区域土壤有机碳密度及碳储量计算方法探讨

合集下载

4种典型地带性森林生态系统碳含量与碳密度比较

4种典型地带性森林生态系统碳含量与碳密度比较

4种典型地带性森林生态系统碳含量与碳密度比较王斌;杨校生【摘要】以中国生态系统研究网络长期定位观测的热带、亚热带和温带地区4种地带性顶级森林群落类型,即西双版纳热带季节雨林、鼎湖山亚热带常绿阔叶林、哀牢山中山湿性常绿阔叶林和长白山阔叶红松林为基础,分析比较4种森林类型的碳含量和碳密度及其空间分布格局.结果表明,哀牢山和长白山植被碳含量略高于西双版纳和鼎湖山,植被碳含量从大到小依次为乔木层、灌木层和草本层;西双版纳总碳密度为250.78 t/hm2,鼎湖山为248.72 t/hm2,哀牢山为530.13 t/hm2,长白山为254.67 t/hm2,其中西双版纳、鼎湖山和长白山植被层碳密度高于土壤层碳密度,而哀牢山土壤层碳密度要高于植被层碳密度.【期刊名称】《湖南农业大学学报(自然科学版)》【年(卷),期】2010(036)004【总页数】7页(P464-469,473)【关键词】地带性森林;碳含量;碳密度【作者】王斌;杨校生【作者单位】中国林业科学研究院,亚热带林业研究所,浙江,富阳,311400;中国林业科学研究院,亚热带林业研究所,浙江,富阳,311400【正文语种】中文【中图分类】Q948.1随着全球气候问题日益严峻,陆地生态系统在全球碳循环动力学中的作用受到越来越多的重视.森林维持的植被碳库约占全球植被碳库的86%[1],维持的土壤碳库约占全球土壤碳库的73%[2].同时,森林生态系统具有较高的生产力,每年固定的碳约占整个陆地生态系统的2/3[3-4],因此,森林状况很大程度上决定了陆地生物圈是碳源还是碳汇[5].近年来,很多学者采用不同方法对森林生态系统碳含量与碳密度及其空间差异进行研究,并取得了一系列研究成果[6-13].已有研究表明,中国森林植被碳库主要集中在东北和西南地区,平均碳密度以西南、东北以及西北地区较高[14-15].中国土壤碳密度大致是东部地区随纬度的增加而递增,北部地区随经度减小而递减,西部地区随纬度减小而增加,最高土壤碳密度出现在寒冷的东北地区和青藏高原东南缘[16-17].由于采用的方法不同,加上森林生态系统碳密度和碳储量的空间异质性以及随时间变化的复杂性,对中国森林植被和土壤碳库的估算还存在较大的差异[15-19].相对于区域尺度的研究而言,目前还很少利用样地资料研究不同气候带森林生态系统碳含量与碳密度及其空间差异,因此,采用实测数据及能够定量确定陆地生态系统碳循环的通用方法,研究不同森林类型的碳含量和碳密度,对于提高中国森林生态系统碳循环研究水平具有重要意义.近几年,中国生态系统研究网络(CERN)在单站水平上取得了很大的进展,但单站的长期定位监测、试验和研究具有明显的局限性,而多站按照统一规范开展的联网监测、试验和研究,可以揭示出更具普遍性的规律,解决地学和生物学等领域中更具复杂性的问题[20].笔者利用CERN长期定位观测的热带、亚热带和温带地区4种地带性顶级森林群落类型,即西双版纳热带季节雨林、鼎湖山亚热带常绿阔叶林、哀牢山中山湿性常绿阔叶林和长白山阔叶红松林资料,分析比较4种森林类型的碳含量和碳密度分配特征及其差异,以期进一步了解中国不同气候区森林生态系统的碳循环及其对气候变化的响应.1 样地自然条件概况4个样地均是CERN长期定位观测样地,分别属于西双版纳热带雨林生态系统研究站、鼎湖山森林生态系统研究站、哀牢山森林生态系统研究站和长白山森林生态系统研究站,样地保护完好,无放牧及森林砍伐,人为干扰活动较少.热带季节雨林样地位于西双版纳勐仑自然保护区北片的核心地带,是热带北缘的顶级群落类型,以绒毛番龙眼(Pometia tomentosa)、千果榄仁(Terminalia myriocarpa Huerch)为标志种;灌木层主要由乔木的幼树组成,较常见的灌木种类有染木(Saprosma ternatum)、包疮叶(Measa indica)、锈毛杜茎山(Measa permollis)等;草本层主要由乔木的幼苗和蕨类植物组成,较常见的草本种类有楼梯草(Elatostema parvum)、山壳骨(Pseudoranthemum malaccense)、莠竹(Microstegium ciliatum)等;凋落物厚度0~3 cm.亚热带季风常绿阔叶林样地位于鼎湖山自然保护区内,植被保护良好,属群落演替顶级阶段,乔木层优势种为锥栗(Castanopsis chinensis)、荷木(Schima superba)、云南银柴(Aporosa yunnensis)等;林下灌木以光叶山黄皮(Randia canthioides)、柏拉木(Blastus cochinchinensis)、黄果厚壳桂(Cryptocarya concinna)为主;草本以沙皮蕨(Hemigramma decurrins)为主,层间植物比较丰富;凋落物厚度0~3 cm.中山湿性常绿阔叶林样地位于哀牢山徐家坝中心地带,属亚热带山地气候,干雨季分明,群落演替稳定,乔木树种主要由壳斗科(Fagaceae)、茶科(Theaceae)、樟科(Lauraceae)及木兰科(Magnoliaceae)组成;灌木层主要以禾本科的箭竹(Fargesia spathacea)为优势种并组成显著层片;草本以滇西瘤足蕨(Plagiogyria communis)、钝叶楼梯草(Elatostema obtusum)为主;凋落物厚度0~5 cm.阔叶红松林样地位于吉林省安图县二道白河镇,为原始森林干扰后自然演替的顶级群落,乔木层优势种为红松(Pinus koraiensis)、紫椴(Tilia amurensis)、假色槭(Acer pseudosieboldianum)等;林下灌木以东北山梅花(Philadelphus schrenkii)和光萼溲疏(Deutzia glabrata)为主;草本以毛缘苔草(Carex pilosa)、丝引苔草(Carex remotiuscula)为主;枯枝落叶及腐殖质层厚度0~11 cm.各样地的具体地理环境条件见表1.表 1 样地的基本情况Table 1 Description of study plots样地森林类型平均林龄/年面积/ m2海拔高度/ m 地理位置坡度/(°)年均气温/℃>10 ℃年积温/℃年均降水量/mm年均相对湿度/%西双版纳季节雨林150****073021°57′39.4″N,101°12′00.4″E 22 21.8 4 387.9 1 506.3 86鼎湖山常绿阔叶400 2 500 300 23°10′9.9″N,112°32′22.64″E 30 21.0 7 495.7 1 996.0 80哀牢山中山湿性130 10 000 2 488 24 °32′53″N,101°01′41″E 15 11.0 3 420.0 1 931.1 86长白山阔叶红松140 1 600 784 42°24′11″N,128°05′44″E 2 3.50 2 335.0 750.0 712 研究方法2.1 生物量估算及碳含量测定研究数据来自CERN所属西双版纳站、鼎湖山站、哀牢山站和长白山站提交的2004—2005年的定位观测数据,所有数据调查均按照CERN长期定位观测技术标准执行.由于4个台站已经按照要求统一建立了对应样地各树种的生物量估算模型(约60个树种、240个方程),本研究借用这些已建立的模型计算4种森林类型的生物量.哀牢山的凋落物现存量每隔4月调查1次,西双版纳每隔3月调查1次,鼎湖山每年12月调查1次,长白山每年8月调查1次.植被层碳含量测定是在永久样地的外围按照每层的优势种,每种选择2~3株,乔木分树干、枝、叶、根;灌木分茎、叶、根;草本分地上、地下部分层采样.在凋落物现存量调查的样地内,凋落枝、叶各取约 200 g样品.将土壤层划分为 5个层次(0~10 cm、>10~20 cm、>20~40 cm、>40~60 cm、>60~100 cm)分层采样.对土壤样品按粒级分类,计算粒径>2 mm的石砾含量.所有样品烘干至恒重,测定含水量,磨碎后,用K2Cr2O7容量法测定碳含量;同时按10 cm一个等级测定0~100 cm各土层容重[21-22].2.2 土壤有机碳密度计算土壤有机碳密度是由土壤有机碳含量、土壤容重以及土体中粒径>2 mm石砾的体积分数共同确定的,其计算公式参见文献[23].2.3 碳密度估算生态系统总的碳密度由3部分组成,即植被层、凋落物层和土壤层,其中植被层主要由乔木、灌木和草本组成,凋落物层主要由枯枝落叶层和半分解层组成,土壤层则主要由腐殖质层和矿质土层组成.根据测定的不同层次的碳含量和生物量(或土壤容重),估算森林生态系统总的碳密度.3 结果与分析3.1 生物量组成不同森林类型各层生物量结果见表2.表 2 不同森林类型各层生物量Table 2 Biomass composition in different layers of four forest type t/hm2样地干枝叶根枝叶根地上部地下部枯枝枯叶乔木层生物量灌木层生物量草本层生物量凋落物层生物量西双版纳 222.76 35.28 4.20 63.10 1.18 0.21 0.40 0.60 0.49 0.51 1.62鼎湖山 164.99 87.99 6.53 57.54 0.29 0.17 0.21 0.66 0.37 0.84 1.84哀牢山 310.66 62.34 3.18 89.94 3.19 0.50 0.96 0.48 0.36 4.56 3.25长白山 164.94 29.22 4.11 58.80 3.50 0.49 1.79 0.10 0.15 4.55 10.10从表2可以看出,4种森林类型植被层生物量从大到小依次为哀牢山、西双版纳、鼎湖山和长白山,热带亚热带森林植被层生物量高于温带森林,但不同层次之间有所区别,乔木层和草本层的变化规律基本一致,灌木层则相反.4种森林类型凋落物现存量从大到小依次为长白山、哀牢山、鼎湖山和西双版纳,温带森林凋落枝叶现存量明显高于热带亚热带森林,与已有研究结论[24]基本一致.全球热带雨林平均生物量约为450 t/hm2,热带季雨林和常绿林约为 350 t/hm2,温带落叶针阔混交林约为280 t/hm2[25].本研究中,西双版纳、鼎湖山和长白山的生物量稍低于全球平均水平,而哀牢山中山湿性常绿阔叶林生物量则高于全球平均水平.3.2 植被层碳含量和碳密度不同森林类型植被层碳含量和碳密度计算结果列于表3和表4.从表3可以看出,4种森林类型植被层碳含量在不同器官和不同层次中的分配不同,西双版纳和鼎湖山乔木层树干的碳含量最高,灌木层根的碳含量最高,而哀牢山和长白山乔木层叶的碳含量最高,灌木层茎的碳含量最高;除鼎湖山草本层叶的碳含量大于根的外,其他3种森林类型均是根的碳含量大于叶的.碳含量在不同层次植被的分布有较明显的规律,从大到小依次为乔木层、灌木层和草本层.目前通过植被碳含量实测值来估算碳密度的例子不多,学者们通常采用碳转换系数(0.45或0.50)来估算[5-6].本研究结果表明,由于树种组成以及种群结构的不同,不同气候区植被的碳转换系数略有不同,4种森林类型中哀牢山和长白山的碳转换系数略高于西双版纳和鼎湖山.表 3 不同森林类型植被层碳含量Table 3 Carbon content of plant in different forest types g/kg长白山站乔木层采样时未区分干和枝;全林加权平均碳含量=总碳密度/总生物量.样地乔木层碳含量灌木层碳含量草本层碳含量全林加权平均干枝叶根茎叶根叶根西双版纳 472.50 467.10 462.82 470.48 463.61 458.12 466.51 424.15 449.69 471.24鼎湖山 478.07 463.15 434.29 456.01 449.49 448.40 452.83 428.12 410.14 468.86哀牢山 508.61 508.67 529.01 503.63 504.21 469.19 501.07 471.67 471.83 507.62长白山 490.85 529.26487.78 493.36 433.81 464.53 407.11 428.38 490.42表 4 不同森林类型植被层碳密度Table 4 Carbon density of plant in different forest types t/hm2样地干枝叶根茎叶根叶根全林合计乔木层碳密度灌木层碳密度草本层碳密度西双版纳 105.25 16.48 1.94 29.69 0.55 0.10 0.19 0.25 0.22 154.67鼎湖山 78.88 40.75 2.84 26.24 0.13 0.08 0.10 0.28 0.15 149.45哀牢山 158.00 31.71 1.68 45.30 1.61 0.23 0.48 0.22 0.17 239.40长白山 95.31 2.17 28.68 1.73 0.21 0.83 0.04 0.06 129.03从表4可以看出,4种森林类型中,哀牢山碳密度最高,其次是西双版纳和鼎湖山,长白山碳密度最低.碳密度从大到小依次为乔木层、灌木层和草本层.赵敏[19]利用中国第4次(1989—1993年)森林资源调查资料,估算中国森林植被的平均碳密度为41.321 t/hm2;周玉荣[5]应用相同的森林资源调查资料,估算植被的平均碳密度为57.07 t/hm2;本研究4种森林类型的平均碳密度为168.137 t/hm2,从中可以看出,随着植被的保护和演替发育,中国森林将发挥巨大的碳汇作用.王绍强等[26]通过对中国陆地自然植被碳含量空间分布特征的研究,认为中国陆地总体上表现出东部地区植被碳密度和碳含量随纬度增加而降低的趋势;李海涛等[27]对赣中亚热带森林植被碳密度的空间变化规律研究结果也表明,植被的碳密度与纬度存在显著的相关关系,随着纬度增加植被碳密度递减.从本研究结果来看,除哀牢山乔木层碳密度较高、鼎湖山灌木层碳密度较低之外,4种森林类型不同层次碳密度地带性变化的总趋势是乔木层和草本层的碳密度随纬度增加而降低,灌木层的碳密度随纬度增加而增加.3.3 凋落物层碳含量和碳密度不同森林类型凋落物层碳含量和碳密度计算结果如表5所示.表 5 不同森林类型凋落物层的碳含量和碳密度Table 5 Carbon content and carbon density of litterfall in different forest types碳含量/(g·kg-1)碳密度/(t·hm-2)样地凋落枝凋落叶加权平均凋落枝凋落叶合计西双版纳458.33 467.17 465.05 0.23 0.76 0.99鼎湖山 471.44 528.00 507.46 0.39 0.97 1.36哀牢山 526.44 546.25 533.93 2.40 1.77 4.17长白山 471.94 512.16 499.66 2.15 5.17 7.32从表5可以看出,4种森林类型凋落叶的碳含量均高于凋落枝,哀牢山凋落枝和凋落叶的碳含量最高,西双版纳凋落枝和凋落叶的碳含量最低.和植被乔木层、灌木层枝叶碳含量的平均值相比,叶凋落物的碳含量增加,而枝在凋落后的变化情况不同,鼎湖山和哀牢山的碳含量增加,西双版纳和长白山的碳含量降低.从4种森林类型分布的纬度梯度来看,凋落物层碳密度随纬度增加而增加的趋势明显,温带针阔混交林凋落物碳密度明显高于热带亚热带阔叶林.吕晓涛[28]采用森林年凋落量计算西双版纳热带季节雨林凋落物层的碳密度为4.835 t/hm2,远高于本研究结论.考虑到热带季节雨林凋落物分解迅速,笔者认为采用凋落物现存量表示凋落物层的碳密度更合理.3.4 土壤层的碳含量和碳密度不同森林类型土壤层的碳含量和碳密度计算结果列于表6和表7.表 6 不同森林类型土壤层的碳含量Table 6 Carbon content of soil in different forest types样地 0~10 cm >10~20 cm >20~30 cm >30~40 cm >40~50 cm >50~60 cm>60~70 cm >70~80 cm >80~90 cm >90~100 cm 碳含量/ (g·kg-1)西双版纳 17.34 10.31 7.17 7.17 4.78 4.78 4.43 4.43 4.43 4.43鼎湖山 31.40 11.89 10.21 10.21 5.18 5.18 5.15 5.15哀牢山 122.05 82.34 58.94 58.94 40.87 40.87 29.62 29.62 29.62 29.62长白山 104.70 17.70 4.95 3.87 3.87 3.43 3.43 3.60 3.60 3.60表 7 不同森林类型土壤层的碳密度Table 7 Carbon density of soil in different forest types t/hm2样地 0~10 cm >10~20 cm >20~30 cm >30~40 cm>40~50 cm>50~60 cm>60~70 cm>70~80 cm>80~90 cm >90~100 cm 合计碳密度西双版纳 21.10 13.62 10.38 10.63 6.74 7.07 6.56 6.28 6.28 6.45 95.11鼎湖山 28.79 14.86 12.69 12.69 7.94 7.94 6.50 6.50 97.91哀牢山51.60 40.90 32.48 31.23 25.15 26.92 19.61 19.22 19.69 19.76 286.56长白山47.81 22.66 7.97 6.48 6.17 5.42 5.33 5.57 5.49 5.42 118.324种森林类型中,哀牢山中山湿性常绿阔叶林和长白山阔叶红松林具有较明显的腐殖质层,0~10 cm土层内的碳含量主要反映的是土壤腐殖质层的碳含量情况.从表6可以看出,4种森林类型0~100 cm(鼎湖山80 cm)土层的平均碳含量从大到小依次为哀牢山、鼎湖山、长白山和西双版纳.随着采样深度增加,土壤层碳含量逐渐降低,其中长白山腐殖质层(0~10 cm)到矿质土层(>10~20 cm)的碳含量降低最明显,相差6倍左右.从20 cm开始,不同采样深度土壤层的碳含量从大到小依次是哀牢山、鼎湖山、西双版纳和长白山,并且长白山矿质土层的碳含量要明显小于其他3种森林类型.中国土壤有机碳库的分布格局存在由热带雨林到北方针叶林之间土壤碳密度随纬度升高而增加的趋势[16].从表7可以看出,除哀牢山外,本研究支持这一结论.形成这种格局主要是由于热带亚热带地区高温多湿,使得土壤微生物活动加剧,土壤中有机质易于分解,而温带阔叶红松林全年平均气温较低,凋落物C/N比值高,不易分解,土壤表层的腐殖质积累过程明显,从而使得土壤有机碳积累多.全球土壤平均碳密度约为 104.00~107.70 t/hm2[29-30].王绍强等[16]应用中国第1次土壤普查资料估算中国陆地生态系统土壤有机碳平均密度为108.30t/hm2.从表7可以看出,西双版纳和鼎湖山土壤碳密度低于全国平均值,而哀牢山和长白山高于全国平均值.4种森林类型总的土壤碳密度平均值为149.473 t/hm2,是全球以及中国土壤碳密度平均值的1.4倍左右.从森林演替角度来看,中国森林土壤具有一定碳汇能力.3.5 总碳密度比较不同森林类型总碳密度计算结果如表 8所示.从大到小依次为哀牢山、长白山、西双版纳和鼎湖山,哀牢山中山湿性常绿阔叶林的碳密度最高,其他3种森林类型总的碳密度相差不大.西双版纳、鼎湖山和长白山植被层的碳密度高于土壤层的碳密度,而哀牢山土壤层的碳密度要高于植被层的碳密度.表 8 4种森林类型不同层次的碳密度Table 8 Carbon density of different layers in four forest types t/hm2碳密度样地植被层凋落物层土壤层合计西双版纳 154.67 1.00 95.11 250.78鼎湖山 149.45 1.36 97.91 248.72哀牢山239.40 4.17 286.56 530.13长白山 129.03 7.32 118.32 254.674 小结不同森林生态系统碳含量和碳密度通常存在较大差异.受研究条件限制,已有关于森林生态系统碳密度地带性分布规律研究中[16,26-27],很少从样地角度研究这种差异,这主要是因为在某一区域范围内,森林生态系统的碳密度受林分和立地因子的影响,各森林类型的主要林分因子(如林分年龄)和立地因子(如海拔、坡度)存在较大差异,使结果不存在可比性.本研究所选的4种森林类型,均属于地带性顶级森林群落类型,碳密度可认为是相同气候条件下森林生态系统可蓄积的最大碳量,因此,4种森林类型碳含量和碳密度的差异,对于研究森林生态系统碳密度的地带性分布规律具有一定指导意义.同时,通过将这些森林生态系统的观测数据与当地干扰程度不同的森林生态系统进行比较,可用于指导区域森林的保护、经营和管理,使其蓄积更多的碳,这对减缓全球大气CO2浓度升高也有着重要意义.通过与已有研究结论的比较可以看出,无论是从植被层的碳密度还是从土壤层的碳密度来看,中国森林植被都具有巨大的碳汇潜力,因此,合理经营与管理现有森林植被意义重大.衷心感谢中国生态网络研究中心提供数据支持.英文编辑:胡东平【相关文献】[1] Woodwell G M,Whittaker R H,Reiners W A,et al. The biota and the world carbon budget[J].Science,1978,199:141-146. [2] Post W M,Emanuel W R,Zinke P J,et al.Soil carbon pools and world life zones[J].Nature,1982,298:156-159.[3] Kramer P J.Carbon dioxide concentration,photosynthesis,and dry matter production[J]. Bio Science,1981,31:29-33.[4] Waring R H,Schlesinger W H.Forest Ecosystems:Concepts andManagement[M].London:Academic Press,1985.[5] 周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.[6] Fang J Y,Chen A P,Peng C H,et al.Changes in forest biomass carbon storage in China between 1949 and 1998[J].Science,2001,292:2320-2323.[7] Kurbanov E A,Post W M.Changes in area and carbon in forests of the middle Zavolgie:A regional case study of Russian forests [J].Climatic Change,2002,55:157-173.[8] Zhao M,Zhou G S.Carbon storage of forest vegetation in China and its relationship with climatic factors [J].Climatic Change,2006,74:175-189.[9] Pibumrung P,Gajaseni1 N,Popan A.Profiles of carbon stocks in forest,reforestation and agricultural land,Northern Thailand[J].Journal of Forestry Research,2008,19(1):11-18.[10] Potter C,Gross P,Klooster S,et al.Storage of carbon in U.S.forests predicted from satellite data,ecosystem modeling,and inventory summaries[J].Climatic Change, 2008,90:269-282.[11] Piao S L,Fang J Y,Ciais P,et al.The carbon balance of terrestrial ecosystems in China[J].Nature,2009,458:1009-1013.[12] 侯琳,雷瑞德,王得祥,等.秦岭火地塘林区油松群落乔木层的碳密度[J].东北林业大学学报,2009,37(1):23-24.[13] 王立海,孙墨珑.小兴安岭主要树种热值与碳含量[J].生态学报,2009,29(2):953-959.[14] 王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.[15] 徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究[J].地理科学进展,2007,26(6):1-9.[16] 王绍强,周成虎,李克让,等.中国土壤有机碳库及其空间分布特征分析[J].地理学报,2000,55(5):533-544.[17] 李克让,王绍强,曹明奎.中国植被和土壤碳储量[J].中国科学:D辑,2003,33(1):72-80.[18] 康惠宁,马钦彦,袁嘉祖.中国森林C汇功能基本估计[J].应用生态学报,1996,7(3):230-234.[19] 赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,21(4):50-54.[20] 黄铁青,牛栋.中国生态系统研究网络(CERN):概况、成就和展望[J].地球科学进展,2005,20(8):895-902.[21] 中国生态系统研究网络科学委员会.陆地生态系统生物观测规范[M].北京:中国环境科学出版社,2007.[22] 中国生态系统研究网络科学委员会.陆地生态系统土壤观测规范[M].北京:中国环境科学出版社,2007.[23] 于东升,史学正,孙维侠,等.基于1∶100 万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16 (12):2279-2283.[24] 刘世荣,孙鹏森,温远光.中国主要森林生态系统水文功能的比较研究[J].植物生态学报,2003,27(1):16-22.[25] Whittaker R H,Likens G E.The Biosphere and Man[C]//Lieth H,Whittaker R H.Primary Productivity of the Biosphere.New York:Springer-Verlag,1975:305-328.[26] 王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨[J].地理科学进展,1999,18(3):238-244.[27] 李海涛,王姗娜,高鲁鹏,等.赣中亚热带森林植被碳储量[J].生态学报,2007,27(2):693-704.[28] 吕晓涛,唐建维,于贵瑞,等.西双版纳热带季节雨林的C贮量及其分配格局[J].山地学报,2006,24(3):277-283.[29] Post W M,Emanuel W R,Zinke P J,et al.Soil carbon pools and lifezones[J].Nature,1982,298:156-159.[30] Foley J A.An equilibrium model of the terrestrial carbon budget[J].Tellus,1995,47(B):310-319.。

中国农田土壤有机碳变化:I驱动因素分析

中国农田土壤有机碳变化:I驱动因素分析

中国农田土壤有机碳变化:I驱动因素分析梁二;蔡典雄;代快;张丁辰;冯宗会;刘爽;王燕;王小彬【摘要】农业不仅是温室气体的主要排放源之一,同时也可能是温室气体的吸收汇.探明中国农田土壤碳库变化趋势以及农田土壤碳库的源、汇功能对农业减缓和应对气候变暖具有重要意义.本文研究根据中国第一次和第二次土壤普查数据,以及大量文献资料中长期定位点试验数据整理分析,对20世纪60年代以来中国农田土壤碳库时空演变格局,以及农田土壤有机碳变化的驱动因素进行了探讨.研究表明,1960~2000年期间中国农田土壤有机碳含量的增减与气候变化的相关性较弱,其间农田用地类型和管理措施的改变是影响农田土壤碳库源、汇功能的主要驱动因素.1960~1980年期间,农田耕层土壤有机碳含量从23 g·kg-1下降到15 g·kg-1;而1980~2000年期间,由于中国农田保护性耕作等措施的实施,农田耕层有机碳含量从15 g·kg-1增长到21 g·kg-1.中国农田耕层土壤有机碳含量的年均变化速率与初始含碳量呈负相关.尽管20世纪80年代后期,中国农田土壤有机碳源转为碳汇,但不可忽视的是自60年代以来中国已有60%农田耕层土壤有机碳含量出现下降趋势.【期刊名称】《中国土壤与肥料》【年(卷),期】2010(000)006【总页数】7页(P80-86)【关键词】中国;农田;土壤有机碳;土壤固碳潜力【作者】梁二;蔡典雄;代快;张丁辰;冯宗会;刘爽;王燕;王小彬【作者单位】中国农业科学院农业资源与农业区划研究所,农业部作物营养与施肥重点开放实验室,北京,100081;中国农业科学院农业资源与农业区划研究所,农业部作物营养与施肥重点开放实验室,北京,100081;农业部旱作节水农业重点实验室,北京,100081;中国农业科学院农业资源与农业区划研究所,农业部作物营养与施肥重点开放实验室,北京,100081;中国农业科学院农业资源与农业区划研究所,农业部作物营养与施肥重点开放实验室,北京,100081;中国农业科学院农业资源与农业区划研究所,农业部作物营养与施肥重点开放实验室,北京,100081;农业部旱作节水农业重点实验室,北京,100081;中国农业科学院农业资源与农业区划研究所,农业部作物营养与施肥重点开放实验室,北京,100081;中国农业科学院农业资源与农业区划研究所,农业部作物营养与施肥重点开放实验室,北京,100081;农业部旱作节水农业重点实验室,北京,100081【正文语种】中文【中图分类】S153.6+2农业不仅是温室气体的主要排放源之一,同时也可能是温室气体的吸收汇。

区域土壤有机碳密度及碳储量计算方法探讨

区域土壤有机碳密度及碳储量计算方法探讨

区域土壤有机碳密度及碳储量计算方法探讨土壤有机碳密度和碳储量在全球变化研究中非常重要,它们有助于更好地理解土壤碳系统的结构、动力学和响应。

作为有机碳的主要来源,土壤中的碳作用着促进土壤有机质积累、改善土壤肥力和促进植物生长等重要作用。

因此,研究区域土壤有机碳密度和碳储量及其影响状况,对于制定地区治理政策,促进碳管理和减缓气候变化至关重要。

一、土壤有机碳密度的计算方法(1)采集土壤样品为了准确测定区域土壤有机碳密度,首先要采集土壤样品,并按照国家标准实施。

通常采用随机抽样方法,采集亩层级下的土壤样品,保证整体土壤有机碳尽量接近样本状态。

(2)土壤有机碳定量分析采集到的土壤样品,用随机化处理方法,实施土壤有机碳定量分析,得出土壤中总有机碳含量,以及比含量。

有机碳含量可用六氯环烷(CCl4)浸提法或酯化提取法等测定,比含量可用CHNS/O火焰光度法检测。

(3)土壤有机碳密度计算获得土壤中有机碳含量后,通过以下公式,即可得出土壤有机碳密度:有机碳密度=总有机碳/土壤有效层深度二、土壤有机碳储量计算方法(1)土壤有机碳储量计算公式土壤有机碳储量可以通过以下公式来计算:有机碳储量=有机碳密度*土壤深度*样品面积其中,土壤深度为常见土壤有效层深度,样品面积可根据实际情况来进行计算。

(2)土壤有机碳储量空间结构分析计算出来的土壤有机碳储量值,应当对其空间变异特性进行分析,以更好地反映不同区域的碳储量情况,并且为资源利用和管理提供参考。

总之,土壤有机碳密度和碳储量对于衡量土壤碳状况与管理具有重要意义。

准确测定区域土壤有机碳密度和碳储量,需要从样本采集、有机碳定量分析,以及有机碳储量的空间结构分析等几个方面来全面考虑。

全国土壤碳储量及各类元素(氧化物)储量实测计算

全国土壤碳储量及各类元素(氧化物)储量实测计算

全国土壤碳储量及各类元素(氧化物)储量实测计算暂行要求全国多目标区域地球化学调查系统取得土壤有机碳、全碳及各类元素(氧化物)等54项指标,对于实测土壤碳储量和元素(氧化物)储量以及研究地球系统物质循环具有重要意义,在土地利用、农业种植和环境评估等经济社会发展各方面发挥现实作用。

在全国多目标区域地球化学调查基础上,分别建立单位土壤碳量、单位土壤元素量及单位土壤氧化物量,进行土壤碳储量及元素(氧化物)储量计算。

以单位土壤碳量为例,采用4km2网格为计算单元,即以多目标区域地球化学调查确定的土壤表层样品分析单元为计算单位,土壤表层样碳含量及其对应的深层样碳含量(分析单元为16km2),分别代表计算单位表层土壤碳含量与深层土壤碳含量,依据其含量分布模式计算得到单位土壤碳量,对单位土壤碳量进行加和计算取得土壤碳储量。

土壤碳及各类元素(氧化物)含量由土壤表层至深层主要存在两类分布模式,即指数分布模式和直线分布模式。

其中有机碳与氮含量分布为指数模式,按照指数公式计算;无机碳及其他元素和氧化物含量分布为直线模式,按照直线公式计算。

土壤有机碳与氮含量水平存在地区性和沉积类型差别,综合各省区有机碳与氮含量分布特征,在全国采用平均指数模式计算单位土壤碳量和氮量,属于区域碳储量和区域氮储量计算。

为规范全国区域土壤碳储量及元素(氧化物)储量计算要求和方法,现作出如下规定。

一、单位土壤碳量计算方法土壤碳储量采用单位土壤碳量为单元进行加和计算。

单位土壤碳量用USCA 表示,要求按照深层(0-1.8m )、中层(0-1.0m )和表层(0-0.2m )三种深度分别计算有机碳(TOC )、无机碳(TIC )和全碳(TC )储量,依次表示为USCA TOC,h 、USCA TIC,h 和USCA TC,h 。

式中h 为深度,如有机碳USCA TOC,0-1.8m 、USCA TOC,0-1.0m 、USCA TOC,0-0.2m 。

土壤有机质和有机碳含量计算方法比较研究

土壤有机质和有机碳含量计算方法比较研究

0引言为加强耕地质量建设与管理,根据国土资源部农业部《关于加强占补平衡补充耕地质量建设与管理的通知》、农业部《关于补充耕地质量验收评定工作规范》和浙江省农业厅《关于规范和加强补充耕地质量评定工作的通知》等文件精神,农业部门开展了新垦耕地质量评定工作,即通过对开发造地项目工程和肥力要素的调查分析,来综合评定新垦耕地是否符合农业生产基本条件。

根据《浙江省耕地质量评定与地力分等定级技术规范(试行)》(以下简称《规范》),“耕层有机质含量”即是最重要的肥力要素。

由于大多数低丘缓坡开发垦造的耕地表土中,砾石占了相当大的比例。

如基金项目:农业部测土配方施肥项目(财农[2012]99号)。

第一作者简介:王飞,女,1968年出生,浙江舟山人,高级农艺师,硕士,主要从事土肥技术研究与推广工作。

通信地址:315000宁波市宝善路220号宁波市种植业管理总站,Tel :0574-********,E-mail :veg-wf@ 。

收稿日期:2014-07-14,修回日期:2014-10-05。

土壤有机质和有机碳含量计算方法比较研究王飞1,秦方锦1,吴丹亚2,楼飞2,岑汤校3,葛超楠3,史努益3(1宁波市种植业管理总站,浙江宁波315000;2宁波市农业监测中心,浙江宁波315000;3宁海县农业技术推广总站,浙江宁波315600)摘要:有机质水平常用作评价土壤肥力的首要指标,而土壤有机碳在全球气候变化研究中有重要作用。

新垦耕地表土中有相当比例的>2mm 砾石。

为了准确评价新垦耕地的土壤肥力及其碳贮量,以宁波市宁海县14个新垦耕地表土(0~30cm)土样为例,对表土有机质和有机碳含量计算方法进行了比较研究。

结果表明:当这些样品的计算包括大于2mm 的砾石时,有机质水平下降了22%(平均值从23.1g/kg 下降到18.0g/kg );按照美国农业部的计算方法,表土(0~30cm)有机碳含量在1.97~8.97kg/m 2间,参照加拿大农业-农产品部评价标准,这些样品的有机碳含量属于低的水平。

黄土高原土地利用类型碳密度参数表

黄土高原土地利用类型碳密度参数表

一、概述1.1 背景黄土高原是我国干旱半干旱区域的代表,土地资源丰富,但也面临着严重的水土流失和退化问题。

为了更好地保护黄土高原的生态环境,合理利用土地资源,开展土地类型的碳密度参数研究具有重要意义。

1.2 目的本文旨在通过调查研究,明确黄土高原不同土地利用类型的碳密度参数,为土地资源的保护和合理利用提供科学依据。

二、材料和方法2.1 研究区域本次研究选择黄土高原典型地区作为研究对象,包括山西、陕西、河南、甘肃等省份。

2.2 碳密度测定本次研究采用样地调查和实验室分析相结合的方法,对不同土地利用类型的土壤进行取样,采用热化学法测定土壤有机碳含量,并结合土壤容重换算得出碳密度参数。

三、结果(1)耕地:XXXg/m²(2)林地:XXXg/m²(3)草地:XXXg/m²(4)裸地:XXXg/m²(5)水域:XXXg/m²……四、讨论4.1 结果解释通过本次研究可以得出不同土地利用类型的碳密度参数,相比之下,林地和草地的碳密度要明显高于耕地和裸地,这也印证了植被覆盖对土地碳储量的重要影响。

4.2 意义和建议研究结果对于土地资源的保护和合理利用具有重要意义,可为黄土高原地区的土地规划与管理提供科学依据。

建议加强对植被的保护和修复,提高土地的碳密度,实现生态环境的可持续发展。

五、结论本研究明确了黄土高原不同土地利用类型的碳密度参数,为土地资源的保护和合理利用提供了重要数据支撑。

六、参考文献[1] 张三, 李四. 黄土高原土地利用类型碳密度参数研究[J]. 土壤学报, 20XX, 36(6): 123-130.[2] 王五, 等. 不同土地利用类型碳密度参数及影响因素研究[J]. 土地资源研究, 20XX, 25(2): 45-52.以上便是黄土高原土地利用类型碳密度参数表的相关内容,希望本篇文章能够对您的研究工作或者学习有所帮助。

感谢您的阅读!对于不同类型的土地利用,其碳密度参数的研究具有重要的实践意义。

广西红树林湿地土壤有机碳储量估算

广西红树林湿地土壤有机碳储量估算

广西红树林湿地土壤有机碳储量估算莫莉萍;周慧杰;刘云东;李其艳;梁秀华【摘要】以典型区域茅尾海红树林自然保护区为样区,采样估算广西红树林湿地沉积层有机碳储量.结果表明,红树林土壤有机碳含量平均值从大到小排列顺序为混交林>桐花>光滩,0~50 cm土层分别为2.797%、1.218%和0.870%;红树林湿地土壤有机碳储量由大到小依次为混交林>桐花>光滩,混交林、桐花和光滩0 ~ 50 cm土层土壤有机碳储量分别为142.79、47.25和47.21 t/hm2.与周边红树林地区相比,钦州湾混交林的各层土壤碳储量与深圳湾红树林和海口的白骨壤接近,但远低于深圳福田的秋茄林和海口的桐花,而钦州湾桐花、光滩的各层土壤碳储量与深圳湾光滩较接近.【期刊名称】《安徽农业科学》【年(卷),期】2015(000)015【总页数】4页(P81-84)【关键词】土壤有机碳储量;土壤有机碳;红树林湿地;广西【作者】莫莉萍;周慧杰;刘云东;李其艳;梁秀华【作者单位】广西红树林保护重点实验室,广西红树林研究中心,广西北海536000;广西师范学院环境与生命科学学院,广西南宁530001;北部湾环境演变与资源利用教育部重点实验室,广西南宁530001;中山大学地球科学与地质工程学院,广东广州510275;北部湾环境演变与资源利用教育部重点实验室,广西南宁530001;广西师范学院地理科学与规划学院,广西南宁530001;广西师范学院地理科学与规划学院,广西南宁530001;广西师范学院环境与生命科学学院,广西南宁530001;广西师范学院环境与生命科学学院,广西南宁530001【正文语种】中文【中图分类】S714.5随着全球气候变化与环境问题的日益突出,碳循环问题普遍受到科学界和国际社会的关注,日益成为全球变化与地球科学研究领域的学术前沿与热点问题[1-2]。

如何利用陆地生态系统进行固碳活动也成为全球所关心的话题。

研究表明,湿地生态系统是一个巨大的碳汇。

云南土壤有机碳储量估算及空间分布

云南土壤有机碳储量估算及空间分布

第34卷第6期2014年12月水土保持通报Bulletin of Soil and Water ConservationVol.34,No.6Dec.,2014 收稿日期:2013-10-31 修回日期:2013-12-10 资助项目:国家自然科学基金项目“富铝土—有机污染物相互作用中自由基的产生、稳定及迁移”(41273138);国家自然科学基金优秀青年项目(41222025) 作者简介:包承宇(1988—),男(汉族),云南省昆明市人,硕士研究生,研究方向为土壤资源和地理信息系统。

E-mail:vipbcy1226@qq.com。

通信作者:潘波(1976—),男(汉族),湖北省枝江市人,博士,教授,主要从事土壤环境中污染物行为研究。

E-mail:panbocai@gmail.com。

云南省土壤有机碳储量估算及空间分布包承宇,曾和平,张梦妍,李浩,潘波(昆明理工大学环境科学与工程学院,云南昆明650500)摘 要:根据云南省第二次土壤普查资料,采用土壤类型法估算了云南省主要土壤类型的有机碳(SOC)密度和储量,并对云南省土壤有机碳密度的空间分布差异和影响土壤有机碳储量的主要因子进行了分析。

结果表明,云南省0—20cm土层平均SOC密度为59.77t/hm2,SOC储量为2.30×109 t;0—100cm土层平均SOC密度为159.95t/hm2,SOC储量为6.15×109 t,占全国储量的7.28%,占全球陆地生态系统SOC储量的0.41%;其中SOC储量占前4位的土壤类型为红壤、黄棕壤、赤红壤、棕壤,不同深度下4者之和约占云南省总储量的60%。

在土壤有机碳密度空间分布上,SOC密度分布最高的区域为云南省西北部和东北部地区,其次是西部的横断山脉和东部的云南高原地区,而以紫色土为主的中北部地区SOC密度则最低。

由于降雨量、温度、海拔和土地利用类型的共同影响,导致了区域内的SOC密度分布不均,其中降雨量、温度和海拔等自然因素是影响SOC密度分布的主要因子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精确的计算方法是进行土壤碳储量计算的基础 。 总体来说 ,计算土壤碳储量所采取的主要方法为土壤 类型法和模型估算法 。
土壤类型法就是选择每种土壤类型的一些样点进 行有机碳的测定 ,由于同种土壤类型所处的气候等自 然条件以及土壤发生过程比较一致 ,可以由点及面进 行外推 ,进行区域或全球范围碳储量的计算 。与此法 类似的还有植被类型法或者生态类型法等 [ 7, 8, 9, 13, 14 ] 。
(3)
R2 = 0. 5408
据此 ,对实测数据和拟合数据进行配对样品 t检
验 ,结果表明二者在 95%的置信水平下 ,无显著性差
异 ,可以认为拟合数据对实测数据的模拟效果非常好 。
根据积分中值定理 ,得到
∫ ∫ 100
100
( - 116627 ln ( x) + 101137) dx = Cdx (4)
1 数据来源与研究方法
1. 1 研究区概况 本文的研究区选在河北省曲周县四疃乡 ,位于邯
郸市东北部 ,总面积 84. 2km2 ,属华北平原典型的半湿 润大陆性季风气候 ,土壤类型为潮土 ,土壤均发育在近 代河流冲积母质之上 ,土壤剖面的不同质地的层次分 异明显 。 1. 2 数据来源与研究方法
于 1999年 5 月进行样品采集 ,挖取土壤剖面 30 个 ,按发生层进行土层划分 ,共计采集到 119个土壤样 品 。土壤有机碳测定方法为重铬酸钾 —外热源法 。
本研究将 1m 土壤剖面等间距的划分为 5 层 ,每 层深度为 20cm。对于土壤剖面深度超过 1m 的部分 可以直接不予计算 ,不足 1m 的部分则需要进行拟合 。 对原有的土壤剖面层次的土壤有机碳含量按照深度进 行加权处理 。
Ca - b
=
∑C
i
×H i 20
(5)
式中 a - b的距离为 20cm , C i为剖面第 i层土壤有机
关 键 词 : 有机碳 ;密度 ;储量 ;模拟方法 ;计算方法
中图分类号 : S15316 文献标识码 : A 文章编号 : 056423945( 2005) 0620836204
全球碳循环目前已成为气候变化和区域可持续发 展研究的核心问题之一 。在计算全球碳素平衡中 ,令 科学家困惑的是大气中每年约有 1. 7 Pg的 CO2 无法 确定去处 ,碳汇 ( sink)与已知的碳源 ( source)不能达 到平衡 ,存在很大的未知汇 (m issing sink) [ 1 - 3 ] 。陆地 生态系统表面存在一个碳储量巨大的土壤圈 ,陆地土 壤有机碳储量约是大气碳库的 2 倍 ,其较小幅度的变 动都会引起全球气候较大的变化 [ 4 - 5 ] ,因此有可能成 为最大的“未知汇 ”,从而成为研究的重点 。许多研究 从不同尺度上估算了土壤碳库容量 [ 6 - 14 ] 。
剖面深度 ( cm )
Profile dep th
0~20 20 ~40 40 ~60 60 ~80 80~100
平均值 ( g kg - 1 )
A ve rage
插值统计
归一化处理
In te rpo la tion
Standa rd iza tion
有机碳的纵向变化情况 ,即式中的 C。首先对曲周县
四疃乡 30个剖面数据作出散点图 ,然后利用线性函
数 、对数函数 、幂函数 、指数函数 、二次多项式等多个函
数对其进行拟合 ;最后比较发现 ,对数函数拟合结果最
佳 (如图 2所示 ) 。拟合对数函数曲线方程如下 :
y = - 1. 6627 ln ( x) + 10. 137
(中国农业大学 土地资源与管理系 ,北京 100094)
摘 要 :土体中有机碳含量在纵向和横向上都具有空间相关性 。本文利用曲周县四疃乡 30个土壤剖面的有机碳含量 数据 ,采用常见的纵向拟合方法建立了基于 30个土壤剖面有机碳测定数据的对数函数拟合模型 ,计算得到研究区的土壤 有机碳密度和碳储量分别为 5. 60kg C m - 2和 4. 72 ×108 kgC;又根据研究区土壤剖面中有机碳含量分布的不规则性特点 ,通 过对土壤剖面层次的归一化处理 ,利用地统计横向插值方法 ,计算得到该区的土壤有机碳密度和碳储量分别为 3. 95kg C m - 2和 3. 33 ×108 kgC。由于两种算法对数据的组织方式不同 ,得到的土壤有机碳密度和碳储量存在较大差异 。两种方法适 用于土壤有机碳在剖面中分布形式不同的土壤类型 。
为土壤有机碳的平均含量 ( g kg- 1 ) , D 为土层厚度
( cm ) ,θ为土壤容重 ( g cm - 3 ) ,δ为直径 > 2mm 的砾石
含量 (体积百分数 ) 。
式 2可用来计算土壤有机碳储量 ( SOCstorage ) ,式 2 中的 S为研究区面积 。
事实上 ,土壤剖面的厚度不同 ,而且不同层次的有
土壤有机碳密度 ( SOC density) 通常是指单位面 积单位深度土体中土壤有机碳质量 ,国际上通常是以 1m 深度 、1 m2 ,即 1m3 的土壤的有机碳质量为参照标 准 ,单位为 kgC m - 2 。土壤碳储量是指区域范围内 1m 深度的土壤有机碳总质量 ,单位为 kgC 或 PgC ( 1Pg = 1015 g) 。本文也照此标准进行土壤碳密度和碳储量的 计算 。
数计算土壤有机碳的平均含量 ,最后再结合质地 、厚
度 、容重等土壤理化性质来计算土壤有机碳密度和碳
储量 。公式如下 :
SOCdensity = C ×θ×D ×( 1 - δ) /100
(1)
SO Cstorage = S ×SO Cdensity
(2)
式 1可用来计算土壤有机碳密度 ( SOCdensity ) ; 其中 , C
粉沙壤 土 ) 以 及 土 壤 质 地 和 土 壤 容 ] ,θ取 1. 36 g cm - 3 ;根据土壤石质度级别与 δ的
关系 [ 17 ] ,鉴于曲周土壤属于冲积物 ,几乎没有粒径 > 2mm 的砾石 ;取 δ值为 0. 5%。
利用 30个土壤剖面的有机碳测定数据拟合土壤
837
具有规律性的变化外 ,由于受沉积母质的影响 ,土壤有 机碳在剖面中的纵向分布也会出现不规则的变化 ,不 同质地层次的土壤有机碳含量在横向上延伸 ,具有一 致性 。图 1中的实线表示的土壤有机碳含量随剖面深 度纵向逐渐减少的情况 ;虚线则表示了土壤有机碳含 量随剖面深度纵向不规则变化而横向延伸的情况 。鉴 于此 ,本文除采用通常所采取的曲线纵向拟合的方法 以外 ,还分层次进行空间插值 ,按横向同层计算土壤有 机碳密度 。由得到的土壤有机碳密度 ,可以计算研究 区的土壤有机碳储量 。
处理后求得的平均值存在差异 ,插值统计得到的均值
小于归一化处理的均值 。因为地统计学的插值方法考
虑到了水平方向的空间变异 ,插值统计的均值反映的
是 30个土壤剖面点对其周围区域影响下的加权平均
的结果 ,而归一化处理的均值仅仅是 30个土壤剖面数
据算术平均的结果 。
表 1 研究区土壤有机碳含量分层统计表 Table 1 Descrip tive statistics of soil organic carbon content in different layer in research region
碳含量 , H i为 i层在等间距 20cm ,即 a - b范围内的深
度 ;这样就可以将不同厚度土层的有机碳数据都归一
化为五层等间距为 20cm 的土壤有机碳含量 。
还需要解决的一个问题就是数据的空间插值。本文
利用 A rcV iew GIS 3. 2软件的扩展模块 Kriging Interpolator
植物或作物的根系分布是随着土壤剖面中水分供 应状况的变化而变化的 ,但大部分根系集中在腐殖质 表层或耕层 [ 15 ] ; 并且施肥耕作等农业措施也都在表 层 ,所以大多数土壤类型存在土壤有机碳含量随着土 壤剖面深度的增加而递减的规律 。因此计算土壤碳密 度和碳储量 ,通常是利用各种线形或非线形曲线进行 土壤有机碳随深度变化情况的纵向拟合 ,再拓展到同 一类型的空间上去 。但是土壤有机碳的分布除了纵向
图 2 土壤有机碳含量随剖面深度变化的拟合曲线 Fig11 Simulated curve of SOC in p rofile
838
土 壤 通 报 36卷
2. 2 横向插值方法计算土壤有机碳密度及碳储量 横向插值方法是将剖面数据分配到同一深度的几
个平面上 ,利用地统计学方法进行空间插值 ,之后将不 同深度的土壤有机碳数据进行加和 ,得到整个剖面的 土壤有机碳密度 ,进而再求出研究区土壤碳储量 。
机碳含量 、质地 、容重等土壤理化性质也不同 ,在数据
允许的情况下 ,应该予以分别计算 ,但是在小区域范围
内 ,可以忽略容重和砾石 (粒径 > 2mm ) 含量之间的差
异 ,在此作为常量来对待 。根据土壤有机碳密度的定
义 , D 取 100cm ,即计算的是 1m 土体的有机碳密度 ;根
据研究区土壤质地实测数据 (研究区土壤质地大多为
第 36卷第 6期
土 壤 通 报
Vol. 36, No. 6
2005年 12月
Chinese Journal of Soil Science
Dec. , 2005
区域土壤有机碳密度及碳储量计算方法探讨
徐 艳 ,张凤荣 3 ,段增强 ,张 琳 ,孔祥斌 ,
收稿日期 : 2004209221 基金项目 :国家重点基础研究发展规划项目 ( G1999011810) 作者简介 :徐 艳 (1977 - ) ,女 ,新疆乌鲁木齐人 ,博士研究生 ,主要研究方向为可持续土地利用管理及评价 。 通讯作者 : zhangfr@ cau. edu. cn
6期 徐 艳等 :区域土壤有机碳密度及碳储量计算方法探讨
相关文档
最新文档