四边形中的基本图形(一)

合集下载

初中数学知识归纳四边形的性质与运算

初中数学知识归纳四边形的性质与运算

初中数学知识归纳四边形的性质与运算四边形是初中数学中一个重要的图形概念,它具有不同的性质和运算。

本文将对四边形的性质和运算进行归纳总结。

一、四边形的性质四边形是由四条线段相连而成的封闭图形,它具有以下几个基本性质:1. 内角和:四边形的内角和等于360°。

对于任意四边形ABCD,其内角A、B、C、D的和为360°。

2. 对角线性质:四边形的对角线具有一些特殊性质。

例如,平行四边形的对角线相互平分,并且互相垂直。

而矩形的对角线相等。

3. 垂直性质:某些四边形具有垂直性质。

例如,菱形的两条对角线互相垂直。

4. 相等性质:四边形的边和角也具有相等性质。

例如,等边四边形的四条边相等;等角四边形的四个内角相等。

二、四边形的运算四边形的运算主要包括周长和面积的计算。

具体而言,我们可以利用以下公式进行计算:1. 周长的计算:对于任意四边形ABCD,它的周长P等于各边长之和,即P = AB + BC + CD + DA。

2. 面积的计算:四边形的面积S可以根据其不同性质和已知条件利用不同的公式进行计算。

- 矩形的面积可以通过长度和宽度相乘得到,即S = 长 ×宽。

- 平行四边形的面积可以通过底边和高的乘积得到,即S = 底边 ×高。

- 菱形的面积可以通过对角线的乘积再除以2得到,即S = (对角线1 ×对角线2) / 2。

- 任意四边形可以利用海伦公式进行面积的计算,即S = √[p(p - AB)(p - BC)(p - CD)(p - DA)],其中p为四边形的半周长。

三、例题实践现在我们来通过几个例题来实践一下四边形的性质和运算。

例题1:已知一个矩形的长为4 cm,宽为3 cm,求其周长和面积。

解:根据矩形的性质,我们知道该矩形的周长为P = 2 × (4 + 3) = 14 cm,面积为S = 4 × 3 = 12 cm²。

四边形的基本概念

四边形的基本概念

四边形的基本概念四边形是平面几何中的一种特殊图形,它有四条边和四个角。

在数学中,四边形是一个重要的研究对象,具有许多特性和性质。

本文将介绍四边形的基本概念,包括定义、分类以及常见的性质。

一、定义四边形是一个有四条边的平面图形,它由四个顶点和四条边组成。

四边形的边可以是直线段,也可以是曲线段。

四边形的四个内角相加等于360度。

二、分类根据各边的性质和角度的大小,四边形可以分为不同的类型。

1. 矩形:矩形是一种特殊的四边形,它有四个内角都是直角(90度)。

矩形的对边相等且平行。

2. 正方形:正方形也是一种特殊的矩形,它的四个边都相等且平行。

正方形的四个内角都是直角(90度)。

3. 平行四边形:平行四边形是四边形的一种,它的对边是平行的。

平行四边形的相邻内角互补(和为180度)。

4. 梯形:梯形是一种有两条平行边的四边形。

梯形的非平行边叫做腰,平行边叫做底。

梯形的相邻内角互补(和为180度)。

5. 菱形:菱形是四边形的一种,它的四条边都相等。

菱形的相邻内角互补(和为180度)。

6. 长方形:长方形是一种特殊的矩形,它的两个对边相等且平行。

长方形的四个内角都是直角(90度)。

三、性质除了以上分类,四边形还有一些常见的性质。

1. 对角线四边形的对角线是连接两个非相邻顶点的线段。

不同类型的四边形的对角线具有不同的性质。

- 矩形和正方形的对角线相等且互相垂直。

- 梯形的对角线不相等,但根据梯形的性质,两条对角线的交点会平分对角线的线段。

- 平行四边形的对角线不相交。

- 菱形的对角线互相垂直且平分对角线的线段。

2. 周长和面积四边形的周长是边长的总和。

面积则可以根据不同类型的四边形应用不同的公式计算。

- 矩形的周长等于两条长边和两条短边的和,面积等于长边乘以短边。

- 正方形的周长等于四条边的和,面积等于边长的平方。

- 平行四边形的周长等于两对边长的和,面积等于底边乘以高。

- 梯形的周长等于四条边的和,面积等于上底与下底之和的一半乘以高。

四边形内角关系

四边形内角关系

四边形内角关系四边形是几何学中的基本图形之一,其内角关系也是几何学中的重要内容之一。

本文将从四边形的定义、分类、性质以及内角关系等方面进行详细阐述。

一、四边形的定义和分类1. 四边形的定义四边形是一个有四条边和四个顶点的平面图形,每两条相邻的边都在一个顶点处相交。

2. 四边形的分类按照四边形各边长度和角度大小不同,可以将其分为以下几类:(1)矩形:具有两组对称且相等的内角,每组内角之和为180度。

(2)正方形:具有四个对称且相等的内角,每个内角为90度。

(3)平行四边形:具有对称且相等的对边,并且对角线互相平分。

(4)菱形:具有对称且相等的对角线,并且每个内角为90度。

(5)梯形:具有一组平行且不等长的对边。

二、四边形性质1. 四边形各顶点连线成一条封闭曲线,称为周长。

2. 四边形面积可以用底和高计算得出。

其中矩形、正方形和菱形的面积可以用对角线计算得出。

3. 四边形内部有一条对角线,连接两个非相邻顶点。

对角线的长度可以用勾股定理计算得出。

4. 四边形的内角和为360度。

三、四边形内角关系1. 矩形内角关系矩形有两组对称且相等的内角,每组内角之和为180度。

因此,矩形的四个内角都是直角(90度)。

2. 正方形内角关系正方形具有四个对称且相等的内角,每个内角为90度。

因此,正方形的四个内角都是直角(90度)。

3. 平行四边形内角关系平行四边形具有对称且相等的对边,并且对角线互相平分。

因此,平行四边形的相邻两个内角互补(180度),非相邻两个内角互补(180度)。

4. 菱形内角关系菱形具有对称且相等的对角线,并且每个内角为90度。

因此,菱形的非邻接两个内角互补(180度)。

5. 梯形内角关系梯形具有一组平行且不等长的对边。

因此,梯形的相邻两个内角互补(180度),非相邻两个内角之和等于梯形的对角线夹角。

四、总结四边形是几何学中的基本图形之一,其内角关系也是几何学中的重要内容之一。

根据四边形的定义、分类、性质以及内角关系等方面进行详细阐述,可以更好地理解和掌握四边形的相关知识。

利用平行四边形性质解决问题

利用平行四边形性质解决问题

利用平行四边形性质解决问题平行四边形是几何学中的基本图形之一,具有独特的性质和特点。

在实际生活中,我们可以利用平行四边形的性质解决各种问题,如计算面积、求解角度等。

本文将探讨平行四边形的性质以及如何利用这些性质解决问题。

首先,平行四边形的定义是指具有两对相对平行边的四边形。

根据这个定义,我们可以知道平行四边形有如下性质:1. 相对边平行性质:平行四边形的两对相对边是平行的。

这个性质可以用来确定平行四边形的其他边是否平行,或者验证给定的四边形是否是平行四边形。

2. 相对边长度性质:平行四边形的对边长度相等。

利用这个性质,我们可以求解平行四边形的未知边长,或者计算其周长。

3. 对角线性质:平行四边形的对角线相交于它们的交点,并且交点将对角线分成两等分。

这个性质可以用来证明平行四边形的平行边长度相等,或者求解对角线长度等问题。

4. 内角性质:平行四边形的内角和为180度。

根据这个性质,我们可以计算平行四边形的内角度数,或者验证给定的角度是否是平行四边形的内角。

我们可以通过一个具体的例子来说明如何利用平行四边形的性质解决问题。

假设有一块土地,其形状是一个平行四边形,已知其中一对对边长度分别为6米和8米,对角线之间的夹角为60度。

我们需要计算这块土地的面积。

根据上述已知条件,我们可以得出如下结论:1. 对边平行性质:由于对边长度分别为6米和8米,可以得出这两条边是平行的。

2. 对角线性质:对角线之间的夹角为60度,那么平行四边形的另外两条对边夹角也为60度。

3. 内角性质:根据对角线性质和已知夹角60度,可以得出平行四边形的内角为120度。

根据上述结论,我们可以继续解决这个问题。

首先,我们可以根据对边长度和两对对角线夹角计算出平行四边形的两条对角线长度。

根据三角形的三角函数,我们可以得到:sin(60度) = (6米/2) / 对角线1长度cos(60度) = (8米/2) / 对角线2长度将上述公式代入计算,我们可以得到对角线1的长度为6√3米,对角线2的长度为8米。

平行四边形的认识

平行四边形的认识

平行四边形的认识平行四边形是基本几何图形之一,由于其独特的性质和广泛的应用,对于平行四边形的认识具有重要意义。

本文将从定义、性质、判定条件以及相关应用等方面对平行四边形进行详细介绍。

定义平行四边形是指具有两组相对平行的边的四边形。

具体来说,平行四边形的定义如下:定义1:如果一个四边形的对边互相平行,则该四边形被称为平行四边形。

在平行四边形中,相邻的两条边和对角线都具有特殊的关系和性质。

性质平行四边形具有一些独特的性质,这些性质有助于我们更深入地理解和应用平行四边形。

1. 边与角性质•对边性质:平行四边形的对边长度相等。

•相邻边性质:平行四边形的相邻边互余角(对应两个相邻边的内角和为180度)。

•同位角性质:平行四边形的同位角相等(指同位于两组平行边的对应角)。

2. 对角线性质•对角线性质1:平行四边形的对角线互相平分。

•对角线性质2:平行四边形的一条对角线将平行四边形分成两个全等三角形。

3. 面积性质•面积性质:平行四边形的面积等于底边长度乘以高(即平行四边形的底边高)。

•面积计算公式:若平行四边形的底边长为b,高为h,则平行四边形的面积S = b * h。

4. 判定条件平行四边形的存在和判定有一些特殊的条件,其中常用的包括:•条件1:两组对边分别平行。

•条件2:从一组对边的任意一点向两边作垂线,垂线的长度相等。

•条件3:从一组对边的任意一点向两边作垂线,垂线的夹角相等。

•条件4:从一组对边的任意一点作平行于两边的线段,该线段与另一组对边交点的连线平分该线段。

相关应用平行四边形的特殊性质和性质的应用广泛存在于各种数学问题和实际生活中。

以下是一些常见的应用场景:1.建筑工程中:平行四边形的应用在建筑工程中非常常见,例如砖块的摆放、墙壁的装饰等。

2.几何证明中:平行四边形作为几何证明的基础形状,常常被用来证明一些定理和性质。

3.向量运算中:平行四边形的性质和向量之间有密切的联系,在向量运算中经常会用到平行四边形的概念。

四边形知识点总结[1]

四边形知识点总结[1]

四边形一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理※1.关于中心对称的两个图形是全等形. ※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高)2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n -.2.规则图形折叠一般“出一对全等,一对相似”.3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.平行四边形矩形菱形正方形四边形知识点归纳平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形。

平行四边形是中心对称图形,对称中心是两条对角线的交点。

平行四边形性质1:平行四边形的两组对边分别相等。

平行四边形性质2:平行四边形的两组对角分别相等。

平行四边形性质3:平行四边形的两条对角线互相平分。

平行四边形判定1:两组对边分别平行的四边形是平行四边形。

平行四边形判定2:两组对边分别相等的四边形是平行四边形。

平行四边形判定3:两组对角分别相等的四边形是平行四边形。

平行四边形判定4:两条对角线互相平分的四边形是平行四边形。

几何专讲-四边形

几何专讲-四边形

四边形一、基本定义1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°.2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°.3.平行四边形的性质:因为ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(4.平行四边形的判定: 是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫. 5.矩形的性质:因为ABCD 是矩形⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( 6. 矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形. 7.菱形的性质: 因为ABCD 是菱形⇒⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(8.菱形的判定:A BCD 1234ABDABDOCA DB CA DBCOCDBAO⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. 9.正方形的性质: 因为ABCD 是正方形⇒⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( CDAB(1) A BCD O(2)(3)10.正方形的判定:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(4)∵ABCD 是矩形又∵AD=AB∴四边形ABCD 是正方形 11.等腰梯形的性质:因为ABCD 是等腰梯形⇒⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)( 12.等腰梯形的判定:⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321⇒四边形ABCD 是等腰梯形 (4)∵ABCD 是梯形且AD ∥BC ∵AC=BD∴ABCD 四边形是等腰梯形14.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.E FD ABCE DCBAABCDOA B C D O二 定理:中心对称的有关定理1.关于中心对称的两个图形是全等形.2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式: 1.S 菱形 =ch ab =21(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. (a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =Lh h b a =+)(21.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:1.若n 是多边形的边数,则对角线条数公式是:2)3n (n -. 2.如图:平行四边形、矩形、菱形、正方形的从属关系. 3.梯形中常见的辅助线:一.多边形1.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看. 已知:在四边形ABCD 中,O 是对角线BD 上任意一点.(如图①) 求证:S △OBC •S △OAD =S △OAB •S △OCD ;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说平行四边形矩形菱形正方形明理由.考点:多边形;三角形的面积.专题:证明题;探究型.分析:(1)根据三角形的面积公式,则应分别分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F.然后根据三角形的面积公式分别计算要证明的等式的左边和右边即可;(2)根据(1)中的思路,显然可以归纳出:从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.证明思路类似.解答:证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,则有:S△AOB=12BO•AE,S△COD=12DO•CF,S△AOD=12DO•AE,S△BOC=12BO•CF,∴S△AOB•S△COD=14BO•DO•AE•CF,S△AOD•S△BOC=14BO•DO•CF•AE,∴S△AOB•S△COD=S△AOD•S△BOC.(4分);(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或S△AOD•S△BOC=S△AOB•S△DOC,(5分)已知:在△ABC中,D为AC上一点,O为BD上一点,求证:S△AOD•S△BOC=S△AOB•S△DOC.证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,则有:S△AOD=12DO•AE,S△BOC=12BO•CF,S△OAB=12OB•AE,S△DOC=12OD•CF,∴S△AOD•S△BOC=14OB•OD•AE•CF,S△OAB•S△DOC=14BO•OD•AE•CF,∴S△AOD•S△BOC=S△OAB•S△DOC.点评:恰当地作出三角形的高,根据三角形的面积公式进行证明.2.如图,在五边形A1A2A3A4A5中,B1是A1对边A3A4的中点,连接A1B1,我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.考点:多边形.专题:证明题.分析:可以再做五边形的一条中对线,根据它们分割成的两部分的面积相等,都是五边形的面积的一半,导出两个等底的三角形的面积相等,从而得到它们的高相等,则得到五边形的每条边都有一条对角线和它平行.解答:证明:取A1A5中点B3,连接A3B3、A1A3、A1A4、A3A5,∵A3B1=B1A4,∴S△A1A3B1=S△A1B1A4,又∵四边形A1A2A3B1与四边形A1B1A4A5的面积相等,∴S△A1A2A3=S△A1A4A5,同理S△A1A2A3=S△A3A4A5,∴S△A1A4A5=S△A3A4A5,∴△A3A4A5与△A1A4A5边A4A5上的高相等,∴A1A3∥A4A5,同理可证A1A2∥A3A5,A2A3∥A1A4,A3A4∥A2A5,A5A1∥A2A4.点评:此题要能够根据面积相等得到两条直线间的距离相等,从而证明两条直线平行二.平行四边形如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C 时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.考点:平行四边形的性质;一元二次方程的应用;直角梯形.专题:动点型.分析:(1)过点A作AM⊥CD于M,根据勾股定理,可以求出DM=6所以DC=16.(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图示,由题可得:BP=10-3t,DQ=2t,所以可以列出方程10-3t=2t,解得t=2,此时,BP=DQ=4,CQ=12,在△CBQ中,根据勾股定理,求出BQ即可.(3)此题要分三种情况进行讨论:即①当点P在线段AB上,②当点P在线段BC上,③当点P在线段CD上,根据三种情况点的位置,可以确定t的值.解答:解:(1)过点A作AM⊥CD于M,根据勾股定理,AD=10,AM=BC=8,∴DM=102-82=6,∴CD=16;(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图,由题知:BP=10-3t,DQ=2t∴10-3t=2t,解得t=2此时,BP=DQ=4,CQ=12∴BQ=82+12213∴四边形PBQD的周长=2(BP+BQ)=8+8 13;(3)①当点P在线段AB上时,即0≤t≤103时,如图S△BPQ=12BP•BC=12(10-3t)×8=20∴t=53.②当点P在线段BC上时,即103<t≤6时,如图BP=3t-10,CQ=16-2t∴S△BPQ=12BP•CQ=12(3t-10)×(16-2t)=20化简得:3t2-34t+100=0,△=-44<0,所以方程无实数解.③当点P在线段CD上时,若点P在Q的右侧,即6≤t≤345,则有PQ=34-5tS△⊆BPQ=12×8=20,(34-5t)t=295<6,舍去若点P在Q的左侧,即345<t≤8,则有PQ=5t-34,S△BPQ=12(5t-34)×8=20,t=7.8.综合得,满足条件的t存在,其值分别为t1=53,t2=7.8.点评:本题是平行四边形中的动点问题,解决问题时,一定要变动为静,将其转化为常见的几何问题,再进行解答.2. 已知:如图,AD∥BC,AC⊥BD于O,AD+BC=5,AC=3,AE⊥BC于E.则AE=125125.考点:平行四边形的判定与性质;勾股定理.分析:过点A作AF∥DB交CB延长线于F,通过辅助线,将已知条件与未知量联系起来,此时,AE是直角三角形斜边上的高,而已知斜边和一直角边,先由勾股定理求出另一直角边,再由面积法就可以求出斜边上的高AE了.解答:解:过点A作AF∥DB交CB的延长线于点F(1分)∵AD∥BC∴四边形AFBD是平行四边形∴FB=AD∵AD+BC=5∴FC=FB+BC=AD+BC=5(2分)∵AC⊥BD∴FA⊥AC(3分)在△FAC中,∠FAC=90°,AC=3,FC=5∴AF=4(4分)∵AE⊥BC于E∴AF •AC=FC •AE∴AE=125(5分)点评:当直接求解比较困难时,通常要作辅助线,将已知条件与未知量联系起来.三.菱形1.学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长103cm,其一个内角为60度.(1)若d=26,则该纹饰要231个菱形图案,则纹饰的长度L为6010cm;(2)当d=20时,若保持(1)中纹饰长度不变,则需要300个这样的菱形图案.考点:菱形的性质;解直角三角形.专题:规律型.分析:(1)首先根据菱形的性质和锐角三角函数的概念求得菱形的对角线的长,再结合图形发现L=菱形对角线的长+(231-1)d;(2)设需要x个这样的图案,仍然根据L=菱形对角线的长+(x-1)d进行计算.解答:解:(1)菱形图案水平方向对角线长为103×cos30 °×2=30cm按题意,L=30+26×(231-1)=6010cm(2)当d=20cm时,设需x个菱形图案,则有:30+20×(x-1)=6010解得x=300,即需300个这样的菱形图案.点评:此题主要考查根据图形找规律,同时也考查了解直角三角形有关知识.2. 已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.考点:菱形的判定;勾股定理;矩形的性质;相似三角形的判定与性质.专题:开放型;存在型.分析:(1)因为是对折所以AO=CO,利用三角形全等证明EO=FO,四边形便是菱形;(2)因为面积是24,也就是AB、BF的积可以求出,所以求周长只要求出AB、BF的和就可以,而结合勾股定理它们和的平方减去乘积二倍就是AF的平方;(3)因为12AC=AO所以可以从与△AOE相似的角度考虑,即过E作EP⊥AD.解答:(1)证明:连接EF交AC于O,当顶点A与C重合时,折痕EF垂直平分AC,∴OA=OC,∠AOE=∠COF=90°(1分)∵在矩形ABCD中,AD∥BC,∴∠EAO=∠FCO,∴△AOE≌△COF(ASA).∴OE=OF(2分)∴四边形AFCE是菱形.(3分)(2)解:四边形AFCE是菱形,∴AF=AE=10.设AB=x,BF=y,∵∠B=90,∴(x+y)2-2xy=100①又∵S△ABF=24,∴12xy=24,则xy=48.②(5分)由①、②得:(x+y)2=196(6分)∴x+y=14,x+y=-14(不合题意舍去)∴△ABF的周长为x+y+AF=14+10=24.(7分)(3)解:过E作EP⊥AD交AC于P,则P就是所求的点.(9分)证明:由作法,∠AEP=90°,由(1)得:∠AOE=90°,又∠EAO=∠EAP,∴△AOE∽△AEP(AA),∴AEAP=AOAE,则AE2=AO•AP(10分)∵四边形AFCE是菱形,∴AO=12AC,AE2=12AC•AP(11分)∴2AE2=AC•AP(12分)即P的位置是:过E作EP⊥AD交AC于P.点评:本题主要考查(1)菱形的判定方法“对角线互相垂直且平分的四边形”,(2)相似三角形的判定和性质.三.矩形正方形已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.∵S△PBC+S△PAD=12BC•PF+12AD•PE=12BC(PF+PE)=12BC•EF=12S矩形ABCD,又∵S△PAC+S△PCD+S△PAD=12S矩形ABCD,∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD,∴S△PBC=S△PAC+S△PCD.请你参考上述信息,当点P分别在图2,图3中的位置时,S△PBC、S△PAC、S△PCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.考点:矩形的性质.专题:探究型.分析:分析图2,先过点P作EF垂直AD,分别交AD、BC于E、F两点,利用三角形的面积公式可知,经过化简,等量代换,可以得到S△PBC=S△PAD+12S矩形ABCD,而S△PAC+S△PCD=S△PAD+12S矩形ABCD,故有S△PBC=S△PAC+S△PCD.解答:解:猜想结果:图2结论S△PBC=S△PAC+S△PCD图3结论S△PBC=S△PAC-S△PCD(2分)证明:如图2,过点P作EF垂直AD,分别交AD、BC于E、F两点,∵S△PBC=12BC•PE+12BC•EF (1分)=12AD•PE+12BC•EF=S△PAD+12S矩形ABCD(2分)∵S△PAC+S△PCD=S△PAD+S△ADC=S△PAD+12S矩形ABCD(2分)∴S△PBC=S△PAC+S△PCD(1分)如果证明图3结论可参考上面评分标准给分.点评:本题利用了三角形的面积公式,以及图形面积的整合等知识.2. )图1是由五个边长都是1的正方形纸片拼接而成的,过点A1的直线分别与BC1、BE交于点M、N,且图1被直线MN分成面积相等的上、下两部分.(1)求1MB+1NB的值;(2)求MB、NB的长;(3)将图1沿虚线折成一个无盖的正方体纸盒(图2)后,求点M、N间的距离.考点:正方形的判定与性质;一元二次方程的应用;相似三角形的判定与性质.专题:代数几何综合题;压轴题;数形结合.分析:(1)本题可通过相似三角形A1B1M和NBM得出的关于NB,A1B1,MB,MB1的比例关系式来求,比例关系式中A1B1,BB1均为正方形的边长,长度都是1,因此可将它们的值代入比例关系式中,将所得的式子经过变形即可得出所求的值;(2)由于直线MN将图(1)的图形分成面积相等的两部分,因此△BMN的面积为52,由此可求出MB•NB的值,根据(1)已经得出的MB+NB=MB•NB可求出MB+NB的值,由此可根据韦达定理列出以MB,NB为根的一元二次方程,经过解方程即可求出MB、NB的值;(3)根据(2)的结果,不难得出B1M=EN,由于折叠后E与B点重合,因此B1M=BN,那么四边形B1MNB 是个矩形,因此MN的长为正方形的边长.解答:解:(1)∵△A1B1M∽△NBM且A1B1=BB1=1,∴NBA1B1=MBMB1,即NB1=MBMB-1整理,得MB+NB=MB•NB,两边同除以MB•NB得1MB+1NB=1;(2)由题意得12MB•NB=52,即MB•NB=5,又由(1)可知MB+NB=MB•NB=5,∴MB、NB分别是方程x2-5x+5=0的两个实数根.解方程,得x1=5+52,x2=5-52;∵MB<NB,∴MB=5-52,NB=5+52;(3)由(2)知B1M=5-52-1=3-52,EN=4-5+52=3-52,∵图(2)中的BN与图(1)中的EN相等,∴BN=B1M;∴四边形BB1MN是矩形,∴MN的长是1.点评:本题主要考查了相似三角形的判定和性质,正方形的性质,一元二次方程的应用等知识点,综合性比较强.四.梯形1. 如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中:①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y取最小值时,判断△PQC的形状,并说明理由.考点:等腰梯形的判定;二次函数的应用;勾股定理的逆定理;平行四边形的判定;相似三角形的判定与性质.专题:综合题;压轴题;动点型.分析:(1)需证△AMB≌△DMC,可得AB=DC,可得梯形ABCD是等腰梯形;(2)可证△BPM∽△CQP,PCBM=CQBP,PC=x,MQ=y,BP=4-x,QC=4-y,x4=4-y4-x,即可得出y=14x2-x+4;(3)应考虑四边形ABPM和四边形MBPD均为平行四边形,四边形MPCD和四边形APCM均为平行四边形时的情况;由(2)中的函数关系,可得当y取最小值时,x=PC=2,P是BC的中点,MP⊥BC,而∠MPQ=60°,∠CPQ=30°,∠PQC=90°.解答:(1)证明:∵△MBC是等边三角形,∴MB=MC,∠MBC=∠MCB=60°.(1分)∵M是AD中点,∴AM=MD.∵AD∥BC,∴∠AMB=∠MBC=60°,∠DMC=∠MCB=60°.∴△AMB≌△DMC.(2分)∴AB=DC.∴梯形ABCD是等腰梯形.(3分)(2)解:在等边△MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,∠MPQ=60°,∴∠BMP+∠BPM=∠BPM+∠QPC=120°.∴∠BMP=∠QPC.(4分)∴△BPM∽△CQP.∴PCBM=CQBP.(5分)∵PC=x,MQ=y,∴BP=4-x,QC=4-y.(6分)∴x4=4-y4-x.∴y=14x2-x+4.(7分)(3)解:①当BP=1时,则有BP ∥..AM,BP∥..MD,则四边形ABPM为平行四边形,∴MQ=y=14×32-3+4=134.(8分)当BP=3时,则有PC∥..AM,PC∥..MD,则四边形MPCD为平行四边形,∴MQ=y=14×12-1+4=134.(9分)∴当BP=1,MQ=134或BP=3,MQ=134时,以P、M和A、B、C、D中的两个点为顶点的四边形是平行四边形.此时平行四边形有2个.(10分)故符合条件的平行四边形的个数有4个.②△PQC为直角三角形.(11分)∵y=14(x-2)2+3,∴当y取最小值时,x=PC=2.(12分)∴P是BC的中点,MP⊥BC,而∠MPQ=60°,∴∠CPQ=30°,∴∠PQC=90°.∴△PQC是直角三角形.(13分)点评:本题考查平行四边形、直角三角形和等腰梯形的判定以及相似三角形的判定和性质的应用.。

四边形基本知识点

四边形基本知识点

第四章四边形性质探索知识点归纳 一.四边形的相关概念和性质(1)在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形.四边形用表示它的各顶点的字母来表示.注意:表示四边形必须按顶点的顺序书写,可按照顺时针或逆时针的顺序.如图读作“四边形ABCD ” .(2)在四边形中,连结不相邻两个顶点的线段叫做四边形的对角线.注意:①四边形共有两条对角线.②连结四边形的对角线也是一种常用的辅助线作法.(3)四边形的不稳定性:三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性.但是,四边形四边长确定后,它的形状不能确定.这就是四边形具有不稳定性,它在生产、生活方面有很多的应用.(4)四边形的内角和等于 360.(5)四边形的外角和等于 360.注意:1、四边形内角中最多有三个钝角,四个直角,三个锐角;2、四边形外角中最多有三个钝角、四个直角、三个锐角,最少没有钝角,没有直角,没有锐角;3、四边形内角与同一个顶点的一个外角互为邻补角.二.多边形的概念和性质:(1)n 边形的内角和等于 180)2(⋅-n .(2)任意多边形的外角和等于 360.(3)n 边形共有2)3(-n n 条对角线.(4)在平面内,内角都相等且边都相等的多边形叫做正多边形。

(5)正多边形的每个内角等于n n 180).2(-三、平行四边形.1.平行四边形的性质(1)平行四边形的邻角互补,对角相等.(2)平行四边形的对边平行且相等.(3)夹在两条平行线间的平行线段相等.(4)平行四边形的对角线互相平分.(5)中心对称图形,对称中心是对角线的交点。

(6)若一直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分四边形的面积.2.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形.(2)定理1:两组对角分别相等的四边形是平行四边形.(3)定理2:两组对边分别相等的四边形是平行四边形.(4)定理3:对角线互相平分的四边形是平行四边形.(5)定理4:一组对边平行且相等的四边形是平行四边形.3.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离.平行线间的距离处处相等.注意:(1)距离是指垂线段的长度,是正值.(2)两条平行线的位置确定后,它们的距离是定值,不随垂线段位置改变.(3)平行线间的距离处处相等,因此在作平行四边形的高时,可根据需要灵活选择位置.4.平行四边形的面积S=底边长×高=ah(a是平行四边形任何一边长,h必须是a边与其对(1)、平行四边形边的距离).(2)、同底(等底)同高(等高)的平行四边形面积相等.四.矩形、1.矩形的定义:_________________________________2.矩形的性质:(1)对边平行且相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本讲主线
四边形中的基本图形(一)
1.基本四边形的面积
2.四边形中的等腰直角三角形
⑵ 平行四边形:S=a×b
1.面积公式
⑴ 长方形:S=a×b,正方形:S=a×a
b a
a a
⑶梯形:S=(a+b)×h÷2b
b
h h
a
a
⑶三角形:S=a×b÷2
b b
a a
2.关于等腰直角三角形
1.直角三角形.
板块一:基本的四边形面积
【例1】(★★)
如图,用两块长方形纸片和一块小正方形纸片拼成了一个大正方形纸
片,其中小正方形纸片面积是49平方厘米,其中一个长方形纸片的面
积为28平方厘米,那么最后拼成的大正方形纸片面积是多少平方厘米?
.°,°
3.两条腰长相等.
4.高线=斜边的一半.
【例2】(★★★)
如图,长方形ABCD的周长是16厘米,在它的每一条边上各画一个以
该边为边长的正方形,已知这四个正方形的面积和是68平方厘米,求
长方形ABCD的面积?
【例3】(★★★)
如图所示,7个完全相同的长方形拼成了图中的空白部分,图中空白部
分的面积是平方厘米.
24cm
板块二:等腰直角三角形
【例4】(★★★)
如图,在直角梯形ABCD中,三角形ABE和三角形CDE都是等腰直角
三角形,且BC=20厘米,那么直角梯形ABCD的面积是多少?
B A
【例5】(★★★★)
如图,已知一个四边形的两条边的长度和三个角的度数,这个四边形
的面积是平方厘米.(单位:厘米)2
E 6
45°
C D
【超常大挑战】(★★★★)
如图,正方形ABCD被两条平行的直线EF,GH截成了面积相等的三个部分,其中上、下两个部分都是等腰直角三角形.已知两条截线的长度都是6厘米,那么整个正方形的面积是平方厘米. A
E F
B D
G H
C
知识大总结
1.基本四边形的面积公式
2.求面积:公式法,割补法
3.特殊图形的性质及应用: 等腰直角三角形4. 四边形=△+△
=△-△
【今日讲题】例2,例3,例5 【讲题心得】
【家长评价】。

相关文档
最新文档