a a a解:原式()()()=-++111224a a a()()=-+=-111448a a a例3. 计算:()()32513251x y z x y z +-+-+--解:原式()()[]()()[]=-++--+25312531y z x y z x文案大全()()=--+=-+---25314925206122222y z x y x z yz x三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。
例4. 计算:()()57857822a b c a b c +---+解:原式()()[]()()[]=+-+-++---+578578578578a b c a b c a b c a b c()=-=-101416140160a b c ab ac四、变用: 题目变形后运用公式解题。
例5. 计算:()()x y z x y z +-++26解:原式()[]()[]=++-+++x y z z x y z z 2424()()=++-=+-+++x y z z x y z xy xz yz241224422222五、活用: 把公式本身适当变形后再用于解题。
这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()()12223244222222222222....a b ab a b a b ab a b a b a b a ba b a b ab+-=+-+=+++-=++--=灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。
例6. 已知a b ab -==45,,求a b 22+的值。
解:()a b a b ab 2222242526+=-+=+⨯=例7. 计算:()()a b c d b c d a ++-+++-22解:原式()()[]()()[]=++-++--b c a d b c a d 22()()[]=++-=++++-2222244222222b c a d a b c d bc ad例8. 已知实数x 、y 、z 满足xy z xy y +==+-592,,那么x y z ++=23( )文案大全解:由两个完全平方公式得:()()[]aba b a b =+--1422从而 ()[]zx y y 2221459=--+- ()()()=--+-=-+-=--+=--25414529696932222y y y y y y y ()∴∴,∴∴z y z y x x y z 22300322322308+-====++=+⨯+=三、学习乘法公式应注意的问题(一)、注意掌握公式的特征,认清公式中的“两数”. 例1 计算(-2x 2-5)(2x 2-5)分析:本题两个因式中“-5”相同,“2x 2”符号相反,因而“-5”是公式(a +b )(a -b )=a 2-b 2中的a ,而“2x 2”则是公式中的b .解:原式=(-5-2x 2)(-5+2x 2)=(-5)2-(2x 2)2=25-4x 4.例2 计算(-a 2+4b )2分析:运用公式(a +b )2=a 2+2ab +b 2时,“-a 2”就是公式中的a ,“4b ”就是公式中的b ;若将题目变形为(4b -a 2)2时,则“4b ”是公式中的a ,而“a 2”就是公式中的b .(解略)(二)、注意为使用公式创造条件 例3 计算(2x +y -z +5)(2x -y +z +5).分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x ”、“5”两项同号,“y ”、“z ”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式. 解:原式=〔(2x +5)+(y -z )〕〔(2x +5)-(y -z )〕 =(2x +5)2-(y -z )2=4x 2+20x +25-y +2yz -z 2.例4 计算(a -1)2(a 2+a +1)2(a 6+a 3+1)2分析:若先用完全平方公式展开,运算十分繁冗,但注意逆用幂的运算法则,则可利用乘法公式,使运算简便. 解:原式=[(a -1)(a 2+a +1)(a 6+a 3+1)]2=[(a 3-1)(a 6+a 3+1)]2=(a 9-1)2=a 18-2a 9+1例5 计算(2+1)(22+1)(24+1)(28+1).分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简. 解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)=(22-1)(22+1)(24+1)(28+1)=(24-1)(24+1)(28+1)=(28-1)(28+1)=216-1(三)、注意公式的推广计算多项式的平方,由(a+b)2=a2+2ab+b2,可推广得到:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例6 计算(2x+y-3)2解:原式=(2x)2+y2+(-3)2+2·2x·y+2·2x(-3)+2·y(-3)=4x2+y2+9+4xy-12x-6y.(四)、注意公式的变换,灵活运用变形公式例7 (1)已知x+y=10,x3+y3=100,求x2+y2的值;(2)已知:x+2y=7,xy=6,求(x-2y)2的值.分析:粗看似乎无从下手,但注意到乘法公式的下列变形:x2+y2=(x+y)2-2xy,x3+y3=(x+y)3-3xy(x+y),(x+y)2-(x-y)2=4xy,问题则十分简单.解:(1)∵x3+y3=(x+y)3-3xy(x+y),将已知条件代入得100=103-3xy·10,∴xy=30 故x2+y2=(x+y)2-2xy=102-2×30=40.(2)(x-2y)2=(x+2y)2-8xy=72-8×6=1.例8 计算(a+b+c)2+(a+b-c)2+(a-b+c)+(b-a+c)2.分析:直接展开,运算较繁,但注意到由和及差的完全平方公式可变换出(a+b)2+(a-b)2=2(a2+b2),因而问题容易解决.解:原式=[(a+b)+c]2+[(a+b)-c]2+[c+(a-b)]2+[c-(a-b)]2=2[(a+b)2+c2]+2[c2+(a-b)2]=2[(a+b)2+(a-b)2]+4c2=4a2+4b2+4c2(五)、注意乘法公式的逆运用例9 计算(a-2b+3c)2-(a+2b-3c)2.分析:若按完全平方公式展开,再相减,运算繁杂,但逆用平方差公式,则能使运算简便得多.解:原式=[(a-2b+3c)+(a+2b-3c)][(a-2b+3c)-(a+2b-3c)]=2a(-4b+6c)=-8ab+12ac.例10 计算(2a+3b)2-2(2a+3b)(5b-4a)+(4a-5b)2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便.解:原式=(2a+3b)2+2(2a+3b)(4a-5b)+(4a-5b)2=[(2a+3b)+(4a-5b)]2=(6a-2b)2=36a2-24ab+4b2.四、怎样熟练运用公式:(一)、明确公式的结构特征这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方.明确了公式的结构特征就能在各种情况下正确运用公式.文案大全文案大全(二)、理解字母的广泛含义乘法公式中的字母a 、b 可以是具体的数,也可以是单项式或多项式.理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式.如计算(x +2y -3z )2,若视x +2y 为公式中的a ,3z 为b ,则就可用(a -b )2=a 2-2ab +b 2来解了。