上水箱液位定值控制系统

合集下载

水箱液位自动控制系统工作原理

水箱液位自动控制系统工作原理

水箱液位自动控制系统工作原理引言水箱液位自动控制系统是一种常见的自动化控制系统。

本文将对水箱液位自动控制系统的工作原理进行详细的介绍和探讨。

其中包括传感器的使用、控制器的设计以及执行器的操作等方面。

传感器水箱液位传感器是水箱液位自动控制系统的核心组件之一。

传感器通过测量水箱中的液位高度来获取相应的液位信息。

常见的液位传感器包括浮球式液位传感器和压力式液位传感器。

浮球式液位传感器浮球式液位传感器利用浮球的浮力来测量液位。

当液位上升时,浮球会随之上升;当液位下降时,浮球也会下降。

传感器通过检测浮球的位置来确定液位的高度。

压力式液位传感器压力式液位传感器通过测量液体对传感器的压力来确定液位的高度。

当液位上升时,液体对传感器的压力增加;当液位下降时,压力减小。

传感器通过检测液体对传感器的压力变化来确定液位的高度。

控制器控制器是水箱液位自动控制系统的另一个重要组成部分。

控制器根据传感器提供的液位信息,判断水箱液位是否在设定范围之内,然后发出相应的控制信号。

PID控制器PID控制器是一种常用的控制器类型。

它根据当前的偏差以及偏差的变化率来调整输出信号,使得系统的输出能够稳定在设定值附近。

PID控制器由比例项、积分项和微分项组成,分别对应于当前偏差、累积偏差和变化率。

控制信号控制信号是控制器向执行器发送的命令信号,用于控制水箱液位的变化。

通过调整控制信号的大小和方向,控制器可以实现水箱液位的自动上升和下降。

执行器执行器是控制水箱液位的关键部件。

执行器根据控制器发出的命令信号,调整水箱进水和排水的流量,从而实现水箱液位的自动控制。

电动阀门电动阀门是一种常用的执行器类型。

它通过电动机驱动阀门的开闭,从而调节水箱的进水和排水流量。

控制器通过控制电动阀门的开度,使得水箱液位保持在设定范围之内。

水泵水泵也是一种常见的执行器类型。

它通过驱动液体流动来调节水箱的液位。

控制器根据液位信息,调整水泵的工作状态,从而实现水箱液位的自动控制。

基于PID的上水箱液位控制系统设计课程设计

基于PID的上水箱液位控制系统设计课程设计

精选文档过程控制系统课程设计基于PID的上水箱液位控制系统设计一、课程设计任务书1.设计内容针对某厂的液位控制过程与要求实现模拟控制,其工艺过程如下:用泵作为原动力,把水从低液位池抽到高液位池,实现对高液位池液位高度的自动控制。

具体设计内容是利用西门子S7-200PLC作为控制器,实现对单容水箱液位高度的定值控制,同时利用MCGS组态软件建立单容水箱液位控制系统的监控界面,实现实时监控的目的。

2.设计要求1、以RTGK-2型过程控制实验装置中的单个水箱作为被控对象、PLC作为控制器、静压式压力表作为检测元件、电动调节阀作为执行器构成一个单容水箱单闭环控制系统,实现对水箱液位的恒值控制。

2、PLC控制器采用PID算法,各项控制性能满足要求:超调量20%,稳态误差≤±0.1;调节时间ts≤120s;3、组态测控界面上,实时设定并显示液位给定值、测量值及控制器输出值;实时显示液位给定值实时曲线、液位测量值实时曲线和PID输出值实时曲线;4、选择合适的整定方法确定PID参数,并能在组态测控界面上实时改变PID参数;5、通过S7-200PLC编程软件Step7实现PLC程序设计与调试;6、分析系统基本控制特性,并得出相应的结论;7、设计完成后,提交打印设计报告。

3.参考资料1.邵裕森,戴先中主编.过程控制工程(第2版).北京:机械工业出版社.20032.崔亚嵩主编.过程控制实验指导书(校内)3.廖常初主编.PLC编程及应用(第2版).北京:机械工业出版社.20074.吴作明主编.工业组态软件与PLC应用技术.北京:北京航空航天大学出版社.20074.设计进度(2010年12月27日至2011年1月9日)时间设计内容2010年12月27日布置设计任务、查阅资料、进行硬件系统设计2010年12月28日~2010年12月29日编制PLC控制程序,并上机调试;2010年12月30日~2010年12月31日利用MCGS组态软件建立该系统的工程文件2011年1月2日~2011年1月4日进行MCGS与PLC的连接与调试进行PID参数整定2011年1月5日~2011年1月6日系统运行调试,实现单容水箱液体定值控制2011年1月7日~2011年1月9日写设计报告书5.设计时间及地点设计时间:周一~周五,上午:8:00~11:00下午:1:00~4:00设计地点:新实验楼,过程控制实验室(310)电气工程学院机房(320)二、评语及成绩课程设计成绩:指导教师:过程控制系统课程设计报告班级:姓名:学号:指导教师:撰写日期:目录第一章绪论 (1)第二章系统组态设计 (3)2.1 MCGS组态软件概述 (3)2.2 新建工程 (4)2.3 设备配置 (5)2.4新建画面 (5)2.5 定义数据对象 (9)2.6设备连接 (12)2.7 控制面板的设计 (14)第三章 PLC设计 (18)3.1 PLC概述 (18)3.2系统设计PLC程序 (20)第四章课设总结 (25)参考文献 (26)附录 (27)第一章绪论可编程控制器(Programmable Controller)是计算机家族中的一员,是为工业控制应用而设计制造的。

水箱液位自动控制系统工作原理

水箱液位自动控制系统工作原理

水箱液位自动控制系统工作原理
1水箱液位自动控制系统
水箱液位自动控制系统是一种控制水箱液位的自动化控制系统,它包括一个液位探测器、一个液位计算机、水箱液位控制装置和一个加水控制装置。

1.1液位探测器
液位探测器是系统的最重要的组成部分,它可以实时测量水箱中液位和水温,并将其实时数据发送到液位计算机。

1.2液位计算机
液位计算机负责接收液位探测器发送过来的实时温度和液位数据,并对其进行分析,计算出水箱当前的液位状态和液位变化趋势,并将运算结果发送给控制装置。

1.3水箱液位控制装置
水箱液位控制装置接收到液位计算机发送过来的水箱当前液位状态和液位变化趋势,根据实际情况确定是否需要加水,并根据设定的液位变化趋势来决定加水的次数和加水量。

1.4加水控制装置
加水控制装置接收来自水箱液位控制装置发送过来的控制信号,根据设定次数和加水量,控制加水泵启动停止,最终实现自动控制水箱液位,保持水箱液位的稳定。

水箱液位自动控制系统通过液位探测器实时测量水箱液位和温度,液位计算机对测量数据进行分析,水箱液位控制装置根据设定液位趋势确定是否需要加水,加水控制装置根据设定次数和加水量控制加水泵启动停止,实现了水箱液位的稳定控制。

基于simaticwincc的双容水箱液位定值控制系统上位机

基于simaticwincc的双容水箱液位定值控制系统上位机

基于simaticwincc的双容水箱液位定值控制系统上位机一、引言双容水箱液位定值控制系统是一种常见的工业自动化控制系统,用于控制水箱中液位的稳定。

在该系统中,上位机起到了关键的作用,通过与PLC进行通信和数据交互,实现对水箱液位的监测、设定和控制。

本文将详细介绍基于Simatic WinCC的双容水箱液位定值控制系统上位机的设计与实现。

二、系统架构1. 系统硬件架构双容水箱液位定值控制系统上位机主要由计算机、触摸屏、PLC等硬件组成。

计算机作为上位机的核心部件,负责运行WinCC软件,并与PLC进行通信。

触摸屏作为操作界面,提供给操作人员进行参数设置和监测显示。

PLC作为下位机,负责接收上位机发送的指令,并根据指令执行相应的动作。

2. 系统软件架构基于Simatic WinCC开发的双容水箱液位定值控制系统上位机主要包括以下几个模块:(1) 数据采集模块:负责从PLC中获取液位传感器采集到的数据,并进行处理和存储。

(2) 数据显示模块:将采集到的数据以图表或列表等形式展示给操作人员,实时监测液位情况。

(3) 参数设定模块:提供给操作人员进行参数设定,如液位上下限、控制方式等。

(4) 控制指令模块:根据参数设定和采集到的数据,生成相应的控制指令,并发送给PLC执行。

(5) 报警处理模块:对异常情况进行监测和判断,如液位超过上下限等,及时发出报警并采取相应的措施。

三、系统功能1. 实时监测液位上位机通过与PLC通信,实时获取液位传感器采集到的数据,并将其显示在触摸屏上。

操作人员可以直观地了解当前水箱中的液位情况。

2. 参数设定与调整操作人员可以通过触摸屏进行参数设定和调整。

可以设置液位上下限值、控制方式(自动或手动)、报警阈值等。

这些参数会影响系统的运行和控制策略。

3. 控制指令生成与发送根据参数设定和采集到的数据,上位机会生成相应的控制指令,并将其发送给PLC执行。

在自动控制模式下,当液位低于下限时,上位机会发送开启水泵的指令,以保持液位稳定。

过程控制—上水箱液位与进水流量串级控制系统

过程控制—上水箱液位与进水流量串级控制系统

1 过程控制系统简介1.1 系统组成本实验装置由被控对象和上位控制系统两部分组成。

系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、气动调节阀、直流电磁阀、PA电磁流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。

1、被控对象水箱:包括上水箱、中水箱、下水箱和储水箱。

储水箱内部有两个椭圆形塑料过滤网罩,防止两套动力支路进水时有杂物进入泵中。

模拟锅炉:此锅炉采用不锈钢制成,由加热层(内胆)和冷却层(夹套)组成。

做温度实验时,冷却层的循环水可以使加热层的热量快速散发,使加热层的温度快速下降。

冷却层和加热层都装有温度传感器检测其温度。

盘管:长37米(43圈),可做温度纯滞后实验,在盘管上有两个不同的温度检测点,因而有两个不同的滞后时间。

管道:整个系统管道采用敷塑不锈钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。

2、检测装置压力传感器、变送器:采用SIEMENS带PROFIBUS-PA通讯协议的压力传感器和工业用的扩散硅压力变送器,扩散硅压力变送器含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。

温度传感器:本装置采用六个Pt100传感器,分别用来检测上水箱出口、锅炉内胆、锅炉夹套以及盘管的水温。

六个Pt100传感器的检测信号中检测锅炉内胆温度的一路到SIEMENS带PROFIBUS-PA通讯协议的温度变送器,直接转化成数字信号;另外五路经过常规温度变送器,可将温度信号转换成4~20mADC电流信号。

流量传感器、转换器:流量传感器分别用来对调节阀支路、变频支路及盘管出口支路的流量进行测量。

本装置采用两套流量传感器、变送器分别对变频支路及盘管出口支路的流量进行测量,调节阀支路的流量检测采用SIEMENS带PROFIBUS-PA通讯接口的检测和变送一体的电磁式流量计。

3、执行机构调节阀:采用SIEMENS带PROFIBUS-PA通讯协议的气动调节阀,用来进行控制回路流量的调节。

【豆丁精选】上水箱液位控制系统操作 共12页PPT资料

【豆丁精选】上水箱液位控制系统操作 共12页PPT资料
素质目标 :培养自主学习能力,挖掘潜在创造力,激发设计才 能,培养团队意识、组织协调能力、创新思维能力,培养分析 和解决问题的能力。
任务一 一阶单容上水箱对象特性测试
一、任务汇报 -----一阶单容水箱特性测试
学生汇报进行一阶水箱性能测试的方法 选择一组学生进行操作
二、团体讨论、评价
分小组进行讨论,对刚刚的操作进行评价 选择一组学生进行操作
任务一 一阶单容上水箱对象特性测试
三、任务分析ຫໍສະໝຸດ 1、系统结构图丹麦泵
电动调节阀 V1
Q1
DCS控制系统手动输出 h
V2 Q2
任务一 一阶单容上水箱对象特性测试
2、单容水箱特性
阶跃响应测试法是系统在开环运行条件下,待系 统稳定后,通过调节器或其他操作器,手动改变 对象的输入信号(阶跃信号),同时记录对象的 输出数据或阶跃响应曲线。然后根据已给定对象 模型的结构形式,对实验数据进行处理,确定模 型中各参数。
图解法是确定模型参数的一种实用方法。不同的 模型结构,有不同的图解方法。单容水箱对象模 型用一阶加时滞环节来近似描述时,常可用两点 法直接求取对象参数。
任务一 一阶单容上水箱对象特性测试
h1( t ) h1(∞ )
0.63h 1(∞ )
0
T
任务一 一阶单容上水箱对象特性测试
四、操作步骤
对象的连接和检查: (1)关闭阀23,将AE2000A 实验对象的储水箱灌满水(至 最高高度)。 (2)打开以丹麦泵、电动调节阀、电磁流量计组成的动力支 路至上水箱的出水阀门:阀1、阀4、阀7,关闭动力支路 上通往其他对象的切换阀门。 (3)打开上水箱的出水阀:阀9至适当开度。 实验步骤 (1)打开控制柜中丹麦泵、电动调节阀的电源开关。 (2)启动DCS上位机组态软件,进入主画面,然后进入实验 一画面。 (3)用鼠标点击调出PID窗体框,然后在“MV”栏中设定 电动调节阀一个适当开度。(此实验必须在手动状态下进行)

水箱液位自动控制系统工作原理

水箱液位自动控制系统工作原理

水箱液位自动控制系统工作原理
水箱液位自动控制系统是一种常见的自动化控制系统,它主要用于控制水箱的液位,确保水箱中的水始终保持在一定的水位范围内。

该系统的工作原理是通过传感器检测水箱中的液位,并根据液位信号控制水泵的启停,从而实现水箱液位的自动控制。

水箱液位自动控制系统主要由液位传感器、控制器和水泵组成。

液位传感器是系统的核心部件,它能够实时检测水箱中的液位,并将液位信号传输给控制器。

控制器根据液位信号来控制水泵的启停,当水箱中的液位低于设定值时,控制器会启动水泵,将水泵中的水送入水箱中,直到液位达到设定值时,控制器会停止水泵的运行。

水箱液位自动控制系统的工作原理非常简单,但是它能够有效地保证水箱中的水始终保持在一定的水位范围内,避免了水箱中水位过高或过低的情况发生。

这不仅可以保证水的供应,还可以避免水泵因为长时间运行而损坏,从而延长水泵的使用寿命。

除了水箱液位自动控制系统,还有许多其他的自动化控制系统,如温度自动控制系统、湿度自动控制系统等。

这些系统都是基于传感器检测环境参数,并根据参数信号来控制设备的启停,从而实现自动化控制的目的。

随着科技的不断发展,自动化控制系统将会越来越普及,为人们的生活带来更多的便利和舒适。

双容水箱液位定值控制系统实验报告

双容水箱液位定值控制系统实验报告

双容水箱液位定值控制系统实验报告实验目的:通过搭建双容水箱液位定值控制系统,了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。

实验器材:1.液位控制综合实验台2.电子积分器PID控制器3.水泵4.液位传感器5.两个水箱6.电压表和电流表实验步骤:1.将两个水箱放在实验台上,一个用作上升水箱,一个用作下降水箱。

2.将水泵安装在上升水箱中,并通过输水管连接两个水箱。

3.将液位传感器安装在上升水箱和下降水箱中,并将其连接到电子积分器PID控制器。

4.将电子积分器PID控制器连接到电源,并连接电压表和电流表来监测相应的电压和电流。

5.打开水源,使用电子积分器PID控制器调节水泵的运行方式和水泵的转速。

6.观察液位传感器的反馈信号,并根据反馈信号调整PID控制器的参数,使得液位保持在设定值附近。

7.记录不同设定值下液位的控制效果,并分析数据。

8.关闭水源,停止实验。

实验结果:根据实验数据,可以观察到双容水箱液位控制系统的控制效果。

当设定值改变时,PID控制器能够调整水泵的运行方式和水泵的转速,以使得液位保持在设定值附近。

实验结果表明,在合适的PID控制器参数设置下,液位的稳定性和控制精度较高。

实验分析:在双容水箱液位定值控制系统中,PID控制器起到了关键作用。

P项(比例项)根据液位的偏差来调节水泵的转速,I项(积分项)根据液位的积累偏差来调整水泵的运行方式,D项(微分项)根据液位的变化速度来预测液位的变化趋势。

通过PID控制器的联合作用,可以实现对液位的稳定控制。

从实验结果分析可以看出,PID控制器的参数设置非常重要。

当P参数过大或过小时,会导致液位振荡或调节速度缓慢;当I参数过大或过小时,会导致液位超调或稳态误差;当D参数过大时,系统可能产生过冲。

因此,需要根据具体的系统要求和实验条件来合理设置PID控制器的参数。

结论:通过搭建双容水箱液位定值控制系统,并对其进行实验研究,我们可以了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节上水箱液位定值控制系统
一、实验目的
1.了解单闭环液位控制系统的结构与组成。

2.掌握单闭环液位控制系统调节器参数的整定。

3.研究调节器相关参数的变化对系统动态性能的影响。

二、实验设备
1.THJ-2型高级过程控制系统装置
2.计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根
3.万用表1只
三、实验原理
本实验系统的被控对象为上水箱,其液位高度作为系统的被控制量。

系统的给定信号为一定值,它要求被控制量上水箱的液位在稳态时等于给定值。

由反馈控制的原理可知,应把上水箱的液位经传感器检测后的信号作为反馈信号。

图3-1为本实验系统的结构图,图3-2为控制系统的方框图。

为了实现系统在阶跃给定和阶跃扰动作用下无静差,系统的调节器应为PI或PID。

图3-1上水箱液位定值控制结构图
图3-2 上水箱液位定值控制方框图
四、实验内容与步骤
1.先将储水箱中贮足水量,然后将阀门F1-1、F1-6、F1-10、F1-11全开,将上水箱出水阀门F1-9开至适当开度(50%左右),其余阀门均关闭。

2.接通控制柜总电源,打开漏电保护器及各空气开关,接通空压机电源,并将三相磁力泵、三相电加热管、控制站的各旋钮开关打到开的位置。

控制柜无需接线。

3.在上位机监控界面中点击“手动”,并将设定值和输出值设置为一个合适的值,此操作可通过设定值或输出值旁边相应的滚动条或输出输入框来实现。

4.启动磁力驱动泵,磁力驱动泵上电打水,适当增加/减少输出量,使上水箱的液位平衡于设定值。

5.按经验法或动态特性参数法整定PI调节器的参数,并按整定后的PI参数进行调节器参数设置。

6.分别适量改变调节器的P参数,通过实验界面下边的按钮切换观察计算机记录不同控制规律下系统的阶跃响应曲线。

7.分别用PI、PD、PID三种控制规律重复步骤3~6,通过实验界面下边的按钮切换观察计算机记录不同控制规律下系统的阶跃响应曲线。

8.水箱液位的历史曲线和阶跃响应曲线。

(1)P调节:K=5
K=7
(2)PI
K=7、I=20000
K=5、I=2000
(3)PD
K=5、D=10000
K=5、D=5000
(4)PID
K=5、I=20000、D=5000
9.计算
(1)P调节
K=5时:
上升时间为:tr=t2-t1=2:50:22-2:50:04=18(s)
稳态误差=60mm- h(∞)=60mm-53.35mm=6.65mm
K=7时:
上升时间为:tr=t2-t1=2:50:41-2:50:21=20(s)
稳态误差=60mm- h(∞)=60mm-55.41mm=4.59mm (2)PI调节
K=7,I=20000 时:
上升时间:tr=t1-t0=3:08:04-3:07:35=29(s)
峰值时间:tp=t2-t0=3:08:09-3:07:35= 34(s)
调节时间:ts=t3-t0=3:08:36-3:07:35=61(s)
超调量=[hmax- h(∞)]/ [h(∞)-h(0)]*100%=6.8% 稳态误差= h(∞)-60mm=0.69mm(可以忽略不计)
K=5 ,I=20000时 :
上升时间:tr =3:22:58-3:22:31=27(s)
峰值时间:tp= 3:23:06-3:22:31= 35(s)
调节时间:ts= 3:23:30-3:22:31=59(s)
超调量=[hmax- h(∞)]/ [h(∞)-h(0)]*100%=10.9% 稳态误差= h(∞)-60mm=0.11mm(可以忽略不计)(3)PD调节
K=5,D=10000时:
上升时间为t=t2-t1=4:25:57-4:25:36=21(s)
稳态误差=60mm- h(∞)=60mm-52.98mm=7.02mm
K=5,D=5000时:
上升时间为t=t2-t1=4:30:51-4:30:31=20(s)
稳态误差=60mm- h(∞)=60mm-52.81mm=7.19mm
(4)PID
K=5 ,I=20000 ,D=5000时:
上升时间:tr =4:35:50-4:35:19=31(s)
峰值时间:tp= 4:35:57-4:35:19= 38(s)
调节时间:ts= 4:36:02-4:35:19=43(s)
超调量=[hmax- h(∞)]/ [h(∞)-h(0)]*100%=11.1%
稳态误差= 60mm- h(∞)=0.23mm(可以忽略不计)
10.分析
(1)根据实验数据和曲线,分析系统在阶跃扰动作用下的动、静态性能。

分析:系统在阶跃扰动作用下,当比例系数较大时,系统的静态误差也较大,这是因为比例系数会加大幅值;在加入微分环节以后,系统的动态误差明显减小,但调节时间却延长,这是因为微分具有超前的作用,可以增加系统的稳定度。

(2)比较不同PID参数对系统的性能产生的影响。

Ti:为了消除稳态误差,在控制器中必须引入“积分项”,积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样即便误差很小,积分项也会随着时间的增加而增大,他推动控制器的输出增大使稳态误差进一步减小,知道为零,由于积分项的存在会使调节时间增大。

因此,PI控制器可使系统在进入稳太后无稳态误差。

Kp:放大误差的幅值,快速抵消干扰的影响,使系统上升时间降
低,如果仅有比例环节,系统会存在稳态误差。

Td:自动控制系统在克服误差的调解过程中可能会出现振荡甚至失稳,在控制器中仅引入“比例P”往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,他能预测误差的变化趋势。

这样具有比例加微分的控制器,就能够提前十抑制误差的的控制作用等于零,甚至为负值,从而避免了被控量的严重失调。

所以对有较大惯性或滞后的被控对象,PD控制器能改善系统在调解过程的动态特性。

(3)分析P、PI、PD、PID四种控制规律对本实验系统的作用。

P:是基本的控制作用,比例调节对控制作用和扰动作用的响应都很快但会带来余差。

PI: PI调节中P调节快速抵消干扰的影响,同时利用I调节消除残差,但是I调节会降低系统的稳定性。

PD:由于微分的超前作用,能增加系统的稳定度,震荡周期变短,减小了误差,但是微风抗干扰能力差,且微分过大易导致调节阀动作向两端饱和。

PID:常规调节器中性能最好的一种调节器,具有各类调节器的优点,具有更高的控制质量。

五、思考题
1.改变比例度δ和积分时间TI对系统的性能产生什么影响?
答:改变比例度δ会是调节器的参数改变,这可能让系统的稳定性受一定的影响,增大比例度会使其超调量增大,使系统变得不稳定。

改变积分时间TI会使系统的精度提高,但也可能造成积分饱和。

2.如采用下水箱做实验,其响应曲线与中水箱或者上水箱的曲线
有什么异同?试分析差异原因。

答:采用下水箱做实验,其滞后时间会更短。

原因:因为水的回路变得更短,弃响应曲线会上升的更快。

3.常见调节器参数的整定方法有哪些?并对其做简要概述。

答:临界比例度法:先用单纯的比例作用试验求出临界比例度,然后整定调节器参数;
衰减曲线法:首先试验求出广义对象的衰减曲线,然后根据衰减曲线来整定调节器参数;
经验法:用经验法来整定调节器参数是通过试凑来实现的。

相关文档
最新文档