高一数学古典概型1

合集下载

3.2.1古典概型

3.2.1古典概型


本事件总数.
【解析】将三张卡片排成一行,共有BEE,BEE,EBE,EEB,EBE, EEB,6种可能的结果,恰好排成英文单词BEE的结果有两种,
2 1 所以所求概率为P== . 6 3 1 答案: 3

能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型
5.(2010·浙江高一检测)从一个装有6个彩色球(3红,2黄,
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精


能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精


能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精


能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精

能 巩 固 提 升
目 录 课 程 目 标 设 置 主 题 探 究 导 学
【解析】(1)一共有8种不同的结果,列举如下: (红、红、红)、(红、红、黑)、(红、黑、红)、(红、黑、 黑)、(黑、红、红)、(黑、红、黑)、(黑、黑、红)、(黑、 黑、黑). (2)记“3次摸球所得总分为5”为事件A. 事件A包含的基本事件为:(红、红、黑)、(红、黑、红)、 (黑、红、红),事件A包含的基本事件数为3.
1.古典概型的概率计算公式与随机事件频率的计算公式有什么 区别? 提示:古典概型的概率公式P(A)=
m ,与随机事件A发生的频率 n
典 型 例 题 精

m m 有本质的区别,其中P(A)= 是一个定值,且对同一试验的 n n

高一数学古典概型

高一数学古典概型

பைடு நூலகம்
紫金阁官网
[单选,A1型题]哪种疾病用青霉素治疗可引起赫氏反应()。A.流行性脑脊髓膜炎B.草绿色链球菌心内膜炎C.大叶性肺炎D.气性坏疽E.梅毒 [判断题]出入境旅客携带物的检验检疫,以现场检疫为主,其他检疫手段为辅。()A.正确B.错误 [单选]风湿性心脏瓣膜病主动脉瓣关闭不全和主动脉瓣狭窄不具有以下哪项表现().A.左心室大B.左心室负荷量增加C.S1亢进D.心绞痛E.A2减弱 [单选]慢性喘息型支气管炎,急性发作期的主要治疗措施是()A.祛痰止咳B.解痉平喘C.持续低流量吸氧D.控制感染E.针灸治疗 [单选]以下跳汰机是按入选煤的粒度加以区分的()。A、块煤跳汰机B、单段跳汰机C、主选跳汰机D、单槽跳汰机 [单选]大型运输机的最大使用负过载大约为()。A.0.5-2.5B.1.5-2.5C.0.5-1.5D.2-3 [单选,A1型题]乳腺癌患者乳腺皮肤出现“酒窝征”的原因是()。A.肿瘤侵犯了胸大肌B.肿瘤侵犯了Cooper韧带C.瘤细胞堵塞了局部皮下淋巴管D.肿瘤侵犯了周围腺体E.肿瘤侵犯了局部皮肤 [单选]如图,气管隆突的高度相当于()A.颈静脉切迹B.第二肋间C.第三肋间D.胸骨柄E.胸骨角 [名词解释]补催青 [单选]关于卵巢非赘生性囊肿的描述哪个不对()A.可与子宫粘连B.多为单侧C.<6cmD.多为囊性E.绝无压痛 [单选]脏器功能测定、脏器显像以及体外放射分析等技术的共同原理是()A.放射性成像B.稀释法原理C.免疫反应D.示踪技术的原理E.动力学模型 [单选,A1型题]膀胱癌最常见的组织类型是()A.鳞癌B.腺癌C.移行细胞癌D.透明细胞癌E.乳头状癌 [填空题]从原理上讲离心泵和离心风机都是介质流经叶轮叶道时,受到()的作用而获得()。 [单选,A1型题]胎盘附着面的子宫内膜完全修复需在产后何时()A.1~2周B.2~4周C.4~5周D.6周E.8~lO周 [单选]压力容器的人孔通常采用()。A.凸形封头B.锥形封头C.平板封头D.蝶形封头 [名词解释]同位素成分 [问答题,简答题]奥运五环旗中的绿色环代表哪一洲? [问答题,简答题]CTCS2-200H型车载列控系统中DMI的作用是什么? [单选]()是指一个测验的结果与被测验者行为的公认标准之间的相关程度。A.信度B.效度C.难度D.标准化 [单选]《2007版标准文件》规定,监理人应在收到承包人竣工结算申请后()天内完成核查。A.7B.14C.21D.28 [问答题,简答题]常顶回流罐长8米,直径3米(头盖体积忽略不计),装水试漏每小时进水20m3,问几小时能装满? [填空题]抢险人员进入漏氨事故现场之前必须带好()! [判断题]CO2(g)的标准摩尔生成焓等于石墨的标准摩尔燃烧热。A.正确B.错误 [单选]以下属于健康保险的特征的是()A.精算技术比较简单B.一般具有储蓄性C.保险金一般为给付性D.保险期限通常为一年期 [单选]逾期无人认领的拾到或寄存行李处置的时限规定:旅客放弃领取或无法联络到旅客时,保存期限为()天,自拾到或寄存的次日起算。A.40B.90C.30D.60 [单选]不符合皮肤病外用药剂型选择原则的是()A.急性炎症性皮损,仅有潮红、斑丘疹而无糜烂,选用粉剂或振荡剂B.有水疱选用湿敷C.糜烂、渗出时选用软膏D.亚急性炎症皮损可选用油剂、糊剂或乳剂E.慢性炎症皮损选用软膏、糊剂或硬膏 [不定项选择]属于从传播途径上降低噪声的方法的是()。A.在工程设计中改进生产工艺和加工操作方法,降低工艺噪声B.在生产管理和工程质量控制中保持设备良好运转状态,不增加不正常运行噪声C.合理安排建筑物功能和建筑物平面布局,使敏感建筑物远离噪声源,实现"闹静分开"D.采用合 [填空题]人类学家从非洲、亚洲、欧洲发现古人类化石,得出人类起源于人猿,从猿到人的科学结论,并以三大洲的人型体质特征将人类化分为:()、()、()。 [单选]保留完整水疱皮的作用除外()A.防止创面干燥加深B.减轻疼痛C.减少水分蒸发D.减少污染、感染E.充分引流 [单选]健康城市的基本特征是()。A.和谐性、整体性B.持续性、高效性C.区域性D.参与性、独特性E.以上各条都是,但都不全面 [单选]印铁时,预涂无色树脂的主要目的是()。A.保护金属B.增强表面附着力C.遮盖底色D.防止铁皮生锈 [单选]蒸汽锅炉()的总排放量必须大于锅炉最大连续蒸发量。A、水位表B、排污阀C、安全阀D、压力表 [单选]用孕激素治疗闭经出现撤药性阴道流血,说明()。A.子宫内膜萎缩B.子宫内膜增生过度C.子宫内膜结核D.子宫内膜已受雌激素影响E.子宫内膜未受雌激素影响 [问答题,简答题]货运检查作业在列整理有何规定? [单选,A2型题,A1/A2型题]诊断颅内血管疾病最有价值的检查是()。A.CTB.MRIC.脑血管造影D.头X-rayE.MRA [多选,案例分析题]患者,女性,45岁,1981年6月~1990年10月从事油漆工作,作业环境无机械通风排毒设施及自然通风,个人无防毒口罩,穿单位统一着装的工作服工作。患者从1990年离岗以后未再从事过油漆工作。1993年8月20日,患者因自觉头痛、头昏、疲乏无力、眼痛、刷牙出血、月经 [单选,A2型题,A1/A2型题]刺激腕部尺神经,用表面电极在小指展肌记录诱发电位的形状()A.起始为正相的三相波B.起始为负相的双相波C.起始为正相的双相波D.多相波E.单相波 [单选]《脉要精微论》所论“筋将惫”的症状是A.不能久立,行将振掉B.转摇不能C.屈伸不能,行则偻附D.背曲肩随E.以上均不是 [填空题]供学生使用的文具、娱乐器具、(),必须符合国家有关卫生标准。 [问答题,简答题]什么叫稀土选矿?常用稀土选矿方式有哪些?

高一数学必修3课件:3-2-1古典概型

高一数学必修3课件:3-2-1古典概型

①本摸球事件中共有5个球,其中3个白球,2个黑球. ②题目中摸球的方式为一次摸出两个球,每个球被摸取 是等可能的. 解答本题可先列出摸出两球的所有基本事件,再数出均 为白球的基本事件数.
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
[解析]
(1)方法一:采用列举法:分别记白球为1,2,3
3.树形图法 树形图法是进行列举的一种常用方法,适合较复杂问题 中基本事件数的探究.
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
[例1]
将一枚骰子先后抛掷两次,则:
(1)一共有几个基本事件? (2)“出现的点数之和大于8”包含几个基本事件?
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
(1)由图知,共36个基本事件. (2)点数之和大于8包含10个基本事件(已用“√”标出).
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
规律总结:要写出所有的基本事件可采用的方法较 多.例如,列举法、列表法、树形图法,但不论采用哪种方 法,都要按一定的顺序进行,做到不重漏.
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
2.列表法 对于试验结果不是太多的情况,可以采用列表法.通常 把对问题的思考分析归结为“有序实数对”,以便更直接地 找出基本事件个数.列表法的优点是准确、全面、不易遗 漏.
第三章 3.2
3.2.1

苏教版数学高一《古典概型》 名师教案 江苏省扬大附中

苏教版数学高一《古典概型》 名师教案  江苏省扬大附中
例3将一颗骰子先后抛掷2次,观察向上的点数,问:
(1)共有多少种不同的结果?
(2)两数之和是3的倍数的结果有多少种?
(3)两数之和是3的倍数的概率是多少?
例4用三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求:
(1)3个矩形颜色都相同的概率;
(2)3个矩形颜色都不同的概率.
例5 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件概率求法,解题时要注意两点:
1.古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
2.古典概型的解题步骤;
(1)求出总的基本事件数;
(2)求出事件A所包含的基本事件数,然后利用公式
P(A)=
五、课外作业
课本第97页 习题 1,3,4,5,6,7,8,9,10,11,12
3、情感态度与价值观:
通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.
教学重点:
正确理解掌握古典概型及其概率公式;
教学难点:
正确理解随机数的概念,并能应用计算机产生随机数.
教学过程:
一、问题情境
1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,那么抽到的牌为红心的概率有多大?
例2豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D,决定矮的基因记为d,则杂交所得第一子代的一对基因为Dd.若第二子代的D,d基因的遗传是等可能的,求第二子代为高茎的概率(只要有基因D 则其就是高茎,只有两个基因全是d时,才显现矮茎).
思考:你能求出上述第二子代的种子经自花传粉得到的第三子代为高茎的概率吗?
如果一次试验的等可能基本事件共有 个,那么每一个等可能基本事件发生的概率都是 .如果某个事件A包含了其中 个等可能基本事件,那么事件A发生的概率为:

高中数学第七章概率2古典概型第1课时古典概型的概率计算公式及其应用课后习题北师大版必修第一册

高中数学第七章概率2古典概型第1课时古典概型的概率计算公式及其应用课后习题北师大版必修第一册

第1课时 古典概型的概率计算公式及其应用A级必备知识基础练1.下列事件属于古典概型的是( )A.任意抛掷两颗均匀的正方体骰子,所得点数之和作为基本事件B.篮球运动员投篮,观察他是否投中C.测量一杯水分子的个数D.在4个完全相同的小球中任取1个2.(2021浙江杭州期中)从一副52张的扑克牌中任抽一张,“抽到K或Q”的概率是( )A.1 26B.113C.326D.2133.将一枚质地均匀的骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有相等的实根的概率为( )A.1 12B.19C.136D.1184.(多选题)以下对各事件发生的概率判断正确的是( )A.甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是13B.在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115C.将一个质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是536D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是125.20名高一学生、25名高二学生和30名高三学生在一起座谈,如果任意抽其中一名学生讲话,抽到高一学生的概率是 ,抽到高二学生的概率是 ,抽到高三学生的概率是 .6.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为 .7.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为 .8.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖(所有的球除颜色外都相同).(1)用球的标号列出所有可能的摸出结果.(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.9.为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙、丙三支队伍参加决赛.(1)求决赛中甲、乙两支队伍恰好排在前两位的概率;(2)求决赛中甲、乙两支队伍出场顺序相邻的概率.B级关键能力提升练10.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为( )A.5 8B.18C.38D.1411.若集合A={1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是( )A.2 9B.13C.89D.112.(多选题)一个袋子中装有3件正品和1件次品,按以下要求抽取2件产品,其中结论正确的是( )A.任取2件,则取出的2件中恰有1件次品的概率是12B.每次抽取1件,不放回抽取两次,样本点总数为16C.每次抽取1件,不放回抽取两次,则取出的2件中恰有1件次品的概率是12D.每次抽取1件,有放回抽取两次,样本点总数为1613.天气预报说,今后三天每天下雨的概率相同,现用随机模拟的方法预测三天中有两天下雨的概率,用骰子点数来产生随机数.依据每天下雨的概率,可规定投一次骰子出现1点和2点代表下雨;投三次骰子代表三天;产生的三个随机数作为一组.得到的10组随机数如下:613,265,114,236,561,435,443,251,154,353.则在此次随机模拟试验中,每天下雨的概率的近似值是 ,三天中有两天下雨的概率的近似值为 .14.有6根细木棒,长度分别为1,2,3,4,5,6,从中任取3根首尾相接,能搭成三角形的概率是 .15.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.16.某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60), [60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.(1)求图中x的值;(2)求这组数据的中位数;(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层随机抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.C级学科素养创新练17.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日温差x/℃101113128发芽数y/颗2325302616 (1)求这5天发芽数的中位数;(2)求这5天的平均发芽数;(3)从3月1日至3月5日中任选2天,记前面一天发芽的种子数为m,后面一天发芽的种子数为n,的概率.用(m,n)的形式列出所有基本事件,并求满足{25≤m≤30,25≤n≤3018.从某商场随机抽取了2 000件商品,按商品价格(单位:元)进行统计,所得频率分布直方图如图所示.记价格在[800,1 000),[1 000,1 200),[1 200,1 400]对应的小矩形的面积分别为S1,S2,S3,且S1=3S2=6S3.(1)按分层随机抽样从价格在[200,400),[1 200,1 400]的商品中共抽取6件,再从这6件中随机抽取2件作价格对比,求抽到的两件商品价格差超过800元的概率;(2)在节日期间,该商场制定了两种不同的促销方案:方案一:全场商品打八折;方案二:全场商品优惠如下表,如果你是消费者,你会选择哪种方案?为什么?(同一组中的数据用该组区间中点值作代表)商品价格[200,400)[400,600)[600,800)[800,1 000)[1 000,1 200)[1 200,1 400]优惠/元3050140160280320第1课时 古典概型的概率计算公式及其应用1.D 判断一个事件是否为古典概型,主要看它是否具有古典概型的两个特征:有限性和等可能性. A选项,任意抛掷两颗均匀的正方体骰子,所得点数之和对应的概率不全相等,如点数之和为2与点数之和为3发生的可能性显然不相等,不属于古典概型,故A排除;B选项,“投中”与“未投中”发生的可能性不一定相等,不属于古典概型,故B排除;C选项,杯中水分子有无数多个,不属于古典概型,故C排除;D选项,在4个完全相同的小球中任取1个,每个球被抽到的机会均等,且包含的基本事件共有4个,符合古典概型,故D正确.故选D.2.D 设“抽到K或Q”为事件A,∵基本事件总数为52,事件A包含的基本事件数为8,∴P(A)=8 52=2 13.3.D 样本点总数为6×6=36,若方程有相等的实根,则b2-4c=0,满足这一条件的b,c的值只有两种:b=2,c=1;b=4,c=4,故所求概率为236=1 18.4.BCD 对于A,如图所示:由图可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,P(甲获胜)=13,P(乙获胜)=1 3,故玩一局甲不输的概率是23,故A错误;对于B,不超过14的素数有2,3,5,7,11,13共6个,从这6个素数中任取2个,有(2,3),(2,5),(2,7), (2,11),(2,13),(3,5),(3,7),(3,11),(3,13),(5,7),(5,11),(5,13),(7,11),(7,13),(11,15),共有15种样本点,其中和等于14的只有(3,11)一组,所以在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115,故B正确;对于C,基本事件总共有6×6=36(种)情况,其中点数之和是6的有(1,5),(2,4),(3,3),(4,2),(5,1),共5种情况,则所求概率是536,故C正确;对于D,记三件正品为A1,A2,A3,一件次品为B,任取两件产品的所有可能为A1A2,A1A3,A1B,A2A3,A2B,A3B,共6种,其中两件都是正品的有A1A2,A1A3,A2A3,共3种,则所求概率为P=36=12,故D正确.故选BCD.5.4 151325 任意抽取一名学生是等可能事件,样本点总数为75,记事件A,B,C分别表示“抽到高一学生”“抽到高二学生”和“抽到高三学生”,则它们包含的样本点的个数分别为20,25和30.故P(A)=2075=415,P(B)=2575=13,P(C)=3075=25.6.15 “从5根竹竿中一次随机抽取2根竹竿”的所有可能结果为(2.5,2.6),(2.5,2.7),(2.5,2.8), (2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9),共10个样本点,又“它们的长度恰好相差0.3m”包括(2.5,2.8),(2.6,2.9),共2个样本点,由古典概型的概率计算公式可得所求事件的概率为210= 1 5.7.23 甲、乙、丙三人随机地站成一排有:(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙), (丙,乙,甲),共6种样本点,其中甲、乙相邻有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种样本点.所以甲、乙两人相邻而站的概率为46= 2 3.8.解(1)所有可能的摸出结果是(A1,a1),(A1,a2),(A1,b1),(A1,b2),(A2,a1),(A2,a2),(A2,b1),(A2,b2), (B,a1),(B,a2),(B,b1),(B,b2).(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为(A1,a1),(A1,a2),(A2,a1),(A2,a2),共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13.故这种说法不正确.9.解根据题意可知其样本空间Ω={(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲)},共6个样本点.(1)设“甲、乙两支队伍恰好排在前两位”为事件A,事件A包含的样本点有:(甲,乙,丙),(乙,甲,丙),共2个,所以P(A)=26=13.所以甲、乙两支队伍恰好排在前两位的概率为13.(2)设“甲、乙两支队伍出场顺序相邻”为事件B,事件B包含的样本点有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4个,所以P(B)=46= 2 3.所以甲、乙两支队伍出场顺序相邻的概率为23.10.A 甲、乙所猜数字的情况有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2), (3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16种情况,其中满足|a-b|≤1的情况有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10种情况,故所求概率为1016= 5 8.11.C 随着a,b的取值变化,集合B有32=9(种)可能,如表.经过验证很容易知道其中有8种满足A∩B=B,所以概率是89.故选C.12.ACD 记4件产品分别为1,2,3,a,其中a表示次品.A选项,样本空间Ω={(1,2),(1,3),(1,a),(2,3),(2,a),(3,a)},“恰有一件次品”的样本点为(1,a),(2,a),(3,a),因此其概率P=36=12,A正确;B选项,每次抽取1件,不放回抽取两次,样本空间Ω={(1,2),(1,3),(1,a),(2,1),(2,3),(2,a),(3,1), (3,2),(3,a),(a,1),(a,2),(a,3)},共12种样本点,B错误;C选项,“取出的两件中恰有一件次品”的样本点数为6,其概率为12,C正确;D选项,每次抽取1件,有放回抽取两次,样本空间Ω={(1,1),(1,2), (1,3),(1,a),(2,1),(2,2),(2,3),(2,a),(3,1),(3,2),(3,3),(3,a),(a,1),(a,2),(a,3),(a,a)},共16种样本点,D正确.故选ACD.13.1315 每个骰子有6个点数,出现1或2为下雨天,共有6种,则每天下雨的概率的近似值为13,10组数据中,114,251,表示3天中有2天下雨,所以从得到的10组随机数来看,3天中有2天下雨的有2组,则3天中有2天下雨的概率近似值为210= 1 5.14.720 从这6根细木棒中任取3根首尾相接,有(1,2,3),(1,2,4),(1,2,5),(1,2,6),(1,3,4), (1,3,5),(1,3,6),(1,4,5),(1,4,6),(1,5,6),(2,3,4),(2,3,5),(2,3,6),(2,4,5),(2,4,6),(2,5,6), (3,4,5),(3,4,6),(3,5,6),(4,5,6),共20个样本点,能构成三角形的取法有(2,3,4),(2,4,5),(2,5,6),(3,4,5),(3,4,6),(3,5,6),(4,5,6),共7个样本点,所以由古典概型概率公式可得所求概率为P=720.15.解用数对(x,y)表示儿童参加活动先后记录的数,则样本空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以样本点总数n=16.(1)记“xy≤3”为事件A,则事件A包含的样本点共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516.(2)记“xy≥8”为事件B,“3<xy<8”为事件C.则事件B包含的样本点共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P(B)=616=38.事件C包含的样本点共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).所以P(C)=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.16.解(1)由(0.005+0.010+0.030+0.025+0.010+x)×10=1,解得x=0.020.(2)设中位数为m,则0.05+0.1+0.2+(m-70)×0.03=0.5,解得m=75.(3)可得满意度评分值在[60,70)内有20人,抽得样本为2人,记为a1,a2,满意度评分值在[70,80)内有30人,抽得样本为3人,记为b1,b2,b3,样本空间Ω={(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1), (a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)},共10个样本点,记“5人中随机抽取2人作主题发言,抽出的2人恰在同一组”为事件A,A包含的样本点个数为4,利用古典概型概率公式可知P(A)=0.4. 17.解(1)因为16<23<25<26<30,所以这5天发芽数的中位数是25.(2)这5天的平均发芽率为23+25+30+26+16100+100+100+100+100×100%=24%.(3)用(m,n)表示所求基本事件,则有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26), (25,16),(30,26),(30,16),(26,16),共10个基本事件.记满足{25≤m≤30,25≤n≤30为事件A,则事件A包含的基本事件为(25,30),(25,26),(30,26),共有3个基本事件.所以P(A)=310,即事件{25≤m≤30,25≤n≤30的概率为310.18.解(1)根据频率和为1的性质知0.00050×200+0.00100×200+0.00125×200+S1+S2+S3=1,又S1=3S2=6S3,得到S1=0.30,S2=0.10,S3=0.05.价格在[200,400)的频率为0.00050×200=0.10,价格在[1200,1400]的频率为S3=0.05.按分层随机抽样的方法从价格在[200,400),[1200,1400]的商品中抽取6件,则在[200,400)上抽取4件,记为a1,a2,a3,a4,在[1200,1400]上抽取2件,记为b1,b2.现从中抽出2件,所有可能情况为:a1a2,a1a3,a1a4,a1b1,a1b2,a2a3,a2a4,a2b1,a2b2,a3a4,a3b1,a3b2,a4b1,a4b2,b1b2,共计15个样本点,其中符合题意的有a1b1,a1b2,a2b1,a2b2,a3b1,a3b2,a4b1,a4b2共8个样本点,因此抽到的两件商品价格差超过800元的概率为P=815.(2)对于方案一,优惠的价钱的平均值为:(300×0.10+500×0.20+700×0.25+900×0.30+1100×0.10+1300×0.05)×20%=150;对于方案二,优惠的价钱的平均值为:30×0.10+50×0.20+140×0.25+160×0.30+280×0.10+320×0.05=140.因为150>140,所以选择方案一更好.。

高一数学古典概型试题答案及解析

高一数学古典概型试题答案及解析

高一数学古典概型试题答案及解析1.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.B.C.D.【答案】B【解析】所有不同方法数有种,所求事件包含的不同方法数有种,因此概率,答案选B.【考点】古典概型的概率计算2.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.(1)求的值;(2)分别求出甲、乙两组数据的方差和,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:方差,为数据的平均数)【答案】(1);(2);(3).【解析】(1)由题意根据平均数的计算公式分别求出的值;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差和,再根据它们的平均值相等,可得方差较小的发挥更稳定一些;(3)用列举法求得所有的基本事件的个数,找出其中满足该车间“质量合格”的基本事件的个数,即可求得该车间“质量合格”的概率.试题解析:解:(1)由题意得,解得,再由,解得;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差:,,并由,可得两组技工水平基本相当,乙组更稳定些.(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检查,设两人加工的合格零件数分别为,则所有的有(7,8)、(7,9)、(7,10)、(7,11)、(7,12)、(8,8)、(8,9)、(8,10)、(8,11)、(8,12)、(10,8)、(10,9)、(10,10)、(10,11)、(10,12)、(12,8)、(12,9)、(12,10)、(12,11)、(12,12)、(13,8)、(13,9)、(13,10)、(13,11)、(13,12),共计25个,而满足的基本事件有(7,8)、(7,9)、(7,10)、(8,8)、(8,9),共计5个基本事件,故满足的基本事件个数为,所以该车间“质量合格”的概率为.【考点】1、古典概型及其概率计算公式;2、平均数与方差.3.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依次类推,则从第十组中随机抽取一个数恰为3的倍数的概率为 .【答案】【解析】由题可知前9组数据共有,第10组共有10数,且第一个为46,其中为3的倍数的数为:48,51,54,故概率为.【考点】古典概型.4.设函数是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数, (1) 求的最小值;(2)求恒成立的概率.【答案】(1)则当时,;当时,;当时,; (2).【解析】(1)对于的最小值问题,对于不同的其结果不一样,故应分别讨论,且采用分离常数法;(2)由(1)小题,要使其恒成立必有,并由列举法计算出其中符合条件的.试题解析:由,因为,故有.则当时,;当时,;当时,;由(1)可知,要使恒成立,当时,;当时,;当时,;故满足条件的有对.共有,则概率.【考点】(1)函数最值问题(分离常数法);(2)古典概型.5.已知方程是关于的一元二次方程.(1)若是从集合四个数中任取的一个数,是从集合三个数中任取的一个数,求上述方程有实数根的概率;(2)若,,求上述方程有实数根的概率.【答案】(1)(2)【解析】(1)先将从集合四个数中任取的一个数作为,从集合三个数中任取的一个数作为的所有情况列出来,再将使上述方程由实数根的情况列出来,根据古典概型公式算出所求事件的概率;(2)先作出满足,表示的平面区域并计算出区域的面积S,再根据要使方程有实数根,则△≥0,求出a,b满足的不等式,作出该不等式与,表示区域并计算面积,根据几何概型公式,该面积与S的比值就是上述方程有实数根的概率.试题解析:设事件为“方程有实数根”.当,时,方程有实数根的充要条件为.(1)基本事件共12个:,,,.其中第一个数表示的取值,第二个数表示的取值.事件中包含9个基本事件.事件发生的概率为.(2)试验的全部结果所构成的区域为.构成事件的区域为.所以所求的概率.考点:古典概型;几何概型6.在两个袋内,分别写着装有、、、、、六个数字的张卡片,今从每个袋中各取一张卡片,则两数之和等于9的概率为()A.B.C.D.【答案】C【解析】任取一张卡片共种情况,两数之和为9包括共4种,所以两数之和为9的概率为,故选C.【考点】古典概型的概率问题7.某种饮料每箱装5听,其中有3听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是_________.【答案】【解析】每箱中3听合格的饮料分别记为,不合格的2听分别记为。

1.3古典概型 一等奖创新教学设计-高一下学期数学人教A版(2019)必修第二册

1.3古典概型  一等奖创新教学设计-高一下学期数学人教A版(2019)必修第二册

1.3古典概型一等奖创新教学设计-高一下学期数学人教A版(2019)必修第二册古典概型教学设计一教学内容分析1.本节内容在高中教材中的地位和作用《古典概型》是高中数学人教A版必修2第十章第一大节的第三课时的内容,教学安排是2课时,本节课是第一课时。

古典概型是在学生初中阶段学习了概率初步,在高中阶段学习了随机事件的概率(随着试验次数的增加,频率稳定于概率),初步了解了概率的意义之后学习的内容。

古典概型是一种特殊的数学模型,它承接着前面学过的随机事件的概率及其性质,它的引入能使概率值的存在性易于被学生理解,也能使学生认识到重复实验在有些时候并不是获取概率值的唯一方法。

同时古典概型也是后面学习条件概率的基础,起到承前启后的作用,在概率论中占有相当重要的地位。

教学目标分析1.知识与技能目标:会判断古典概型,会用列举法计算一些随机事件所含的样本点个数和试验中样本空间;能够利用概率公式求解一些简单的古典概型的概率。

2.过程与方法目标:教学生掌握列举法,学会处理概率计算类问题。

通过从实际问题中抽象出数学模型的过程,提升从具体到抽象,从特殊到一般的分析问题的方法,理解、掌握古典概型的基本特点。

3.情感态度与价值观目标:通过各种有趣的、贴近学生生活的素材(生活中的猜拳游戏、掷骰子游戏等),激发学生学习数学的热情和兴趣,培育学生的探索精神,促使学生自觉培养创新意识。

在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神。

三、教学重难点1.重点:古典概型定义的理解与掌握,能以古典概型为基础展开随机事件的概率计算。

2.难点:如何判断一个试验是否是古典概型;分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

四、教法与学法分析1.教法分析:教学方法为引导发现、归纳概括,基于提出问题、分析问题、解决问题的思路,对古典概型的定义与概率公式进行归纳概括、观察比较,而后通过实际问题的提出与处理,激发学生的学习兴趣,提升学生的学习主动性。

高一数学古典概型

高一数学古典概型

A a, c, b, c, c, a , c, b 4 2 m 4 ,所以 PA 6 3
记“恰有一件次品”为事件 A
从含有两件正品 a , b和一件次品 的3件产品中 (1)任取两件;(2)每次取1件,取后不放回,连续 取两次;(3)每次取1件,取后放回,连续取两次,分 别求取出的两件产品中恰有一件次品的概率.
1.互斥事件: 2.事件的并:
3、如果事件A与事件B互斥,则 P(A∪B)= P(A)+P(B) 4、若件A与事件B互为对立事件,则 P(A)= 1- P(B)
思考:
用实验的方法来求某一随机事件的概率好不好? 为什么?
答:不好,因为需要大量的试验才能得出 较准确的概率,在现实生活中操作起来不 方便。
取法是否有序,有放回还是无放回.
A 记“恰有一件次品”为事件

例4(掷骰子问题):将一个骰子先后抛掷2次,观察向上的点数. 问:⑴两数之和是3的倍数的结果有多少种?
两数之和是3的倍数的概率是多少? ⑵两数之和不低于10的结果有多少种? 两数之和不低于10的的概率是多少?
第 二 次 抛 掷 后 建立模 向 上 型 的 解:由表可 点 数 知,等可能基 本事件总数为 36种。
例:先后抛掷两颗骰子,求:(1)点数之 和为6的概率;(2)出现两个4点的概率
解:用有序数对 x , y 表示掷得的结果,
则基本事件总数
n 36
(1)记“点数之和为6 “为事件A 则 A 1,5, 2,4, 3,3, 4,2, 5,1, m 5
(2)记“出现两个4点”为事件 B
将具有这两个特点的概率模型称为
古典概率模型,简称古典概型.
问题:向一个圆面内随机地投射一个点,如果 该点落在圆内任意一点都是等可能的,你认为 这是古典概型吗?为什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

至尊娱乐平台app下载
[单选,A1型题]保列治(非那雄胺)治疗前列腺增生的机制是()A.抑制&alpha;受体B.抑制5-&alpha;还原酶C.抑制H2受体D.抑制&beta;受体E.抑制雄性激素受体 [单选]井场设备基础是安装钻井设备的地方,目的是保证机器设备的稳固,保证设备在运转过程中(),减少机器设备的振动。A.移动下沉B.移动、不下沉C.不移动、不下沉D.高效率 [单选]临床应用的脑电图机不应少于()A.8个导程B.16个导程C.32个导程D.64个导程E.无要求 [单选]女性,29岁。关节疼痛1年,皮肤散在瘀点2个月伴月经过多就诊。化验:血沉。100mm/h,抗"0"正常:Hb86g/L,血小板51×10/L,ANA呈颗粒型阳性,尿检蛋白尿(+++),确诊为SLE,在估计预后时,下列哪项说法不正确()A.反复发作关节炎常引起关节畸形和关节周围肌肉萎缩B.反 [单选]不属于二次环境污染物的是A.光化学烟雾B.可吸入颗粒物C.酸雨D.甲基汞E.有机汞 [单选,A2型题,A1/A2型题]测量细菌大小的单位是()A.mmB.&mu;mC.nmD.cmE.dm [单选]“应收账款”科目所属明细科目如有贷方余额,应在资产负债表()项目中反映。A.预付款项B.预收款项C.应收账款D.应付账款 [问答题,简答题]焦炉气压缩机运动机构润滑的计划生产量记入()。A.零件需要明细表B.产品结构信息C.库存状态信息D.主生产计划 [单选]抑郁发作的生物性症状不包括()。A.食欲和性欲下降B.情绪变化呈昼重夕轻C.早醒D.体重下降E.心跳减慢 [单选]接受长期胰岛素治疗的病人最常见的问题是()A.抗体诱发的胰岛素耐药性B.脂肪萎缩C.胰岛素注射部位产生局部变态反应D.胰岛素注射部位感染E.低血糖 [多选]法国发明家克利特于1990年10月20日就一项发明在法国申请了专利。1991年9月30日,克利特又就该发明向中国专利局提出了申请,并申请优先权。后克利特该发明在法国和中国分别于1992年12月31日、1993年8月5日被授予专利权。据《专利法》其在中国的申请日以及专利权有效期截止于 [单选,A1型题]高血压病脑出血时,最常见的出血部位是()。A.小脑齿状核B.小脑皮质C.脑桥D.基底节E.延脑 [单选,A1型题]急性有机磷杀虫药中毒,治疗时最理想的合用药是()A.呼吸兴奋剂合脱水剂B.脱水剂合肾上腺皮质激素C.肾上腺皮质激素合阿托品D.阿托品合胆碱酯酶复活剂E.胆碱酯酶复活剂合肾上腺皮质激素 [单选,B1型题]体现了新公共健康精神的项目是()A.预防为主B.三级预防C.强化社区行动D.人人享有卫生保健E.群众性自我保健 [单选]企业应当以()作为会计核算的记账基础A.权责发生制B.永续盘存制C.收付实现制D.实地盘存制 [判断题]B超检测宫内节育器不论金属或塑料结构均能检出,且可确定在宫内的位置是否适合。A.正确B.错误 [填空题]苗木贮藏的方法有()和()。 [单选]甲公司成立后在某银行申请开立了一个用于办理日常转账结算和现金收付的账户,该账户的性质属于()。A.基本存款账户B.一般存款账户C.专用存款账户D.临时存款账户 [单选]()是运用感知、经验对美术作品进行感受、体验、联想、分析和判断,获得审美享受,并理解美术作品与美术现象的活动。A.鉴赏方法B.课题鉴赏C.美术鉴赏D.内容鉴赏 [问答题,简答题]6kV共相封闭母线的作用? [问答题,简答题]社会化的基本内容? [单选]下消化道出血不包括以下()A.大便可呈黑便B.大便只能是暗红色或红色C.肛门或肛管疾病出血为不与粪便混合的鲜血D.低位小肠或右半结肠出血,一般为暗红色或果酱色E.便血的颜色、性状与出血的部位、出血量、出血速度及在肠道停留的时间有关 [单选,A2型题,A1/A2型题]建设性冲突是指冲突双方()一致,由于手段或认识不同而产生的冲突,这种冲突对组织效率有积极作用A.方法B.途径C.目标D.感情E.认知 [单选]书刊外表的主要部位不包括()。A.面封和底封B.书脊和书口C.书页和书心D.书顶和书根 [单选]某施工合同约定包工包料,则以下说法正确的是()。A.建设单位无权指定主材的生产厂家和品牌B.未经甲方代表签字,所有建筑材料不得使用于工程C.所有建筑材料应由建设单位和施工单位共同负责检验D.检验合格的建筑材料,可以不再做见证取样 [单选]心功能Ⅱ级产妇在产褥期的护理,正确的是()。A.产后最初3天,容易发生心力衰竭B.尽早下床活动,防止便秘C.视具体情况使用抗生素D.住院观察2周E.促进亲子关系,积极参与新生儿的护理 [单选,A2型题,A1/A2型题]划分非电离辐射与电离辐射的电磁辐射量子能量水平是()。A.2eVB.12eVIC.20eVD.12库仑E.12Ci [单选]以下疾病中不可用维A酸类外用制剂治疗的有()A.鱼鳞病B.毛周角化病C.寻常型银屑病D.遗传性大疱性表皮松解症 [单选]经济发展方式(),已经成为制约我国经济社会发展的一个突出问题。A.落后B.粗放C.单一D.守旧 [单选]团头鲂又称武昌鱼,它与长春鳊的区别在于它的体色()。A、银白B、黄褐C、灰黑D、青蓝 [单选]体的压力、密度<ρ>、温度<T>三者之间的变化关系是().A、&rho;=PRTB、T=PR&rho;C、P=R&rho;/TD、P=R&rho;T [单选]大跨径劲性骨架混凝土拱桥拱圈浇筑前应进行()。A.施工观测B.加载程序设计C.施工组织设计D.方案调整 [单选]柴油机与汽油机同属内燃机,它们在结构上的主要差异是()。A.燃烧工质不同B.压缩比不同C.燃烧室形状不同D.供油系统不同或者说是混合气形成的方式不同 [单选,A4型题,A3/A4型题]男,50岁,因躯干、双下肢汽油火焰烧伤3小时入院,烧伤面积为60%,其中深Ⅱ度20%,Ⅲ度40%,入院后立即给予补液及应用广谱抗生素预防感染治疗。入院第3天行手术切痂自体微粒皮加大张异体皮移植术。术后因患者发热,给予持续大剂量广谱抗生素以控制感染,术 [单选]无线列调系统中,以站-车通信为的系统称()系统ABC [填空题]黑色金属表面一般都存在氧化皮,俗称()。 [单选,A型题]隐匿性旁路是指()。A.QRS波群起始部有delta波B.PR间期&lt;0.12sC.房室旁路仅有前向传导功能D.房室旁路仅有逆向传导功能E.既可前向传导,又可逆向传导 [单选]根据《中华人民共和国消防法》的规定,任何单位、个人不得()A、损坏、挪用或者擅自拆除、停用消防设施、器材B、不得埋压、圈占、遮挡消火栓或者占用防火间距C、不得占用、堵塞、封闭疏散通道、安全出口、消防车通道D、以上全是 [单选]目前我国行政单位会计采用的会计确认和计量的基础是()。A.收付实现制B.实地盘存制C.永续盘存制D.权责发生制
相关文档
最新文档