新北师大版数学七下第四章《变量之间的关系》word导学案
新北师大七年级下3.3用图象表示的变量间关系教案+导学案

3.3用图象表示的变量间关系(第1课时)学习目标:1.能够从图象中分析变量之间的关系,明确图象上点所表示的意义,会利用图象找到准确的信息。
2.培养学生的观察能力,根据图像预测能力,分析能力,动手操作能力,发展学生合作交流的能力和数学表达能力。
3.让学生体会数学与实际生活的紧密联系,激发学生学习数学的兴趣,培养学生的数学应用意识。
二、教学过程第一环节:课前准备活动内容:课前预习课本内容并且收集实际生活中的图像资料并设计好问题。
活动内容1:复习回顾通过前面的学习,我们知道,可以用表格或关系式表示变量间的关系,同时掌握了根据自变量的取值求出相应因变量的方法.请你根据前面的知识解决下列问题.1、给定自变量x与因变量的y的关=-+,填表:y x x2482、假设圆柱的高是5厘米,当圆柱的底面半径由小到大变化时;(1)圆柱的体积如何变化?在这个变化中,自变量、因变量是什么?(2)如果圆柱底面半径为r(厘米),圆柱的体积v可以表示为 . (3)当r由1厘米变化到10厘米时,v由变化到 . 3.请把你所找到的资料粘贴在此处,并提出问题。
第二环节:情境引入活动内容:预习课本内容,感受图像表示的变量之间关系1.某地某天的温度变化情况如下图示,观察下表回答下列问题:(1)、上午9时的温度是 ;12时的温度是 .(2)、这一天 时的温度最高,最高温度是 ;这一天 时的温度最低,最低温度是 .(3)、这一天的温差是 ,从最高温度到最低温度经过了 ,(4)、在什么时间范围内温度在上升?在什么时间范围内温度在下降? (5)、图中的A 点表示的是什么?B 点呢?(6)、你能预测次日凌晨1时的温度吗?说说你的理由.第三环节:合作学习活动内容:1 、提问:通过课前预习的内容我们学到哪些新的知识? 教师归纳 :前图表示了温度随时间的变化而变化的情况,它是温度与时间之间关系的图象。
图象是我们表示变量之间关系的又一种方法,它的特点是非常直观。
七年级数学下册第四章变量之间的关系导学习型教学案(新版北师大版)

七年级数学下册第四章变量之间的关系导学案(新版北师大版)本资料为woRD文档,请点击下载地址下载全文下载地址第四章变量之间的关系第一节用表格表示的变量间的关系【学习目标】1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。
2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。
3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。
【学习方法】自主探究与小组合作交流相结合.【学习重难点】重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。
难点:对表格所表达的两个变量关系的理解。
【学习过程】模块一预习反馈一、学习准备.我们生活在一个变化的世界中,很多东西都在悄悄地发生变化.你能从生活中举出一些发生变化的例子吗?教材精读.请同学们观察思考,逐一回答下面的问题:根据上表回答下列问题:(1)支撑物高度为70厘米时,小车下滑时间是多少?(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?(3)h每增加10厘米,t的变化情况相同吗?(4)估计当h=110厘米时,t的值是多少,你是怎样估计的?随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?在“小车下滑的过程”中:支撑物的高度h和小车下滑的时间t都在变化,它们都是。
其中小车下滑的时间t随支撑物的高度h的变化而变化。
支撑物的高度h是,小车下滑的时间t是。
在这一变化过程中,小车下滑的距离(木板的长度)一直变化。
像这种在变化过程中的量叫做。
我国从1949年到1999年的人口统计数据如下(精确到0.01亿):如果用x表示时间,y表示我国人口总数,那么随着x 的变化,y的变化趋势是什么?X和y哪个是自变量?哪个是因变量?从1949年起,时间每向后推移10年,我国人口是怎样的变化?你能根据此表格预测XX年时我国人口将会是多少?在“人口统计数据”中:时间和人口数都在变化,它们都是。
北师大版七年级数学下册-第四章变量之间的关系(同步+复习)精品课件

2. 3. 4.
5.
【例题】将一个长为20cm,宽为10cm的长方形
的四个角,分别剪去大小相等的正方形,若被
剪去正方形的边长为 x cm , 阴影部分的面积为
y(cm2)
2 y =200 4 x ,则 y 与 x 的关系式是 .
【练习1】
1.圆柱的底面直径是6cm,当圆柱的高 h (cm) 由大到小变化时,圆柱的体积V(cm3)随之发生变 化,则V与h之间的关系式是___________ V 9πh 2.圆锥的高为 4,底面半径为 r 那么圆锥的体积 V 可以表示为
2.
3.
在变化过程中,若有两个变量x 和y, 其中y随着x 的变化而发生 变化,我们就把x叫自变量,y 叫因变量。
自变量
主动变化的量
变 量
因变量
被动变化的量
1.自变量是在一定范围内主动变化的量。
2.因变量是随自变量变化而变化的量。
3.表格可以表示因变量随自变量变化而变化的情 况,还能帮助我们对变化趋势进行初步的预测。
y = 3x
系数为1
因变量 含自变量代数式
原料
工厂
自变量的取值要符合实际
●当底边长从12cm变化到3cm时,
2变化到____cm 36 9 2 三角形的面积从______cm
产品
1.
用关系式表示两个变量之间的关系
关系式:这里指通过自变量计算对应的因变 量的一个“公式”y=f(x).其中y表示因变量; f表示计算规则;x表示自变量。 关系式是表示变量之间的关系的另一种方法。 关系式的用途:变量互求;分类讨论-----列关系式:把变量和常量都当做已知量,找 等量关系,列方程,变为y=f(x)的形式。 优缺点:优点:全面准确反映两个变量之间 的关系;缺点:需要计算,不形象不直观。
初中数学北师大七年级下册(2023年新编) 变量之间的关系变量教案

(3)、在匀速运动中,若用S表示路程,v表示速度,t表示时间,那么对于S=vt,下列说法正确的是( ) A、S、v、t三个都是变量、B、S与v是变量,t是常量,
(2)某婴儿在出生时的体重是千克,请把他在发育过程中的体重情况填入下表:
(3)根据表中的数据,说一说儿童从出生到10周岁之间体重是怎样随着年龄的增长而变化的.
用表格呈现实验中变量的数据的方法.依据变量之间关系的数学表示(表格、解析式和图象)进行预测或推测已知中没有给出的量,也是研究变量之间关系的重要目标之一.
(2)常量和变量是相对变化过程而言的,有时可以相互转化;如在S=υt,若S一定,则υ、t是变量,若υ一定,则s、t是变量;
(3)不要误认为字母就是变量,如π就是常量。
让学生在反复的造句练习中强化,变量,常量概念。
举一反三的意义在于从 “看”的情形自然地过渡到“说”的情形,生活中的变量与数学的浑然一体。
过程与方法:
(1)通过小组合作探究,得出常量与变量的概念,为学习函数定义作准备;
(2)通过实际问题的探究,学生能准确地认识常量与变量,理解两个概念之间的联系与区别
情感态度与价值观:
学生通过对实际问题的讨论和分析,感受函数的普遍性,体会事物
之间的相互联系与制约。
教学重点
理解变量的实际意义。
教学难点
常量与变量之间的关系,准确判断变量。
2、引导学生形成概念:在某一变化过程中,( )称为变量。数值( )称为常量。
3、拓展延伸(可采用分小组举手抢答的形式):分别指出上面各问题中哪些是变量,哪些是常量?
七年级数学下册(新版北师大)精品导学案【第四章 变量之间的关系】.pptx

1.5 1.4 1.3
h0.逐0渐变0.大09,0t.的06变化趋势是什
么?
(3)h 每增加 10 厘米,t 的变化情况相同吗?
(4)估计当 h=110 厘米时,t 的值是多少,你是怎样估计的? (5)随着支撑物高度 h 的变化,还有哪些量发生变化?哪些量始终不发生变化?
在“小车下滑的过程”中:支撑物的高度 h 和小车下滑的时间 t 都在变化,它们都是 。 其中 小车下滑的时间t 随支撑物的高度h 的变化而变化。支撑物的高度 h 是 ,小车下滑的时间t 是。
(1) 如 果用 x 表示时 间,y 表
人口总数,那么随 1.3 1.3
y 的变化趋势是什么?
(2)X 和 y 哪个是自变量?哪个是因变量?
1.6
1.3
示我国
1.5 着 x的变化,
1
一 寸 光 阴 不 可轻
(3)从 1949 年起,时间每向后推移 10 年,我国人口是怎样的变化? (4)你能根据此表格预测 XXXX 年时我国人口将会是多少? 在“人口统计数据”中:时间和人口数都在变化,它们都是 。其中人口数随时间的 变化 而变化。时间是 ,人口数是 。 归纳:借助表格,我们可以表示因变量随自变量的变化而变化的情况 模块二 合作探究 1.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:
二、教材精读
1.请同学们观察思考,逐一回答下面的问题:
支撑物高度/厘 10 20 30 40 50 60 70 80 90 100
米h
(根 下 (小秒2据1))车上t如下支表滑果撑回时用物答间高h/ 表度列示为4问.1支7.题20撑3厘3:物.米0高 0时.5度5,2,.4小t0车表.32下示2.1滑小0时车.12间下.8 是滑0多时.11少.间870?,.1随21着.5
北师大版七年级下册第四章变量之间的关系课程设计

北师大版七年级下册第四章变量之间的关系课程设计1. 课程背景在学习编程的过程中,变量是最重要的概念之一。
变量可以存储程序中的数据,但它们也可以互相关联,以便根据一个变量的值来计算另一个变量的值。
因此,变量之间的关系是编程的基础,也是这个课程的主题。
2. 教学目标在本课程中,学生将会:•了解变量之间的关系是如何工作的。
•学会如何使用数学运算符来表示变量之间的关系。
•学会如何使用条件语句和循环语句来处理变量之间的关系。
•学会如何调试程序以解决变量之间的关系问题。
3. 教学内容3.1 变量之间的关系在本章中,学生将会学习各种类型的变量之间的关系,包括:•赋值•算术关系•逻辑关系•运算符优先级3.2 使用数学运算符来表示变量之间的关系学生将会学习如何使用各种数学运算符来表示变量之间的关系。
这些运算符包括:•加法•减法•乘法•除法•取模3.3 使用条件语句和循环语句来处理变量之间的关系学生将会学习如何使用条件语句和循环语句来处理变量之间的关系。
这些语句包括:•if语句•else语句•while语句•for语句3.4 调试程序以解决变量之间的关系问题学生将会学习如何调试程序以解决变量之间的关系问题。
他们将会学会如何使用调试器来找出程序中的错误。
4. 教学步骤4.1 引入1.导入本章的主题和目标。
2.讲解变量是什么以及为什么我们需要它们。
4.2 学生动手实践1.让学生创建几个变量,并尝试使用它们进行各种运算。
2.让学生使用条件语句和循环语句来处理变量之间的关系。
3.让学生在调试器中找出自己程序中的错误。
4.3 结束1.总结本章的主要内容和目标。
2.评估学生的学习情况和掌握程度。
5. 扩展活动1.让学生写一个小程序,演示变量之间的关系。
2.让学生从互联网上寻找其他示例,并介绍它们的思想和实现方法。
6. 总结在本章中,学生学会了如何处理变量之间的关系。
他们不仅学习了运算符和条件语句,还学会了如何调试程序。
这些技能对学生未来的编程学习将有很大的帮助。
七年级数学下册 4.4 变量之间的关系复习课教案 (新版)北师大版

4.4变量之间的关系复习课教案教学目标:1.回顾总结表示变量之间关系的方法。
2.深刻理解用表格、关系式和图象表示某些变量之间的关系的意义,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测。
3.进一步感受用运动变化的观点去认识数学对象,发展对数学更高层次的认识。
教学重点与难点:重点:读懂表格、关系式、图象所表示的信息,理解自变量和因变量的概念;掌握变量之间关系的不同方法。
难点:学会整理实际问题中变量之间关系的信息,并能进行预测。
教法与学法指导:本节课主要采用问题导学——知识建构——题组复习——典例剖析——总结感悟——课堂检测----布置作业的课堂教学模式.即以问题串、题组串的方式帮助学生总结本章的内容,在小组讨论的基础上,引导学生梳理本章的知识结构框架,然后通过课堂练习来巩固本章的主要内容,达到回顾与思考的目的,并在师生互动的学习过程中,让学生体会到学习数学的成就感.教学准备:多媒体课件.教学过程:一、知识回顾,构建网络生:举例说明常量、变量;自变量和因变量;师:本章我们学习了哪几种表示变量之间关系的方法?它们各有什么好处?生:(三种)分别是:表格法、关系式法和图象法。
表格的好处是:非常直观,对于表格中自变量的每一个值,不需要计算就可以直接从表格中找到与它对应的因变量的值,使用较简便,但这种方法列出的数值是有限的,而且从表格中也不容易得到自变量与因变量的对应关系。
关系式法能准确地表示出自变量与其因变量之间的数量关系,能很准确地得到与所有自变量对应的因变量的值,但并非所有变量之间的关系都能用关系式表示出来。
图象法形象直观,但是从图象上一般只能得到近似的数量关系。
师生:总结本单元知识结构如下:设计意图:从学生已有的知识出发,引导学生探索、回忆、思考、归纳,巩固知识技能,发展思维,把获得的零散的知识进一步系统化,给学生整体的认识。
二、深入剖析,融会贯通师:多媒体出示例1.一名同学在用弹簧做实验,在弹簧上挂不同质量的物体后,弹簧的长度就会发生变化,实验数据如下表:(2)弹簧不挂物体时的长度是多少?如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,那么随着x的变化,y的变化趋势如何?(3)如果此时弹簧最大挂重量为15千克,你能预测当挂重为10千克时,弹簧的长度是多少?答:(1)上表反映了弹簧的长度与所挂物体的质量之间的关系,所挂物体的质量是自变量,弹簧的长度是因变量。
北师大版七年级下:变量关系(导学案)

教师辅导教案一、变量的定义1、变量的定义:在变化过程中,若有两个变量x和y,其中y随着x的变化而发生变化,我们就把自动发生变化的x叫自变量,y叫因变量。
在变化过程中保持不变的量叫常量。
二、变量的表示方法1.列表法定义:表格是采用数表相结合的形式,运用表格表示两个变量之间的关系,从中获取信息、研究不同量之间的关系。
(1)首先要明确表格中所列的是哪两个变量;(2)分清哪一个量为自变量,哪一个量为因变量;(列表时一般第一行代表自变量,第二行代表因变量.)(3)自变量从小到大的顺序列出,再分别求出对应的因变量的值。
结合实际情境理解它们之间的关系。
特点:优点:直观,可以直接从表中找出自变量与因变量的对应值,缺点:具有局限性,只能表示因变量的一部分。
2.关系式法(又叫解析式法)1、定义:关系式(即解析式)是利用数学式子来表示变量之间关系的等式,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学等量关系式叫做关系式。
2、本质:是数学等量关系式3.写法注意,必须将因变量单独写在等号的左边。
3、求关系式的方法:--(就是找等量关系)类型:(1)将自变量和因变量看作两个未知数,根据等量关系,并最终写成关系式的形式。
(2)根据表格中所列的数据相同的变化关系写出变量之间的关系式;(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。
注:有些表达式要分段写出(分类讨论思想),例如:分段收水费(煤气费、电话费)等优点:关系简洁,清楚、准确,知一变量可求另一变量。
缺点:不直观,形象,不能直接读出变量的值。
3.图象法1.定义:对于在某一变化过程中的两个变量,把自变量x与因变量y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出这些点,这些点所组成的图形就是它们的图象(这个图象就叫做平面直角坐标系)。
注意1、用图象表示变量之间的关系时,通常用水平方向的数轴(又称横轴)上的点表示自变量,用竖直方向的数轴(又称纵轴)上的点表示因变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新北师大版数学七下第四章《变量之间的关系》word导学案————————————————————————————————作者:————————————————————————————————日期:第四章变量之间的关系§4.1 小车下滑的时间学习目标:通过分析小车在斜坡上下滑时高度与时间数据之间的联系,使学生体会小车下滑时间随着高度变化而变化,从而了解变量、自变量和因变量的意义,了解可以用列表示两个变量之间的关系,培养学生分析问题的能力与归纳思维的能力。
学习重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。
学习难点:对表格所表达的两个变量关系的理解。
一、预习(一)、预习书P96~P97(二)、思考:什么是变量?什么是自变量?什么是因变量?(三)、预习作业:1、课堂上,学生对概念的接受能力与老师提出概念的时间(单位:分)之间有如下关系:时间/分0 2 10 12 13 14 16 24接受能力43 47.8 59 59.8 59.9 59.8 59 47.8(1)表中反映了哪两个变量之间的关系,哪个是自变量?哪个是因变量?(2)根据表中的数据,你认为老师在第____分钟提出观念比较适宜?说出你的理由.二、学习过程:(一)要点引导1、在一个变化过程中数值保持不变的量叫做______可以取不同数值的量叫做______,如果一个量随着另外一个量的变化而变化,那么把这个量叫做______,另一个量叫做______.2、本节是通过______形式来表示两个变量之间的关系的.(二)例题例1王波学习小组利用同一块木板,测量了小车从不同高度下滑的时间.他们得到如下数据:支撑物高10 20 30 40 50 60 70 80 90 100度/ 厘米小车下滑4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 1.41 1.35时间/ 秒(1)支撑物高度为70厘米时,小车下滑时间是多少?(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?(3)h每增加10厘米,t的变化情况相同吗?(4)估计当h=110时,t的值是多少,你是怎样估计的?变式:一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:时间(秒)0 1 2 3 4 5 6 7 8 9 10速度0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9(米/秒)(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1秒时,v的变化情况相同吗?在哪1秒钟内,v的增加最大?(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?(三)拓展:1、如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;第三层每边有三个点,依此类推:(1)填写下表:层数 1 2 3 4 5 6 ……该层的点数……所有层的点数……(2)每层点数是如何随层数的变化而变化的?所有层的总点数是如何随层数的变化而变化的?(3)此题中的自变量和因变量分别是什么?(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;(5)如果某一层的点数是96,它是第几层?(6)有没有一层,它的点数是100?为什么?2、下表是明明商行某商品的销售情况,该商品原价为560元,随着不同幅度的降价(单位:元),日销量(单位:件)发生相应变化如下表:降价(元) 5 10 15 20 25 30 35日销量(件)780 810 840 870 900 930 960(1)上表反映了哪两个变量之间的关系?其中那个是自变量,哪个是因变量?(2)每降价5元,日销量增加多少件?请你估计降价之前的日销量是多少?(3)如果售价为500元时,日销量为多少?(四)回顾小结:总结本节所学的知识,从表格中获取信息;用表格表示变量之间的关系;对变化趋势进行预测。
§4.2 用关系式表示的变量间的关系学习目标:1、经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。
2、能根据具体情景,用关系式表示某些变量之间的关系。
3、能根据关系式求值,初步体会自变量和因变量的数值对应关系。
学习重点:1、找问题中的自变量和因变量。
2、根据关系式找自变量和因变量之间的对应关系。
学习难点:根据关系式找自变量和因变量之间的对应关系。
一、预习 (一)、预习书:P100~P101 (二)、思考:确定关系式的步骤? (三)、预习作业:1、会议厅共有30排座位,第一排有20个座位,后排每排比前一排多一个座位. (1)你知道第九排有多少个座位吗?第26排呢? (2)每排的座位数y 可用排数x 来表示吗? (3)可不可能某一排的座位数是52?为什么?二、学习过程: (一)要点引导 1、通过表格可表示两个变量之间的关系,本节中利用_______也可表示两个变量之间的关系. 2、确定关系式的步骤:先找出题目中关于________与________的相等关系,再用________的代数式表示________3、半径为R 的圆面积S=________,当R=3时,S=________方法小结:1、涉及到图形的面积或体积时,写关系式的关键是利用面积或体积公式写出等式;2、一定要将表示因变量的字母单独写在等号的左边;3、已知一个变量的值求另一个变量的值时,一定要分清已知的是自变量还是因变量,千万不要代错了.(二)例题例1、如图,ABC 底边BC 上的高是6厘米,当三角形的顶点C 沿底边所在直线向点B 运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果三角形的底边长为x (厘米),那么三角形的面积y (厘米2)可以表示为_________(3)当底边长从12厘米变化到3厘米时,三角形的面积从____厘米2变化到____厘米2ACB 1C 2C 3C 84 x变式1、 如图,已知梯形的上底为x ,下底为8,高为4. (1)求梯形面积y 与x 的关系;(2)用表格表示,当x 从3到7(每次增加1)时,y 的相应值; (3)当x 每增加1时,y 如何变化? (4)当y=50时,x 为多少?(5)当x=0时,y 等于多少?此时它表示的是什么?例2、将若干张长为20cm 、宽为10cm 的长方形白纸,按下图所示的方法粘合起来,粘合部分的宽为2cm .(1)求4张白纸粘合后的总长度;(2)设x 张白纸粘合后的总长度为ycm ,写出y 与x 之间的关系式;(3)并求当x=20时,y 的值变式2、 声音在空气中传播的速度y (米/秒)与气温x C 之间有如下关系:33315y x =+ (1)在这一变化过程中,自变量是________、因变量是________; (2)当气温15x C =时,声音速度y=________米/秒;(3)当气温22x C =时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放烟花所在地约相距________米;(三)拓展1、如图,在Rt ABC ∆中,已知90C ∠=,边AC=4cm ,BC=5cm ,点P 为CB 边上一动点,当点P 沿CB 从点C 向点B 运动时,APC ∆的面积发生了变化. (1)在这个变化过程中,自变量和因变量各是什么?(2)如果设CP 长为xcm ,APC ∆的面积为2ycm ,则y 与x 的关系可表示为__________; (3)当点P 从点D (点D 为BC 的中点)运动到点B 时,则APC ∆的面积从______2cm 变到______2cm(四)回顾小结:自变量和因变量之间的关系;根据关系式找出与自变量相应的因变量的数值。
ABC P122§4.3 用图象表示的变量间关系学习目标:1、经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系。
2、结合具体情境,理解图象上的点所表示的意义。
3、能从图象中获取变量之间关系的信息,并能用语言进行描述。
学习重点:结合具体情境,理解图象上的点所表示的意义。
并能从图象中获取变量之间关系的信息,学习难点:能从图象中获取变量之间关系的信息,并能用语言进行描述。
一、预习(一)、预习书:P103~P105(二)、思考:用图像表示变量之间的关系时,水平方向的数轴(横轴)上的点表示什么?,竖直方向的数轴上的点表示什么?(三)、预习作业:1、如图,是某地某年月平均气温随时间变化的图像.请回答下列问题:(1)二月份平均气温是______C,十月份平均气温______C;(2)这一年中,月平均气温最高的是______月,温度大约是______C;(3)月平均最高气温与最低气温大约相差______C(4)月平均最高气温为10C的月份是______月,它可能是______季节;(5)上述变化中,自变量是______,因变量是______;(6)估计明年一月份的平均气温会低于0C吗?二、学习过程:(一)要点引导1、图像是表示________之间关系的一种方法,它的特点是更________、更________地反映了因变量随自变量变化的情况.2、用图像表示变量之间的关系时,通常用水平方向的数轴(横轴)上的点表示________,用竖直方向的数轴(纵轴)上的点表示________(二)例题例1、某山区今年6月中旬的天气情况是:前5天小雨,后5天暴雨,那么反映该地区某河流水位变化的图像大致是()A B C D变式1、为节约用水,利民学校冲厕水箱经改造后,当水箱水满后就按一定的速度放掉水箱的一半水,随后立即按一定的速度注水,等水箱的水满后,又立即按一定的速度放掉水箱一般的水,下面的图像可以刻画水箱的存水量v(立方米)与放水或注水时间t(分钟)之间的关系的是()A B C D例2、新成药业集团研究开发了一种新药,在实验药效时发现,如果儿童按规定剂量服用,那么2小时的时候血液中含药量最高,接着逐步衰减,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当儿童按规定剂量服药后:(1)何时血液中含药量最高?是多少微克?(2)A点表示什么意义?(3)每毫升血液中含药量为2微克以上时在治疗疾病时是有效的,那么这个有效期是多长?(4)你建议该儿童首次服药后几小时再服药?为什么?变式2、如图,是表示某天小明上学从家到学校时,离家的距离与时间的关系的图像。
(1)小明从家到学校有多远?他一共用了多长时间到校?(2)中途小明停下来子啊路边的商店买了一些练习本,图中那一段曲线表示这一过程?(3)你能想象小明从离家到第4min时的情况吗?(三)拓展1、王大爷带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价出售一些后,又降价出售,售出土豆的千克数x与他手中持有的钱数y(含备用零钱)的关系如图所示。