六大定理互相证明总结
数学公式证明解析详细讲解

数学公式证明解析详细讲解数学公式是数学领域中的重要工具,它们用于描述和解决各种数学问题。
在本文中,我将详细讲解一些常见的数学公式的证明和解析,希望能够帮助读者更好地理解和应用这些公式。
一、勾股定理勾股定理是数学中最著名的公式之一,它描述了直角三角形中直角边与斜边之间的关系。
勾股定理可以用如下的数学公式表示:a² + b² = c²其中,a和b分别表示直角三角形的两条直角边的长度,c表示斜边的长度。
下面我们来证明这个公式。
假设有一个直角三角形ABC,其中∠C是直角。
根据几何知识,我们可以得到以下两个等式:AC² = AB² + BC²(1)AC² = AD² + DC²(2)其中,AD是BC的高,DC是AB的高。
由于直角三角形中的两个直角边相等,所以AD = BC。
将AD代入等式(2)中,我们可以得到:AC² = BC² + DC²(3)由于直角三角形中的两个直角边相等,所以DC = AB。
将DC代入等式(3)中,我们可以得到:AC² = BC² + AB²(4)由于等式(1)和等式(4)都表示AC²的值,所以它们相等:AB² + BC² = AB² + AB²化简后得到:AB² + BC² = 2AB²再进一步化简,我们可以得到:AB² + BC² = AB² + BC²即:a² + b² = c²这就是勾股定理的证明过程。
二、二次方程的求解公式二次方程是形如ax² + bx + c = 0的方程,其中a、b、c是已知的实数,且a ≠ 0。
求解二次方程的公式被称为二次方程的求解公式,它可以用如下的数学公式表示:x = (-b ± √(b² - 4ac)) / 2a下面我们来证明这个公式。
学年论文-数学分析七大定理的相互证明

云南大学课题名称:数学分析七大定理的相互证明学院:数学与统计专业:信息与计算科学指导教师:何清海学生姓名:段飞龙学生学号:20101910050目录摘要………………………………………………………………………………………关键词……………………………………………………………………………………前言………………………………………………………………………………………结论………………………………………………………………………………………参考文献…………………………………………………………………………………摘要:数学分析中的单调有界性定理、闭区间套定理、确界存在性定理、有限覆盖定理、Weierstrass聚点定理、致密性定理以及柯西收敛准则,虽然他们的数学形式不同,但他们都描述了实数集的连续性,在数学分析中有着举足轻重的作用。
关键词:单调有界性定理闭区间套定理确界存在性定理有限覆盖定理Weierstrass聚点定理致密性定理柯西收敛准则前言:一、七大定理定理 1 单调有界性定理(1)、上确界上确界的定义“上确界”的概念是数学分析中最基本的概念。
考虑一个实数集合M. 如果有一个实数S ,使得M 中任何数都不超过S,那么就称S 是M 的一个上界。
在所有那些上界中如果有一个最小的上界,就称为M 的上确界。
一个有界数集有无数个上界和下界,但是上确界却只有一个。
上确界的数学定义有界集合S ,如果β满足以下条件①对一切S x ∈,有β≤X ,即β是S 的上界;②对任意βα<,存在S x ∈,使得α>x ,即β又是S 的最小上界, 则称β为集合S 的上确界,记作S sup =β(同理可知下确界的定义)在实数理论中最基本的一条公理就是所谓的确界原理:“任何有上界(下界)的非空数集必存在上确界(下确界)”。
上确界的证明(1)每一个 X x ∈满足不等式m x ≤ ;(2) 对于任何的 0>ε, 存在有X x ∈', 使ε->M x ' 则数{}x M sup = 称为集合X 的上确界。
数学分析八大定理互证

数学分析八大定理互证数学分析中的单调有界性定理,闭区间套定理、确界存在性定理、Heine 一Borel有限微盖定理、Weierstrass聚点定理,致密性定理以及Cauchy收敛准推则,虽然它们的数学形式不同,但它们都是描述了实数集的连续性,在数学分析中有者举足轻重的作用。
为方便读者,我们叙述如下:定理I(单调有界性定理)单调有界数列必存在极限。
定理2(闭区间套定理)设有闭区间列{[4.,b.]},满足1)[ab[azb2]つ。
…つ[an:b]つ2)lim (b-)=0则存在唯-一数,使得∈[a.b](n=1,2,…)或{}=∩[a:b] 定理3(确界存在性定理)若非空数集E有上界(下界),则数集E一定存在上确界(下确界)。
若确界存在,则不难证明确界一定唯一。
定理4,(Hcine-一Borel有限覆盖定理)若开区间集S盖闭区间[a,b],则在S 中存在有限个开区间也微盖了闭区间[a,b]。
定理5(Weierstrass聚点定理)数轴上有界无限点集E至少有一个聚点。
定理6(致密性定理)有界数列{an}必有子数列{ak}收敛。
定理7(Cauchy收敛准则)数列{an}收敛台对于任意s>0,存在正整数N>0,当nm>,有an一am<e。
许多学者指出数学分析上述七大定理是相互等价的,即任意一个定理都是其它定理成立的必要充分条件:任何两个命题都可相互直接推导。
然而这七大定理的相互证明散见于浩瀚的文献之中,是否存在一个完整的证明还是一个未知数,笔者系统整理了已有结果,指出这样的证明是存在的。
作为补充,还给出了由闭区间套定理到Weierstrass聚点定理,山致密性定理到单调有界性定理,由确界存在性定理到Cauchy收敛准则,由闭区间套定理到单调有界性定理,以及由Weierstrass聚点定理到Cauchy收敛准则的证明,为给出另一个数学分析-七大定理的相互证明作了准备。
已有结果的系统整理许多学者~已对这七大定里的相互证明作了一定的探讨(具体见图1)。
实数完备性六个定理的互相证明

0 , x S ,使得 x ,
记为 xn a ( n ) 。如果不存在实数 a,使 xn 收敛于 a,则称数列 xn 发散。
lim xn a 0 , N N , n N ,有 xn a 。
二、一些基本概念
1.有界集: 设 S 是一个非空数集,如果 M R ,使得 x S ,有 x M ,则称 M 是 S 的
一个上界;如果 m R ,使得 x S ,有 x m ,则称 m 是 S 的一个下界。当数集 S 既有上界,又有下界时,称 S 为有界集。
a1 b1 a b a b , b1 S ,则记 a2 , b2 = 1 1 , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 2 2 2 an 1 bn 1 an 1 bn 1 a b an1 , bn1 二等分为 , bn 1 ,若 n 1 n 1 , bn 1 S , an 1 , 、 2 2 2
则记 a2 , b2 =
a1 b1 a b , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 an 1 , bn 1 二等分为 2 2
an 1 bn 1 an 1 bn 1 a b , bn 1 ,若 n 1 n 1 非 s 的上界,则记 、 an 1 , 2 2 2 an 1 bn 1 a b an , bn = , bn 1 否则记 an , bn = an 1 , n 1 n 1 ;...,得到一列闭区间 2 2
上界,则记 a2 , b2 =
实数完备性的六大基本定理的相互证明

1 确界原理非空有上(下)界数集,必有上(下)确界。
2 单调有界原理 任何单调有界数列必有极限。
3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。
4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。
5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。
) 直线上的有解无限点集至少有一个聚点。
6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。
一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。
(经典)正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、 余弦定理,并能解决一些简单的三角形胸怀问题.2.能够运用正弦定理、 余弦定理等知识和方法解决一些与丈量和几何计算相关的实质问题.主要考察相关定理的应用、三角恒等变换的能力、运算能力及转变的数学思想.解三角形经常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一同求距离、高度以及角度等问题,且多以应用题的形式出现.1. 正弦定理(1) 正弦定理:在一个三角形中, 各边和它所对角的正弦的比相等, 即 .其 中 R 是三角形外接圆的半径.(2) 正弦定理的其余形式:, c① a = R A , b =2 sin=;a②sin A =2R , sin B =,sin C = ;③a ∶b ∶c =______________________.2. 余弦定理——王彦文 青铜峡一中(1) 余弦定理:三角形中任何一边的平方等于其余两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=,b 2=,c 2=.,即为勾若令 C =°,则 c 2=90股定理.(2) 余 弦 定 理 的 变 形 : cosA= , cosB = ,cosC = .若 C 为锐角,则 cosC>0,即 a 2+ b 2 ______c 2;若 C 为钝角,则 cosC<0,即 a 2+b 2______c 2. 故由 a 2 +b 2 与 c 2 值的大小比较,能够判断 C 为锐角、钝角或直角.(3) 正、余弦定理的一个重要作用是实现边角____________,余弦定理亦能够写成 sin 2A= sin 2B + sin 2C - 2sin Bsin CcosA ,近似地,sin 2B = ____________ ; sin 2C =__________________.注意式中隐含条件 A + B +C =π.3. 解斜三角形的种类(1) 已知三角形的随意两个角与一边,用____________定理.只有一解.(2) 已知三角形的随意两边与此中一边的对 角 , 用 ____________ 定 理 , 可 能 有___________________.如在△ ABC 中,已知 a , b 和 A 时,解的状况如表:A 为钝角A 为锐角或直角图 形关 a = b A aa ≥b a b 系 b A sin <b> 式 sin <解 的 ① ② ③ ④ 个 数(3) 已知三边,用 ____________定理.有1解时,只有一解.(4) 已知两边及夹角,用 ____________定理,必有一解.4. 三角形中的常用公式或变式(1) 三角形面积公式 S △= == ____________ = ____________ =____________.此中 R ,r 分别为三角形外接圆、内切圆半径.,(2) A + B + C =π,则 A =__________A= __________ , 从 而sin A =2____________,cosA = ____________ , tan A =____________;A Asin 2= __________, cos 2=__________,Atan 2 = ________.tan A + tan B + tan C =__________.(3) 若三角形三边 a ,b ,c 成等差数列,则b =____________? 2sin B =____________?2B A -C A + C A - C A2sin 2= cos2 ? 2cos 2 = cos 2 ? tan 2C 1tan 2=3.【自查自纠】. a bc R1(1)sin A = sin B =sin C = 2R BRC ② bc(2) ①2 si2 siRR2 2③ s in A ∶sin B ∶sin C2. (1) b 2+c 2-2bccosA c 2+a 2- 2cacosB a 2 +b 2-2abcosC a 2+ b 2b 2 +c 2-a 2c 2+a 2-b 2a 2 +b 2-c 2>(2)2ca2ab2bc<(3) 互化sin 2C +sin 2A -2sin Csin AcosBsin 2A + sin 2B -2sin Asin BcosC3.(1) 正弦 (2) 正弦 一解、两解或无解①一解 ②二解 ③一解 ④一解 (3) 余弦 (4) 余弦.11 1 abc(1) ab sin C bc s inA ac s in B2 22R412( a +b +c) rπ B +C(2) π- ( B + C)2 - 2sin( B +C-cos( B +C) )- tan( B + C cos B +CsinB + C) 2 21 B +Ctan 2A B C (3)a + csin A + sin C tan tan tan2在△ABC中, A B 是A B 的()>sin >sinA.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选 C.在△ABC中,已知 b=, c=,B=°,则61030解此三角形的结果有 ()A.无解B.一解C.两解D.一解或两解解:由正弦定理知 sin C=c·sin B5b=6,又由c>b>csin B知, C有两解.也可依已知条件,画出△ ABC,由图知有两解.应选 C.( 2013·陕西 ) 设△ ABC的内角 A, B, C所对的边分别为 a, b, c,若b cos C+ c cos B=a sin A,则△ ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确立C+解:由已知和正弦定理可得BC B =A· A ,即sin cos=sin sin sin sin( B +C cos A)sinA A,亦即sinA=A因为Aπ,sin sin sin.0< <π所以 sin A=1,所以 A= 2.所以三角形为直角三角形.应选.B( 2012·陕西 ) 在△ ABC中,角 A,B,C 所对的π边分别为 a,b,c. 若 a=2,B=6,c=23,则 b=________.解:由余弦定理知b2=a2+c2- 2accosB=π222 +( 23)-2×2×2 3×cos 6= 4, b= 2.在△ABC中,角A,B,C 所对的边分别为a,b,c,若 a= 2,b=2,sin B+cosB= 2,则角 A 的大小为 ________.解:∵ sin B+ cosB=2,ππ∴2sin B+4= 2,即 sin B+4=1.πππ又∵ B∈(0 ,π ) ,∴ B+4=2, B=4 .a b依据正弦定理sin A=sin B,可得sin A=asin B1=.b2ππ∵a<b,∴ A<B. ∴ A=6 . 故填6 .种类一正弦定理的应用△ABC的内角A,B,C的对边分别为a,b,c,已知 A- C=90°, a+ c= 2b,求 C.解:由 a+c= b 及正弦定理可得sinA2+s in C= 2sin B.又因为 A- C=90°, B=180°- ( A+ C) ,故 cosC+ sin C= sin A+sin C= 2sin( A+ C) =2sin(90 °+ 2C) = 2sin2(45 °+ C) .∴2 sin(45° +C=2 2 sin(45° +)C)cos(45 °+ C) ,41即 cos(45 °+ C) =2.又∵ 0°< C<90°,∴ 45°+ C=60°,C =15°.【评析】利用正弦定理将边边关系转变为角角关系,这是解本题的重点.( 2012·江西 ) 在△ ABC中,角 A,B,C 的对边分别为a, b,c已知 A=π,bsinπ+C -.44c sinπ+B =a4.π(1)求证: B-C=2;(2)若 a= 2,求△ ABC的面积.解:(1)证明:对bπ+C-sin4csin π+ B= a应用正弦定理得4B π+ C -sinCπ+B =sinA,sin sin4sin422即sin B2 sin C+2 cosC-sinC222,整理得 B C2 sin B+2 cosB =2sin cos -s in CcosB= 1,即 sin ( B-C)=1.3ππ因为 B,C∈ 0,4,∴ B-C=2 .3π,又由 (1)知 B-C(2) ∵ B+ C=π- A=4π=2,5ππ∴B=8,C=8.∵a=2,A=πb=,∴由正弦定理知4a Bπa Cπsin5sinsin A= 2sin8,c=sin A=2sin 8 .115ππ∴S△ABC=2bcsin A=2×2sin8×2sin 8×225ππππ2= 2sin8 sin 8= 2cos8 sin8=2π 1sin 4=2.种类二 余弦定理的应用1 3 3∴S △ABC =2acsin B = 4 .【评析】①依据所给等式的构造特色利用余弦定理将角化边进行变形是快速解答本题的 重点.②娴熟运用余弦定理及其推论,同时还 要注意整体思想、方程思想在解题过程中的运 用.在△ ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,cosBb且cosC =- 2a +c .(1) 求 B 的大小;(2) 若 b = 13,a +c =4,求△ ABC 的面积.a 2+ c 2-b 2, 解:(1) 由余弦定理知, cosB =ac2cosC = a 2+b 2- c 2cosB b 2ab ,将上式代入cos C =- a +c2 得a 2 +c 2-b 2 abb2=- a +c , ac·a 2+b 2-c22整理得 a 2+c 2- b 2=- ac.a 2+c 2-b 2 -ac 1 ∴cosB = ac = ac =- .22 22∵B 为三角形的内角,∴ B = 3π.(2) 将 b = 13,a +c =4,B =23π 代入 b 2=a 2+ c 2-2accosB ,得 13=42- 2ac -2accos 2 3π,解得 ac =3.若△ ABC 的内角 A ,B ,C 所对的边 a ,b ,c 知足( a +b) 2- c 2=4,且 C =60°,则 ab 的值为 ( )4A. 3B .8-4 3C . 12D.3解:由余弦定理得 c 2= a 2 +b 2-2abcosC =a 2+b 2-ab ,代入 ( a + b) 2- c 2 =4 中得 ( a + b) 24- ( a 2+b 2-ab) = 4,即 3ab = 4,∴ ab =3. 应选A.6种类三正、余弦定理的综合应用以用余弦定理化边后用不等式求最值.( 2013·全国新课标Ⅱ ) △ ABC的内角A、B、 C的对边分别为 a,b,c,已知 a=bcosC+ csin B.(1)求 B;(2)若 b=2,求△ ABC面积的最大值.解: (1) 由已知及正弦定理得 sin A=sin BcosC+ sin Csin B. ①又 A=π- ( B+ C) ,故sin A = sin( B + C) = sin BcosC +cosBsin C. ②由①,②和 C∈(0 ,π ) 得 sin B= cosB.π又 B∈(0 ,π ) ,所以 B=4 .12(2) △ ABC的面积 S=2acsin B=4 ac.由已知及余弦定理得 4 = a2+ c2-π2accos 4 .又 a2+ c2≥2ac,故 ac≤4,2- 2当且仅当 a=c 时,等号成立.所以△ ABC面积的最大值为2+1.【评析】(1) 化边为角与和角或差角公式的正向或反向多次联用是常用的技巧; (2) 已知边及其对角求三角形面积最值是高考取考过多次的问题,既可用三角函数求最值,也可( 2013·山东 ) 设△ ABC的内角 A,B,C 所对的边分别为a,b,c,且 a+ c= 6, b= 2, cosB7=9.(1)求 a,c 的值;(2)求 sin( A- B) 的值.解: (1) 由余弦定理 b2=a2+ c2-2accosB,得 b2=( a+c) 2-2ac(1 +cosB) ,又 a+ c =6,b=2,7cosB=9,所以 ac=9,解得 a=3,c=3.242(2) 在△ ABC中, sin B= 1-cos B=9 ,asin B 22由正弦定理得 sin A=b= 3 .因为 a=c,所以 A 为锐角,21所以 cosA=1-sin A=3.所以 sin( A-B) =sin AcosB- cosAsin B=10 227.种类四 判断三角形的形状后进行三角函数式的恒等变形,找出角之间的 关系;或将角都化成边,而后进行代数恒等变 形,可一题多解,多角度思虑问题,进而达到 对知识的娴熟掌握.在三角形 ABC 中,若 tan A ∶tan B =a 2∶b 2,试判断三角形 ABC 的形状.a 2 sin 2A解法一:由正弦定理,得 b 2=sin 2B , tan A sin 2 A所以 tan B =sin 2 B ,A Bsin 2AA = Bsin cos2 ,即sin2所以cosAsin B =sinB sin2 . 所以 A = B ,或2 A +B =π,所以 A =B2 22π或 A + B = 2 ,进而△ ABC 是等腰三角形或直角三角形.a2sin 2A解法二:由正弦定理,得 b 2= sin 2B ,所以tan A sin 2A cosB sin Atan B =sin 2B,所以 cosA = sin B,再由正、余弦a 2+ c 2 -b 2aca a 2- b2c 2-定理,得 2 22 2 )( b + c -a = b ,化简得 (2bca 2-b 2 )= ,即 a 2= b 2 或c 2= a 2 +b 2. 进而△ ABC 是等腰三角形或直角三角形.【评析】由已知条件,可先将切化弦,再联合正弦定理,将该恒等式的边都化为角,然( 2012·上海 ) 在 △ABC 中 , 若 sin 2A +sin 2B 2C ,则△ ABC 的形状是 ( )<sin A .锐角三角形 B .直角三角形C .钝角三角形D .不可以确立解:在△ ABC 中,∵ sin 2A +sin 2 B<sin 2C ,∴由正弦定理知 a 2 +b 2<c 2. ∴cos C = a 2+b 2-c 22ab<0,即∠ C 为钝角,△ ABC 为钝角三角形. 应选 C.种类五 解三角形应用举例某港口 O 要将一件重要物件用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口 O北偏西 30°且与该港口相距20 n mile的A 处,并以 30 n mile/h的航行速度沿正东方向匀速行驶.假定该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过 t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假定小艇的最高航行速度只好达到 30 n mile/h ,试设计航行方案 ( 即确立航行方向和航行速度的大小 ) ,使得小艇能以最短时间与轮船相遇,并说明原因.解法一:(1) 设相遇时小艇航行的距离为 S n mile ,则S=900t 2+400-2·30t ·20·cos(90°- 30°)=t2-t +400=900600900 t -123+300,1103故当 t =3时,S min=103,此时 v=1=3 303.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在 B 处相遇,则v2 t 2=400+t 2-900 2·20·30t ·cos(90 °- 30°) ,2600400故 v = 900-t+t2.v≤,∴6004002-+≤,即∵0<30900t t900t3-t≤0,22解得 t ≥3. 又 t =3时,v=30. 故 v= 30 时,2t 获得最小值,且最小值等于3.此时,在△ OAB中,有 OA=OB=AB=20,故可设计航行方案以下:航行方向为北偏东30°,航行速度为 30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1) 若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C处相遇.在 Rt△OAC中, OC=20cos30°= 10 3,AC=20sin30 °= 10.又 AC=30t ,OC=vt ,101103此时,轮船航行时间 t =30=3,v=1=330 3.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)假定 v= 30 时,小艇能以最短时间与轮船在 D处相遇,此时 AD=DO=30t .又∠ OAD=60°,所以 AD= DO=OA=20,2解得 t =3.据此可设计航行方案以下:航行方向为北偏东 30°,航行速度的大小为30 n mile/h. 这样,小艇能以最短时间与轮船相遇.证明以下:如图,由 (1) 得 OC=103, AC=10,故 OC>AC,且关于线段 AC上随意点 P,有OP≥ OC>AC.而小艇的最高航行速度只好达到30 n mile/h ,故小艇与轮船不行能在 A,C 之间 ( 包括 C) 的随意地点相遇.设∠ COD=θ (0 °<θ<90°) ,则在 Rt△COD 中,103CD=103tan θ, OD=cosθ .因为从出发到相遇,轮船与小艇所需要的10+10 3tan θ和 t =103,时间分别为 t =30vcosθ10+10 3tan θ10 3所以30=vcosθ.153由此可得,v=sin (θ+30°).3又 v≤30,故 sin( θ+30°) ≥2,进而,30°≤ θ<90°.因为θ=30°时, tan θ获得最小值,且3最小值为3 .10+103tan θ于是,当θ=30°时,t =302获得最小值,且最小值为3.【评析】①这是一道相关解三角形的实质应用题,解题的重点是把实质问题抽象成纯数学识题,依据题目供给的信息,找出三角形中的数目关系,而后利用正、余弦定理求解.②解三角形的方法在实质问题中,有宽泛的应用.在物理学中,相关向量的计算也要用到解三角形的方法.最近几年的高考取我们发现以解三角形为背景的应用题开始成为热门问题之一.③不论是什么种类的三角应用问题,解决的重点都是充足理解题意,将问题中的语言表达弄理解,画出帮助剖析问题的草图,再将其归纳为属于哪种可解的三角形.④本题用几何方法求解也较简易.10( 2012·武汉 5月模拟 ) 如图,渔船甲位于岛屿A的南偏西 60°方向的 B 处,且与岛屿 A 相距 12 海里,渔船乙以 10 海里 / 小时的速度从岛屿 A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,恰好用2 小时追上.(1)求渔船甲的速度;(2)求 sin α的值.解: (1)依题意,∠BAC=°,A B=,12012 AC=× =2,在△ ABC中,由余弦定理知 BC 1022022∠ BAC=2+2-=AB+ AC- AB·AC·12202cos2×12×20×cos120°= 784,BC= 28.所以渔船甲的速度为 v=28=14( 海里 / 小2时) .(2)在△ ABC中, AB=12,∠ BAC=120°,BC= 28,AB ∠BCA=α,由正弦定理得sinα=BC12=28,进而 sin α=,即sin120 °sin ∠ BAC sin α12sin120 °3328=14.1.已知两边及此中一边的对角解三角形时,要注意解的状况,提防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转变为角角关系 ( 注意应用 A+ B+ C=π 这个结论 ) 或边边关系,再用三角变换或代数式的恒等变形( 如因式分解、配方等 ) 求解,注意等式两边的公因式不要约掉,要移项提取公因式,不然有可能遗漏一种形状.3.要熟记一些常有结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与引诱公式联合产生的结论:sin A= sin( BA B+C +C) ,cosA=- cos( B+ C) ,sin 2=cos 2,sin2 A=- sin2( B+C) ,cos2A= cos2( B+C) 等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)剖析:理解题意,分清已知与未知,画出表示图;(2)建模:依据已知条件与求解目标,把已11知量与求解量尽量集中到一个三角形中,成立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)查验:查验上述所求得的解能否切合实际意义,进而得出实质问题的解.5.正、余弦定理是应用极为宽泛的两个定理,它将三角形的边和角有机地联系起来,进而使三角与几何产生联系,为求与三角形相关的量( 如面积、外接圆、内切圆半径和面积等 ) 供给了理论依照,也是判断三角形形状、证明三角形中相关等式的重要依照.主要方法有:化角法,化边法,面积法,运用初等几何法.注意领会此中蕴涵的函数与方程思想、等价转变思想及分类议论思想.12。
(经典)正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角包等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用丁立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:① a = 2RsinA , b =, csinO;③ a : b : c= _______________________________2.余弦定理(1)余弦定理:三角形中任何一边的平■方等——王彦文宵铜峡一中丁其他两边的平■方的和减去这两边与它们的火角的余弦的积的两倍.即a2=, b2=,c?=.若令C= 90°, WJ c2=,即为勾股定理.(2)余弦定理的变形:cosA =, cosB=, cosC^.若C为锐角,则cosC>0,即a2 + b2 ; 若C为钝角,贝U cosC<0,即a2+ b2.故由a2+ b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角,余弦定理亦可以写成sin2A= sin2B+ sin2C—2sinBsinCcosA,类似地,sin2B= ________________ ; sin2C= _________ _S 意式中隐含条件A+ B+ C= TT .3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用定理,可能有L如在△ ABC中,已知a, b和A时,解的情况如表:②sin A=2R' sinB=A为锐角A为钝角或直角图形关系式a= bsinA bsinA<a< b a为a>b解的个数①②③④(3)已知三边,用理.有解时,只有一解.(4)已知两边及火角,用理, 必有一解.4.三角形中的常用公式或变式⑴三角形面积公式& =:其中R, r分别为三角形外接圆、内切圆半径.(2)A+ B+ C=兀,WJ A=,A5 = , 从而sinA = tanAtanBtanC (3)a+ c sinA+ sinCcosA = , tanA =<(3)互化sin2C+ sin2A—2sinCsinAcosB sin2A+sin2B— 2sinAsinBcosC3. (1)正弦(2)正弦一解、两解或无解①一解②二解③一解④一解⑶余弦⑷余弦1 1 1 abc 14. (1)2absinC 2bcsinA 2acsinB 4R 2 (a+ b+ c)r在△ ABC中,A>B 是sinA>sinB 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C.兀B+ C (2)代(B+ Q 2— Fsin(B+ C) — cos(B+ C)2 (1)b* 1 2+ c2— 2bccosA c2 + a2— 2cacosB a2 + b2—2abcosC a2 + b2b2+ c2—a2c2+ a2—b2a2+ b2—c2(2)2bc2ca2ab—tan(B+ C) co岩si号«C tan 2在△ ABC中,已知b= 6, c= 10, B= 30°,则解此三角形的结果有()A.无解B. 一解C.两解D. 一解或两解解:由正弦定理知sinC=半=5, 乂由b 6c>b>csinB知,C有两解.也可依已知条件,画出△ ABC,由图知有两解.故选 C.(2012陕西)在^ABC中,角A, B, C所对的边…一…Tt i—一,分力U为a, b, c.右a= 2, B= c= 2寸3,贝U b =.解:由余弦定理知b2= a2 + c2—2accoSB=22 + (2^3)2— 2X 2X^/3X c%= 4, b= 2.故填2.(2013陕西)®AABC的内角A, B, C所对的边分别为a, b, c,若bcosC+ ccosB= asinA,则^ABC 的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解:由已知和正弦定理可得sinBcosC+ sinCcosB= sinA sinA,即sin(B+ Q= sinAsinA, 亦即sinA= sinAsinA.因为0<A<TT,所以sinA= 1, 所以A=2.所以三角形为直角三角形.故选B.在^ABC中,角A, B, C所对的边分别为a, b, c,若 a =寸2, b=2, sinB+ cosB=寸2,则角 A解:sinB+ cosB= ^2,,•寸2sin B+4 =寸2,即sin B+4 = 1._____ __ _兀兀_兀乂.. B€ (0,冗)... B+; = ;, B=~.4 2 4a b asinBsinA= b根据正弦正理、皿=sinB,可侍12'. a<b, . . Av B... A=g.故填&类型一正弦定理的应用△ ABC的内角A, B, C的对边分别为a, b, c,已知A— C= 90 , a+ c=寸2b,求C.解:由a+ c=寸2b及正弦定理可得sinA+sinO 2sinB乂由丁A— C= 90 , B= 180 — (A+C),故cosC + sinC = sinA + sinC=戒sin(A + Q =戒sin(90 + 2Q =匝sin2(45 + Q.,•哀sin(45 + C) = 2 戒sin(45 + C)cos(45 + C),* 一1即cos(45 + C) = 2.乂 .。
关于实数连续性的6个基本定理的互证

{
∴∀ε > 0,∃N > 0,当n > N时, xn − β < ε ∴ lim xn = β
n →∞
5、确界定理证明有限覆盖定理 证明:设 E 是闭区间[ a , b ]的一个覆盖. 定义数集 A={ x ∈ [a , b ] |区间[ a , x ]在 E 中存在有限子覆盖} 从区间的左端点 x
0 0
n →∞
5、单调有界证明有限覆盖定理
证明: 假设某一闭区间 [ a, b ] 的某个开覆盖 E 的有限个区间覆盖, 等分 [ a, b ] 为 两个部分区间,则至少有一个部分区间不能被 E 的有限个区间覆盖,把这个区 间记为 [ a1 , b1 ] ,再等分 [ a1 , b1 ] ,记不能被 E 的有限个区间覆盖的那个部分区间为
1
a n2 …… a nk ,满足 n1
< n2 < ......nk < ...... ,那么我们就已经得到一个单调下降
的子列 {an } . ②数列 {an } 只有有穷多项具有性质 M,那么 ∃ N ,当 n
1
N ,有 an 不具有
性质 M, 即 ∃i > n, 有an < ai , 从中任取一项记为 an , 因为它不具有性质 M, ∴ ∃n2 > n1 , 使an1 < an2 ,……,如此继续下去,我们得到一子列 ank 单调
∴ {x n } 存在收敛子数列.定理证完
4、确界定理证明柯西收敛原则. 证明:首先证明基本列必有界, 取E<1,必有一正整数 ,当 m,n> N 0 时,有
xm − xn < 1 ,特别的当 n > N 0且m = N 0 + 1 时,有 xn − xN0 +1 < 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六大定理的相互证明总结XXX 学号数学科学学院 数学与应用数学专业 班级指导老师 XXX摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明.关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理1 确界定理1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b .显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞→n n n a b ∴βα=即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1]证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界{}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y .由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,有N n y y ≥,从而n y >εβ-.也就是说:当n >N 时,有 n y -≤β0<ε 所以 β→n y 2 单调有界原理2.1 单调有界原理 单调有界数列有极限. 2.2 单调有界原理证明致密性定理在证明定理之前,我们要先证明一个引理:任意一个数列{}n x 必存在单调子数列. 证明:⑴若{}n x 中存在递增子序列{}k n x ,则引理已证明;⑵若{}n x 中无递增子序列,那么∃1n >0,使n >1n ,恒有1n x >n x .同样在{}n x (n >1n )中也无递增子序列.于是又存在2n >0,使2n >n ,恒有2n x <n x <1n x .如此无限进行下去便可得到一严格递减子序列{}k n x . 引理得证.下面证明定理:由引理知,有界数列必有有界单调子数列.又由单调有界原理知,该有界单调子数列必有极限,即该子数列是收敛的.故有界数列必有收敛子列. 2.3 单调有界原理证明区间套定理[1]由定理的条件立即知道{}n a 是单调增加有上界的数列,{}n b 是单调递减有下界的数列.根据定理,则n n a ∞→lim 存在,且极限等于{}n a 的上确界.同样,n n b ∞→lim 也存在,且极限等于{}n b 的下确界.亦即对任何正整数k ,有n n k n n k b b a a ∞→∞→≥≤lim ,lim (*)由定理的另一条件: ()0lim =-∞→n n n a b ,并且由于已知{}n a 及{}n b 的极限都存在,则有()0lim lim lim =-=-∞→∞→∞→n n n n n n n a b a b .从而证明了两个极限相等,且设ξ是它们的同一极限.于是定理前一部分的结果即已证得.剩下要证的是:ξ是所有区间的唯一公共点.由(*)的两个不等式,即有 n k b a ≤≤ξ(3,2,1=k …)也就是ξ是所有区间的一个公共点.现在要证明ξ是所有区间的唯一公共点.设除点ξ外,所设区间列还有另外一个公共点'ξ,且ξξ≠'.由于n n b a ≤≤',ξξ(3,2,1=n …),故有ξξ-≥-'n n a b (3,2,1=n …) 由数列极限的性质知道:()ξξ-≥-∞→'lim n n n a b由于()0lim =-∞→n n n a b ,故有0'≤-ξξ从而有ξξ='.到此定理的全部结果都已得证. 3 区间套定理3.1 区间套定理 设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b ,则区间的端点所成两数列{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点.3.2 区间套定理证明单调有界原理 证明:设数列{}n x 递增有上界.取闭区间[]11,b a ,使1a 不是数列{}n x 的上界,1b 是数列{}n x 的上界.显然在闭区间[]11,b a 内含有数列{}n x 的无穷多项,而在[]11,b a 外仅含有数列{}n x 的有限项. 对分[]11,b a ,取[]22,b a ,使其具有[]11,b a 的性质.故在闭区间[]22,b a 内含有数列{}n x 的无穷多项,而在[]22,b a 外仅含有数列{}n x 的有限项.以此方法,得区间列{[,n a ]n b }.由区间套定理,ξ是所有区间的唯一公共点.显然,在ξ的任何邻域内有数列{}n x 的无穷多项,即ε∀>0,∃*N N ∈,当n >N 时,有ξ-n x <ε. 所以ξ=∞→n n x lim 定理得证.3.3 区间套定理证明致密性定理[1]证明:设{}n y 为有界数列,即存在两个数b a ,,使b y a n ≤≤.等分区间[]b a ,为两个区间,则至少有一个区间含有{}n y 中的无穷个数.把这个区间记为[]11,b a ,如果两个区间都含有无穷个n y ,则任取其一作为[]11,b a .再等分区间[]11,b a 为两半,记含有无穷个n y 的区间为[]22,b a .这个分割手续可以继续不断的进行下去,则得到一个区间列{[,n a ]n b },这个区间列显然适合下面两个条件:(1)[][][]⊃⊃⊃2211,,,b a b a b a … (2)02→-=-nn n ab a b 于是由区间套定理,必存在唯一点[]b a ,∈ξ使ξξ→→n n b a ,,且[]k k b a ,∈ξ(3,2,1=k …).每一[]k k b a ,中均含有{}n y 的无穷个元素.在[]11,b a 中任取{}n y 的一项,记为1n y ,即{}n y 的第1n 项.由于[]22,b a 也含有无穷个n y ,则它必含有1n y 以后的无穷多个数,在这些数中任取其一,记为2n y ,则1n <2n .继续在每一[]k k b a ,中都这样取出一个数k n y ,即得{}n y 的一个子列{}k n y ,其中1n <2n <…<k n <…,且k n k b y a k ≤≤.令∞→k ,由于,,ξξ→→k k b a 故ξ→k n y .这就是定理所要的结果.4 致密性定理4.1 致密性定理 又称魏尔斯特拉斯定理,任一有界数列必有收敛子列. 4.2 致密性定理证明单调有界原理证明:不妨设{}n x 单调递增且有界,根据致密性定理有收敛子列{}k n x . 令a x k n k =∞→lim .于是,对ε∀>0,∃0k ,当k >0k 时,有a x k n -<ε (*) 由于{}n x 单调递增,显然恒有a x n ≤(3,2,1=n …). 由此(*)式可改成0k n x a -≤<ε (k >0k ) 取0k n N =,当n >N 时有 k n n x a x a -≤-≤0<ε 所以 a x n n =∞→lim4.3 致密性定理证明柯西收敛原理[1] 证明:首先证明条件的必要性:设a x n →,则对任意给定ε>0,有一正整数N ,当k >N 时,有 a x k -<2ε从而当n m ,>N 时,有m n m n x a a x x x -+-≤-<2ε+2ε=ε 其次证明条件的充分性:首先,证明满足条件的任何数列必有界.从所设条件,取ε=1,必有一正整数0N ,当n m ,>0N 时,有m n x x -<1特别地,当n >0N 且10+=N m 时,有 10+-N n x x <1 从而当n >0N 时,有 1100+++-≤N N n n x x x x <1+10+N x这就证明了{}n x 的有界性.由致密性定理,必有收敛子列{}k n x ,设a x k n k =∞→lim .根据子列收敛定义,对任意给定的ε>0,必有正整数K ,当k >K 时,有 a x n -<ε取一正整数()1,1m ax 0++=N K k .于是0k >K ,且11+≥≥+N n n N k o >N .因此,当n >N 时,由已知条件有0k n n x x -<ε,所以a x x x a x k k n n n n -+-≤-00<ε+ε=2ε即 a x n n =∞→lim5 柯西收敛原理5.1 柯西收敛原理 数列{}n x 有极限的必要与充分条件是:对任意给定的ε>0,有正整数N ,当m , n >N 时,有m n x x -<ε. 5.2 柯西收敛原理证明单调有界原理证明:反证法,设{}n x 为一递增且有上界M 的数列.假设其没有极限,则用柯西收敛原理表达就是ε∃>0,对*N N ∈∀,当n m ,>N 时,有 m n x x -ε≥ 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x . 又由于数列{}n x 为一递增的数列,所以1212n n n n x x x x -=-1≥ 取1=ε,必有一正整数1N ,当32,n n >1N 时,有123≥-n n x x 取1=ε,必有一正整数1N ,当43,n n >1N 时,有134≥-n n x x …………… …………… …………… 取1=ε,必有一正整数1N ,当1,+k k n n >1N 时,有11≥-+k k n n x x 将以上式子相加,得11+≥+k x k n ∞→ (∞→k ) 与数列{}n x 有上界M 矛盾,假设不成立. 即,单调有界数列有极限. 5.3 柯西收敛原理证明致密性定理证明:反证法,设{}n x 为一有上界M 的数列. 假设其没有收敛子列.由子列收敛的定义,则ε∃>0,对*N N ∈∀,当k k n n ,1+>N 时,有ε≥-+k k n n x x 1. 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x 取2=ε,必有一正整数2N ,当32,n n >2N 时,有223≥-n n x x 取3=ε,必有一正整数3N ,当43,n n >3N 时,有334≥-n n x x…………… …………… …………… 取k =ε,必有一正整数k N ,当1,+k k n n >k N 时,有k x x k k n n ≥-+1 显然与数列{}n x 有上界M 矛盾,假设不成立. 即,任一有界数列必有收敛子列. 6 有限覆盖定理6.1有限覆盖定理 若开区间所组成的区间集E 覆盖一个闭区间[a ,b ],则总可以从E 中选出有限个区间,使这有限个区间覆盖[a ,b ]. 6.2 有限覆盖定理证明确界定理证明:在这里我们只说明定理的上确界部分.设不为空集的区间E ⊂R ,∀x ∈E ,有x ≤M ,任取一点0x ∈E ,假设E 无上确界,那么∀x ∈[0x ,M ]:ⅰ)当x 为E 的上界时,必有更小的上界1x <x ,因而x 存在一开邻域∆x ,其中每一点均为E 的上界,称其为第一类区间;ⅱ)当x 不是E 的上界时,则有2x ∈E 使2x >x ,那么x 存在一开邻域∆x ,其中每点均不是E 的上界,称其为第二类区间.∴ 当x 取遍[0x ,M ]上每一点找出一个邻域∆x .显然∆x 不是第一类区间就是第二类区间.这些邻域组成闭区间[0x ,M ]的一个开覆盖,由有限覆盖定理,必存在有限子区间覆盖[0x ,M ].显然M 所在的开区间应为第一类区间,与其邻接的开区间∆x 有公共点.所以∀x ∈∆x ,x 均为E 的上界.而与∆x 相邻接的开区间∆'x 有公共点,所以∀x ∈∆'x ,x 均为E 的上界. 依此类推,0x 所在的开区间也是第一类区间,则0x 为E 的上界. 又 0x E ∈,∴E 为常数集.由此矛盾引出. 得证.同理,E 有下确界.6.3 有限覆盖定理证明致密性定理证明:设{}n x 是一有界数列,现在证明{}n x 有收敛子列.(1)如果{}n x 仅由有限个数组成,那么至少有一个数ξ要重复无限多次,即ξ===21n n x x …==kn x … 因而子列{}kn x 收敛于ξ.(2)如果{}n x 是由无穷多个数组成,由有界性知,存在闭区间[]b a ,,使对一切自然数n 都有a <n x <b在[]b a ,内至少存在一点0x ,使对于任意的正数δ,在()δδ+-00,x x 内都含有{}n x 中无穷多个数.事实上,倘若不然,就是说对于[]b a ,中每一点x ,都有x δ>0,在()x x x x δδ+-,内,仅有{}n x 中的有限个数.考虑所有这样的开区间所成之集:{=μ(,x x δ-)x x δ+},μ完全覆盖了闭区间[]b a ,,依有限覆盖定理,存在μ中的有限多个区间.()11111,x x x x δδ+-=∆,…,()n n x n x n n x x δδ+-=∆,,他们也覆盖了[]b a ,,并且在每一个i ∆(,2,1=i …,n )中都只含{}n x 中的有限多个数.因此{}n x 也最多是由有限个数组成,这与假设矛盾. 于是,对于k δ=k1(,3,2,1=k …),于()k k x x δδ+-00,内取{}n x 中无穷多个点,就得到{}n x 的子列{}k n x 满足:0x x k n -<kk 1=δ(,3,2,1=k …)从而∞→k lim 01x x n =得证.总结:六大定理可以分为两类: ① 有限覆盖定理:反映区间上的整体性质; ② 其余五个:反映函数在一点上的性质.实数的六个基本定理在理论上很有用,在之后的闭区间上的函数的性质的证明上发挥着重要的作用.本文在写作过程中得到了XXX 老师的多次精心指导,在此表示感谢.参考文献:[1] 陈传璋 金福临 朱学炎 .《数学分析(上)》.高等教育出版社.1983.7。