随机变量及其概率习题

合集下载

随机变量及其概率分布典型例题

随机变量及其概率分布典型例题
现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
概率与数理统计课件
天津科技大学理学院数学系
第8讲 随机变量及其概率分布习题课
第8讲 随机变量及其概率分布习题课
教学目的:通过对随机变量(一维,二维为主)及其概率分布的归纳总结, 及典型
知识要点回顾:
1. 一维随机变量及其分布函数. 2. 离散型随机变量及其概率分
5. 二维随机变量(X,Y)及其分布
函数F(x,y).
6. 二维随机变量的边际分布函
布列.
3. 连续型随机变量及其概率密
数及边际概率密度.
7. 随机变量的独立性. 8. 随机变量函数的分布.
度函数.
4. 常用的随机变量.
1 1
0 0
e
x y
dxdy 1 e1 .


2
随机变量及其概率分布典型例题解析
X \Y 7.设二维随机变量 X , Y 的联合概率分布为 1 2 1 1
5 20 3 20 2 20 3 20
返回
2
6 20 1 20
.求(1) X Y ; (2) X Y 的概率分布.
1 1 P X k 2 1 k 3. 3 ,故 P X k 3 ,即 F k 3 ,从而
5) 3 x 6时,F x dx
dx 0dx 1.
6
0 x
1

1) 1



f x, y dxdy
题的分析讲解,使学生对概部分内容有较深的理解与认识.
教学重点:随机变量(离散型,连续型),分布函数,六个重要的分布(两点, 二

随机变量及其分布列习题(含解析)

随机变量及其分布列习题(含解析)

一.解答题(共8小题)1.(1)100件产品中有10件次品,从中有放回地任取5件,求其中次品数ξ的分布列;(2)某批数量较大的商品的次品率为10%,从中任意地连续抽取5件,求其中次品数η的分布列.2.为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选2人,设这2人进行送考次数之差的绝对值为随机变量X,求X的概率分布.3.从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.4.甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.5.设X是一个离散型随机变量,其分布列为:X−101P1﹣2q q2(1)求q的值;(2)求P(X<0),P(X<1).6.某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列.7.袋中有3个红球,4个黑球,从袋中任取4个球.(1)求红球个数X的分布列;(2)若取到一个红球得2分,取到一个黑球得1分,求得分不小于6分的概率.8.从5名男生和3名女生中任选2人去参加学校组织的“低碳杯”知识抢答赛,用ξ表示选出的女生的人数.(1)求随机变量ξ的分布列;(2)求事件“选出的2学生至少有一女生”的概率.参考答案与试题解析一.解答题(共8小题)1.(1)100件产品中有10件次品,从中有放回地任取5件,求其中次品数ξ的分布列;(2)某批数量较大的商品的次品率为10%,从中任意地连续抽取5件,求其中次品数η的分布列.【解答】解:(1)由题意知ξ的可能取值为0,1,2,3,4,5,每次取出次品的概率为:,相当于5次独立重复实验,ξ~B(5,),P(ξ=0)==0.59059,P(ξ=1)==0.32805,P(ξ=2)==0.07329,P(ξ=3)==0.0081,P(ξ=4)==0.00045,P(ξ=5)==0.00001,∴ξ的分布列为:ξ012345P0.590590.328050.07290.00810.000450.00001(2)由题意知η的可能取值为0,1,2,3,4,5,且η~B(5,0.1),∴η的分布列为:η012345P0.590590.328050.07290.00810.000450.000012.为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选2人,设这2人进行送考次数之差的绝对值为随机变量X,求X的概率分布.【解答】解:(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为;(2)从该公司任选两名司机,记“这两人中﹣人送考1次,另一人送考2次”为事件A,“这两人中一人送考2次,另一人送考3次“为事件B,“这两人中﹣人送考1次,另一人送考3次”为事件C,“这两人送考次数相同”为事件D,由题意知X的所有可能取值为0,1,2,,,,所以X的分布列为:X012P3.从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【解答】解:(1)由意可知,选出的3名同学全是男生的概率为=,∴选出的3名同学中至少有1名女生的概率为P=1﹣=.(2)根据题意,ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:ξ0123P4.甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.【解答】解:(I)从甲中取出黑球的概率为,取出白球的概率为,从乙中取出黑球的概率为,取出白球的概率为,故“两球颜色相同”的概率P=.(II)由题意可得,ξ所有可能取值为0,1,2,P(ξ=0)==,P(ξ=1)=,P(ξ=2)=,故ξ的分布列为:ξ012P5.设X是一个离散型随机变量,其分布列为:X−101P1﹣2q q2(1)求q的值;(2)求P(X<0),P(X<1).【解答】解:(1)依题意,得,解得或(舍去),所以.(2)由(1)得,,所以,.6.某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列.【解答】解:(1)设事件该射手第i次射击,击中目标为A i,i=1,2,3,则,所以,事件射手在3次射击中,至少有两次连续击中目标可表示为,因为事件,,A1A2A3互斥,所以又事件A1,A2,A3相互独立,所以==;(2)事件射手第3次击中目标时,恰好射击了4次等于事件前3次中恰好击中两次目标且第四次击中目标,又各次击中目标的概率为,所以前3次中恰有两次击中目标的概率为,第四次击中目标的概率为,所以事件射手第3次击中目标时,恰好射击了4次的概率;(3)由已知ξ的取值有3,4,5,⋅⋅⋅,n,⋅⋅⋅,又,,,⋅⋅⋅,,所以随机变量ξ的分布列为:ξ345…n…P……7.袋中有3个红球,4个黑球,从袋中任取4个球.(1)求红球个数X的分布列;(2)若取到一个红球得2分,取到一个黑球得1分,求得分不小于6分的概率.【解答】解:(1)由题意可得,X可能取值为0,1,2,3,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,故X的分布列为:X0123P(2)设得分为Y,则得分Y可以取4,5,6,7,分别对应4个黑球,3黑1红,2黑2红,1黑3红四种情况,P(Y≥6)=P(Y=6)+P(Y=7)=,故得分不小于6分的概率为.8.从5名男生和3名女生中任选2人去参加学校组织的“低碳杯”知识抢答赛,用ξ表示选出的女生的人数.(1)求随机变量ξ的分布列;(2)求事件“选出的2学生至少有一女生”的概率.【解答】解:(1)由题意得ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴随机变量ξ的分布列为:ξ012P(2)事件“选出的2学生至少有一女生”的概率为:P=P(ξ=1)+P(ξ=2)==.。

《概率论与数理统计》习题随机变量及其分布

《概率论与数理统计》习题随机变量及其分布

第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率: P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z P α723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时0)(=x X ϕ当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X xdy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ.8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,181)3(,91)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______. iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案.2. ),4,2,0(!/)( ===-k k e c k X P k λλ是随机变量X 的概率分布, 则λ, c 一定满足 (A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0解. 因为),4,2,0(!/)( ===-k k e c k X P k λλ, 所以c > 0. 而k 为偶数, 所以λ可以为负. 所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y解. X ~⎩⎨⎧=01)(x ϕ 其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ 其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{max()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{min(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是(A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D) y arctan 1π 解. )2()2(}2{)()(yF y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B).21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案. 注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度:当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m i n (1))2,(m i n ()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m i n (1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m i n (1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m i n(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.13)()1(1===A P X P1331210)()|()()2(11212⋅====A P A A P A A P X P1331221110)()|()|()()3(11223321⋅⋅====P P A P A P X P1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii. 每次抽取后总以一个正品放回X 1 2 3 4p13101311133⋅ 1312132133⋅⋅ 1331321311⋅⋅⋅ 1310)()1(1===A P X P1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|a r c s i n 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dxX P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时⎰⎰∞--=-==xdt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x t d t dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x xϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞ 试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛c7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布. 解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2=54145-=⎰ππxdt x当 x > 9π时1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤= 当 z ≤ 0时0)(=z F Z 当 0 < z < 1时z z dxdy Xz Y P z X Y P z Z P z F D Z 219928181)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解.i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x。

离散型随机变量及其分布列练习题和答案

离散型随机变量及其分布列练习题和答案

离散型变量强化1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A ) (B ) (C ) (D )3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 4.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( )A.2258 B.21 C.83 D.43 5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ).6.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A.2101012)85()83(⋅C B.83)85()83(29911⨯C C.29911)83()85(⋅C D. 29911)85()83(⋅C 7.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次抽到白球的概率为( ) A.53 B.43 C.21 D. 1038.6位同学参加百米短跑初赛,赛场有6条跑道,已知甲同学排在第一跑道,则乙同学排在第二跑道的概率( ) A 52 B.51 C.92 D. 73 9.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的条件下第二张也是奇数的概率( ) A.52 B.51 C.21 D. 7310.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上向右的概率都是21,质点P 移动5次后位于点(2,3)的概率是( )A.3)21( B.525)21(C C.335)21(C D.53525)21(C C 11.若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )3212.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则)0(=ξP 等于( ) B. 21 C. 31 D.32 解答题13.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率14.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.15.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛). 试分别求甲打完3局、4局、5局才能取胜的概率;(2)求按比赛规则甲获胜的概率.16.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列.。

Ch2随机变量及其概率分布习题

Ch2随机变量及其概率分布习题

3 设某人买一种数字型体育彩票,每一注号码中大奖的概率为107 。
(1) 若每期买一注,共买了 n 期,求没有中大奖的概率; (2)若每期买 10 注(号码全不同),共买了 n 期,求没有中大奖的概率。
解:(1)没有中大奖的概率是 p1 1107 n ;
(2)每一期没有中大奖的概率是 p
(2)求 PX 2.5 的值。
解 由题意可判断各次抽样结果是相互独立的,停止时已检查了 X 件产品,说明第 X 次抽
样才有可能抽到不合格品。 X 的取值有 1、2、3、4、5,有
P( X k) p(1 p)k1, k 1, 2,3, 4 ,
P( X 5) (1 p)4 ;
(2) P(X 2.5) P( X 1) P( X 2) p p(1 p) p(2 p) 。
(2)求诊断正确的概率; (3)此人被诊断为有病的概率。
解 (1)用 X 表示诊断此人有病的专家的人数, X 的取值有 1、2、3、4、5。在此人有病
的条件下,诊断此人有病的概率为:
P( X 3) P( X 3) P( X 4) P( X 5) C53 (1 0.1)3 0.12 C54 (1 0.1)4 0.1 C55 (1 0.1)5 0.991
Y 取每一值的概率分布为:
p y 0 p1 , p y 1 1 p1 p2 , p y 2 1 p1 1 p2 p3 , p y 3 1 p1 1 p2 1 p3 . 6. 从一批不合格频率为 p 0 p 1 的产品中随机抽查产品。如果查到不合格品就停止检
查,且最多查 5 件产品。设停止时已检查了 X 件产品。 (1)求 X 的概率分布律;
解 (1)用 X 表示男婴的个数,则 X 可取值有 0、1、2、3,至少有 1 名男婴的概率可表

概率论与数理统计随机变量及其分布习题课

概率论与数理统计随机变量及其分布习题课
2
01 排列及其逆序数
解 以X表示此人外出时电话铃响的次数, 由题意知X~π(2t), t表示外出的总时间,则X的的分布律为
当t=10/60=1/6时, (1)
,故所求概率为
(2)设外出最长时间为t(单位:h), 因为X~π(2t),
3
01 排列及其逆序数
因此无电话打进的概率为

要使


解之得
0.3466小时约为21分钟,因此,某人应控制外出时间小
16
01 排列及其逆序数
ꢀ例8 设随机变量
,记
, 则A. p随着 μ的增加而增加
C. p随着μ的增加而减少
B. p随着 σ的增加而增加 D. p随着σ的增加而减少

因为 为单调增函数, p σ
,
所以 随着 的增加而增加
应选B.
17
01 排列及其逆序数
ꢀ例9 测量某距离时,随机误差X(单位:cm)具有密度函数:
则性。
6
01 排列及其逆序数 ꢀ例3 设随机变量X的概率密度为 为X的分布函数, 求 解 由题意知,X的分布函数为
因此,
F(x)
7
01 排列及其逆序数 ꢀ例4 设某加油站每周补给一次油,如果这个加油站每 周的销售量(单位:千升)为一随机变量,其密度函数为
试问该加油站的储油罐需要多大,才能把一周内断油的概 率控制在5%以下?
,求
解 当y≤0时,Y的密度函数为 当y>0时,Y的分布函数为
的分布. ;
对上式两边关于y求导,得
20
01 排列及其逆序数 即
这是伽玛分布
的概率密度函数.
21
01 排列及其逆序数
ꢀ例11 设电流I是一个随机变量,它均匀分布在9A~11A 之间.若此电流通过2Ω的电阻,在其上消耗的功率W=2I2, 求W的概率密度.

概率论与数理统计+第二章+随机变量及其分布+练习题答案

概率论与数理统计+第二章+随机变量及其分布+练习题答案

滨州学院《概率论与数理统计》(公共课)练习题第二章 随机变量及其分布一、填空题 10.712设一本书的各页的印刷错误个数X 服从泊松分布律.已知有一个和两个印刷错误的页数相同,则随意抽查的4页中无印刷错误的概率p = 0.0003 .3⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=≤=.若,;,若;,若;,若 3 1 324544 21 51 1 0 }{)(x x x x x X x F P 4{}12525.032)05.0()02(25.0=-=---=<≤F F X P . 例2.11设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其它06310)(9231x x x f ;若k 使得32)(=≥k X P ,则k 的取值范围是 . 【[1,3]】例2.13 设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = . 【24310】 例2.14若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 【4】2.22 (1)24310;(2)4;(3)2922;(4)649;(5))0(2)1(ln 221)(+∞<<--=y y Y I e y y f π〖选择题〗1 [ C ]2 [ C ]3 [ C ]例2.1 【C 】例2.2 【A 】 例2.3 【B 】例2.5 【A 】例2.16设随机变量X ,Y 相互独立均服从正态分布)4,1(N , 若概率21)1(=<-bY aX P ,则(A)1,2==b a(B) 2,1==b a(C) 1,2=-=b a(D) 2,1-==b a 【A 】例2.18 设X 为随机变量, 若矩阵⎪⎪⎪⎭⎫ ⎝⎛--=01020232X A 的特征根全为实数的概率为0.5, 则(A)X 服从区间[0,2]上的均匀分布 (B) X 服从二项分布B(2, 0.5) (C) X 服从参数为1的指数分布 (D) X 服从标准正态分布 【A 】2.23 (1)A ;(2)B ;(3)C ;(4)C ;(5)B 解答题〗 〖解答题〗例2.30解 不妨假设正立方体容器的边长为1.引进事件:{}0==X A ,即事件A 表示“小孔出现在容器的下底面”.由于小孔出现在正立方体的6个侧面是等可能的,易见 61)(=A P .从而,{}61===)(0A X P P.对于任意x <0,显然()=x F 0;而()610=F .由于小孔出现的部位是随机性,可见对于任意)75.0,0(∈x ,有(){}{}.641646100xx x X X x F +=+=≤<+≤=P P 该式中4x 表示容器的四个侧面x 以下的总面积,而容器6个侧面的总面积为6.对于任意x ≥0.75,显然()1=x F.于是,最后得()⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.若若若 75.0 , 1 , 75.00 , 641, 0 , 0 x x x x x F例2.31(分布函数)解 因X 服从指数分布,且21==λX E (百小时),故分布参数λ=0.5,故X的分布函数为()⎩⎨⎧≤>-=-.,若;,若0 0 0 e 15.0x x x G x 易见,{}1.0min ,X Y=.设)(y F 是Y 的分布函数,则对于y <0,)(y F =0;对于y >0.1,)(y F =1;对于1.00≤≤y ,有{}{}.,y y G y X y X y Y y F 5.0e 1)(}1.0 min{}{)(--==≤=≤=≤=P P P 于是,{}.10 min ,X Y=的分布函数为()⎪⎩⎪⎨⎧≥<≤-<=-.,若,若,,若 1.0 1 , 1.00 e 1 0 0 5.0y y y y F y例2.33解 试验次数X 是一随机变量.为求X 的概率分布,引进事件:j B ={第j 次试验成功}(j =1,2,…,n ).显然P(j B ) = p .而由于试验的独立性,知事件n B B B ,,,21 …相互独立.设试验进行到成功或n 次为止,则X 的可能值为1,2,…,n 且1}1{B X==;对于2≤k ≤n-1,.;;;,111111112111)(}{ )(}1{)12()(}{}{ }{------======-≤≤=======k n k k k n k k q B B n X p B X n k pq B B B k X B B B n X B B B k X P P P P P P于是,X 的概率分布为有限几何分布:⎪⎪⎭⎫ ⎝⎛---1121321~n n q pq pq pq pn n X . 例2.35解 以ν表示抽到的30件产品中不合格品的件数,则ν服从参数为(30,0.02)的二项分布:.;;4545.0}0{1}1{3340.002.098.030}1{5455.098.0}0{2930==-=≥=⨯⨯=====ννννP P P P1) 不合格品不少于两件的概率.1205.002.098.03098.01}1{}0{1}2{2930=⨯⨯--==-=-=≥=ννναP P P2) 在已经发现一件不合格品的条件下,不合格品不少于两件的条件概率{}.2652.0}1{}2{}1{}2,1{12≈≥≥=≥≥≥=≥≥=νννννννβP P P P P 例2.36解 由条件知每台设备出现故障的概率为0.08.以ν表示10台设备中同时出现故障的台数,则ν服从参数为(10,0.08)的二项分布.需要安排的值班人数k 应满足条件:95.0}{≥≤k νP .需要对不同的k 进行试算.首先,设k =1和k =2,相应得{}{}{}{}{}{}.,95.09599.008.092.008.092.01092.021281.008.092.01092.010128210910910≥≈⨯⨯+⨯⨯+==+≤=≤≈⨯⨯+==+==≤C ννννννP P P P P P因此,至少需要安排2个人值班.例2.37解 设X ——一周5个工作日停用的天数;Y ——一周所创利润.X 服从参数为(5,0.2)的二项分布.因此,有.,,,057.0205.0410.0328.01}3{205.08.02.010}2{410.08.02.05}1{328.08.0}0{3245=---=≥=⨯⨯===⨯⨯=====X X X X P P P P一周所创利润Y 是X 的函数:⎪⎪⎩⎪⎪⎨⎧≥-====3.,若2,,若1,,若,,若X X X X Y 2 2 7 0 10 ⎪⎪⎭⎫ ⎝⎛-328.0410.0205.0057.010722~Y . 例2.38(二项分布)解 设n ——至少出现一件不合格品所要生产产品的件数,则n 件产品中不合格品的件数n ν服从参数为(n ,0.01)的二项分布;按题意,n 应满足条件., 0729.29899.0ln 05.0ln 95.099.01}0{1}1{≈≥≥-==-=≥n nn n ννP P 于是,为至少出现一件不合格品的概率超过95%,最少需要298.0729×3≈895分,将近14小时55分.例3.41解 由条件知X +Y 是一日内到过该商店的顾客的人数,服从参数为λ的泊松分布.设X ——一日内到过该商店的顾客中购货的人数.由条件知,在一日内有n 个顾客到过该商店的条件下,购货人数的条件概率分布为{}().;),2,1,0(1m n m p p C n Y X m X mn m m n ≥=-==+=- P由全概率公式可见,对于m =0,1,2,…,有{}{}{}()[]()()()()[]()()[]()()().p mp mk km m n mn m mn nmn mm nmn n mn mm nmn m p m p p k m p p m n m p n p p C n p p Cn Y X n Y X m Xm X λλλλλλλλλλλλλλλ---∞=-∞=--∞=--∞=--∞===-=--=-=⎥⎦⎤⎢⎣⎡-==+=+===∑∑∑∑∑e ! e e ! 1!1e!1!1e!!1ee ! 110P P P于是,一日内到过该商店的顾客中购货的人数X 服从参数为p λ的泊松分布.同理,Y 服从参数为)1(p -λ的泊松分布.例2.44 解 以()t ν表示t =90天内售出的电冰箱台数.可以假设()t ν服从参数为t λ的泊松分布.由条件知()λν77E ==56,从而λ=8(台).这样,()t ν服从参数为t λ=8t 的泊松分布: (){}()() ,2,1,0 e !88===-k k t k t tkνP .随机变量X 的可能值为自然数m =0,1,2,….记t a λ=.由全概率公式,有{}(){}(){}()()()()()()()(), pa m pa a a m k k a m m n mn ammn a n m n m m nmn m pa m pa k qa m pa m n qa m pan a q p C n a n a m X m X ---∞=-∞=--∞=--∞====-=======∑∑∑∑e !e e ! ! e!! e ! e ! 0ννP P P 其中6.390805.0=⨯⨯==t p pa λ.因此返修件数X 服从参数为3.6的泊松分布:{}() ,2,1,0 e !6.36.3===-m m m X m P .例2.47解 由条件知{}{}{}{},⎪⎭⎫ ⎝⎛--≈⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛--=⎭⎬⎫⎩⎨⎧-≤-≤--=≤≤-=≤-≤--=≤--=>-=310821)36(310821310823108310812011 1 025.0a a a X a X a a X a a a X a a X ΦΦΦP P P P P其中()x Φ是标准正态分布函数.由熟知的事实()975.096.1=Φ,可见.;;94.5696.131082 0.975031082≈≈-≈⎪⎭⎫⎝⎛-a a a Φ 例2.48 解 由条件知()210,0~N X.设ν为100次独立重复测量中事件{}6.19 >X 出现的次数,则{}05.096.1106.19 =⎭⎬⎫⎩⎨⎧>=>=X X p P P .易见ν服从参数为(100 , 0.05)的二项分布,近似服从参数为5的泊松分布.因此{}{}{}{}{}().87.05.125115.125105.095.0299100 05.095.010095.012101313555529899100≈++-=---≈⨯⨯⨯-⨯⨯--==-=-=-=<-=≥=----e e e e ννννναP P P P P 〖证明题〗例2.52(分布函数)证明 只需验证)()()(21x bF x aF x F +=满足分布函数的三条基本性质.由条件知a 和b 非负且a +b =1.由于)(1x F 和)(2x F 都是分布函数,可见对于任意,有1)()()(021=+≤+=≤b a x bF x aF x F对于任意实数21x x <,由于)2,1)(()(21=≤i x F x F i i ,可见,)()()()()()(2222112111x F x bF x aF x bF x aF x F =+≤+=即)(x F 单调不减.由)(1x F 和)(2x F 的右连续性,可见)(x F 也右连续.最后,.;1)(lim )(lim )(lim 0)(lim )(lim )(lim 2121=+==+=+∞→+∞→+∞→-∞→-∞→-∞→x F b x F a x F x F b x F a x F x x x x x x于是)()()(21x bF x aF x F +=也是分布函数.例2.53(分布函数) 证明 指数分布函数为)0(e 1)(≥-=-x x F x λ设}{P )(y Y y G ≤=为Y=)(X F 的分布函数.由于分布函数)(x F 的值域为(0,1),可见当0≤y时0)(=y G ;当1≥y 时1)(=y G .设10<<y ,有.y y F y X y y Y y G X =⎪⎭⎫⎝⎛--=⎭⎬⎫⎩⎨⎧--≤=≤-=≤=-)1ln(1)1ln(1}e 1{}{)(λλλP P P 于是,)(y G 是区间(0,1)上的均匀分布函数,从而Y=例2.4 【π2=C ;5)arctan 2(πe】例2.6 连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度.【(1)π1,21==B A ;(2)21;(3))1(12x +π】 例2.7 设随机变量X 具有对称的密度函数,即)()(x f x f =-,证明对任意的0>a ,有(1)⎰-=-=-adx x f a F a F 0)(21)(1)((2)1)(2)|(|-=<a F a X P (3) ))(1(2)|(|a F a X P -=>问题3: 已知实际背景, 求随机变量的分布律与分布函数(或密度函数)例2.8 一袋中装有4个球,球上分别记有号码1,2,3,4。

概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题

1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X、Y分别表示甲乙命中的次数,求(X,Y)联合分布律。

2.袋中有两只白球,两只红球,从中任取两只以X、Y表示其中黑球、白球的数目,求(X,Y)联合分布律。

3.设,且P{}=1,求(,)的联合分布律,并指出,是否独立。

4.设随机变量X的分布律为Y=,求(X,Y)联合分布律。

5.设(X,Y)的概率分布为且事件{X=0}与{X+Y=1}独立求a,b。

6. 设某班车起点上车人数X服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0<P<1)相互独立。

以Y表示中途下车的人数。

(1)求在发车时有n个人的情况下,中途m个人下车的概率;(2)求(X,Y)联合分布律。

7. 设二维随机变量(X,Y)联合分布函数F(x.y)=A(B+arctan) (C+arctan)。

(1)A、B、C (2)(X,Y)的联合密度f(x,y) (3)(X,Y)的边缘密度,概率论与数理统计第三章二维随机变量及其概率分布例题8.设f(x,y)=为二维随机变量(X,Y)的联合密度函数,求:其它(1)C的值(2), (3)P{X+Y1}并判别X与Y是否独立。

为(X,Y)的密度函数,求:9.设f(x,y)=其它(3)P{X>1/2|Y>0}为(X,Y)的密度函数,求10. 设f(x,y)=其它11. 设f(x,y)=为(X,Y)的密度函数,求()的联合分布其它函数。

12.设X,Y独立,均服从(0,1)上的均匀分布,Z的密度函数。

13. 设f(x,y)=()为(X,Y)的密度函数,Z=X+Y,求的密度函其它数。

概率论与数理统计第三章二维随机变量及其概率分布例题14.设X,Y独立,X~N(μ,),Y~V(-π,π),Z=X+Y,求,结果用Φ( x)表示。

15.设(X,Y)的联合密度函数为f(x,y)=,Z=X+Y,求Z的概率密度。

为(X,Y)的密度函数,Z=X+2Y,求的密度函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题二 一、填空题1. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = 2______. 解. 2,16321628543211==+++=c cc c c c2. 某射手每次命中目标的概率为,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,)2.0()8.0(33=-k C k k k .3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ⎪⎩⎪⎨⎧≥<≤-<=1 ,110 ,10 ,0)(x x p x x F .4. 设随机变量X ~B (2, p ), Y ~B (3, p ), 若95)1(=≥X P , 则)1(≥Y P = 19/27 . 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫ ⎝⎛-==-=≥Y P Y P . 5. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 223e -. 6. 已知连续型随机变量X 的分布函数为⎩⎨⎧≤>+=-0 ,00,)(2x x Be A x F x ,则=A 1 ,=B 1- ,=<<)221(x P 41---e e ,=)(x f⎩⎨⎧≤>-0 ,00,22x x e x . 7. 设随机变量X 的概率密度函数⎩⎨⎧∈=其它 ,0]2,0[ ,)(x Ax x f , 则=A ,)(x F =⎪⎪⎩⎪⎪⎨⎧>≤≤<2,120 ,4,02x x xx ; =≤)21|(|x P116.8. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈∈=其它若若 ,0]6,3[ ,9/2]1,0[ ,3/1)(x x x f ,若k 使得32)(=≥k X P , 则k 的取值范围是13k ≤≤.9. 某公共汽车站有甲,乙,丙三人,分别等1,2,3路车,设每人等车的时间(分钟)都服从[0,5]上的均匀分布,则三人中至少有两人等车时间不超过2分钟的概率为.10. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为___3/5__.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤k .P{02442=+++k kx x 有实根} = P{03216162≥--k k }= P{k -1或k 2} =535152=⎰dk . 11. 设),(~2σμN X 则X Y μσ-=服从的分布为 )1,0(~N Y .12. 设),(~2σμN X 则Y aX b =+服从的分布为 ),(22σ+μa b a N . 13. 若随机变量X ~),2(2σN ,且P (2<X <4)=, 则P (X <0)= . 14.设)2,3(~2N X ,若)()(c X p c X p ≥=<,则=c 3 . 15. 设随机变量X 和2X Y =的概率分布分别为12210120.10.20.3X Pp p --30140.60.2Y Pp则123,,p p p 分别为,,.16. 设随机变量X 服从(0,2)上的均匀分布,则随机变量2X Y =在(0,4)内的概率密度)(y f Y 为 ⎪⎩⎪⎨⎧<<=其它,)( ,040 41y y y f Y 。

二、选择题1. 随机变量X 的分布律为:01230.10.30.40.2X P()F x 为其分布函数,则(2)F =( C )。

(A)0.2;(B)0.4;(C)0.8;(D)1.2. 如下四个函数哪个不能成为随机变量X 的分布函数 (B )(A) 10, 01/3, 01; 1/2, 121, 2x x F xx x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩()(B) 20, 0 ();ln , 0x F x x x x ≤⎧⎪=⎨>⎪⎩ 2330, 01, 0(C) ()/4, 02 ; (D) ().0, 01, 2x x e x F x x x F x x x -<⎧⎧-≥⎪=≤<=⎨⎨<⎩⎪≥⎩解. (A)不满足F(+) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案.3. 设函数 ⎩⎨⎧∈=其它,0],[ ,sin )(b a x x x f , )(x f 可能是某个随机变量的概率密度函数,区间[]b a ,是(A )。

(A) ;,]20[π (B) ];22[ππ,- (C) ];,0[π (D) ).2,0(π4.设随机变量X 服从参数为λ的泊松分布,且},2{}1{===X P X P 则}2{>X P 的值为( B ).(A) 2-e ; (B) 251e-; (C) 241e-; (D) 221e-. 5. 每张奖券中尾奖的概率为110,某人购买了20张号码杂乱的奖券,设中尾奖的张数为ξ,则ξ服从( A )分布。

(A) 二项; (B) 泊松; (C) 指数; (D) 正态.6.连续型随机变量X 的密度函数)(x f 必满足条件( D ). (A)1)(0≤≤x f ;(B))(x f 为偶函数; (C) )(x f 单调不减 ;(D)()1f x dx +∞-∞=⎰.7.设随机变量X 的密度函数为X x F x f x f x f 是且)(),()(),(=-的分布函数,则对任意实数a 有(B )(A) ;)(1)(0⎰-=-adx x f a F (B);)(21)(0⎰-=-a dx x f a F (C) ;)()(a F a F =- (D).1)(2)( -=-a F a F8.设X的密度函数为01()0,x f x ≤≤=⎪⎩其他,则1{}4P X >为( A ).(A)78;(B)14⎰;(C) 141-⎰; (D)32. 9.设A,B 为随机事件,,0)(=AB P 则( B ).(A).φ=AB(B) AB 未必是不可能事件(C) A 与B 对立 (D) P(A)=0或P(B)=0 10.设X 服从]5,1[上的均匀分布,则( D ). (A)4}{ab b X a P -=≤≤ (B)43}63{=<<X P (C) 1}40{=<<X P(D)21}31{=≤<-X P 11.设X 服从参数为91的指数分布,则=<<}93{X P ( C ). (A))93()99(F F -;(B))11(913ee -; (C) ee 113-;(D)⎰-939dx ex .12.设随机变量~(0,1)X N , X 的分布函数为()x Φ,则{||2}P X >的值为( A )。

(A )2[1(2)]Φ-; (B )2(2)1Φ-; (C );2(2)Φ- (D )12(2)Φ-.13.设),4,(~μN X 则( C ). (A))1,0(~4N X μ-; (B) 21}0{=≤X P ; (C) )1(1}2{Φ-=>-μX P ;(D) 0≥μ.14.若)1,1(~N X ,记其密度函数为)(x f ,分布函数为)(x F ,则(C ). (A){0}{0}P X P X ≤=≥; (B))(1)(x F x F --=; (C) {1}{1}P X P X ≤=≥;(D))()(x f x f -=.15. 设随机变量X ~),2, (σμN 则随σ的增大,概率)|(|σμ<-X P (C ) (A) 单调增大; (B) 单调减少; (C) 保持不变; (D) 增减不变.16. 设随机变量X 服从正态分布Y N ),,(211σμ服从正态分布 ),,(222σμN 且 }1{}1{21<-><-μμY P X P ,则必有(A ).(A )12;σσ< (B )12;σσ> (C )12;μμ< (D ).21μμ>17.设随机变量X 的分布函数为),(x F 则随机变量12+=X Y 的分布函数)(y G 是(A ).111(A) ()(); (B) ()(1);22211(C) ()2()1; (D) ()().22G y F y G y F y G y F y G y F y =-=+=+=-18. 设随机变量X 的密度函数是21(), 2 (1)X f x Y X x π==+则的密度函数是(B ).(A );)41(1)(2y y f Y +=π (B );)4(2)(2y y f Y +=π (C );)1(1)(2y y f Y +=π (D ).1)(arctgy y f Yπ=三、解答题1. 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,求X 的分布律。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3522)0(315313===C C X P 3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 566530.0}4{}3{=≥=>X P X P2. 袋中有6个球,分别标有数字1,2,2,2,3,3,从中任取一个球,令X 为取出的球的号码,试求X 的分布律及分布函数。

解 X 的分布列为P61 21 31由分布函数的计算公式得X 的分布函数为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=3 ,132 ,3221 ,611,0)(x x x x x F3. 已知离散型随机变量X 的分布律为:(1)0.2,(2)0.3P X P X ====,(3)0.5P X ==,试写出X 的分布函数。

解X 的分布律为1230.20.30.5X P所以X 的分布函数为0,1,0.2,12,()0.5,23,1,3.x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩4. 某射手有5发子弹, 射击一次的命中率为, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布律. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P (X = i ) = P (前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i =5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以P(X = 5) =+5)1.0(9.0)1.0(4⋅4)1.0(=. 于是分布律为5. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布律.(i ). 每次取出的产品不放回; (ii ). 每次取出的产品经检验后放回, 再抽取; (iii) . 每次取出一件产品后总以一件正品放回, 再抽取. 解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) (i). 13)()1(1===A P X P1331210)()|()()2(11212⋅====A P A A P A A P X P 1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P 1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X P(ii). 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P ΛΛ, (k = 1, 2, …)(iii).13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P6.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布律。

相关文档
最新文档