《乘法公式──平方差公式》PPT课件
合集下载
《乘法公式》PPT课件教学课件初中数学1

分析: (a+b)2
(a−b)2
4ab
(a+b)2 =a2+2ab+b2
a2+b2
(a−b)2
=a2−2ab+b2 ab=?
巩固练习
练习 已知(a+b)2=7,(a−b)2=3,求a2+b2的值.
解: ∵ ( a + b ) 2= a 2+ 2 a b + b 2,
(a−b)2=a2−2ab+b2,
(a±b)2 = a2±2ab+b2. (a±b)2=a2±2ab+b2. (a+b)(a−b)=a2−b2. 平方差公式:(a+b)(a−b) =a2−b2. 例 运用乘法公式计算: (a+b)(a−b) =a2−b2; = x4−8x2y2+16y4; x2+y2= (x−y)2+2xy 例 运用乘法公式计算: 两数和的完全平方公式: 乘法交换律: a×b=b×a. (1) (x+y+1)(x+y−1)
例题讲解
例 求代数式的值:
(2) 已知x−y=6,xy=−8,求x2+y2的值.
分析: x−y , xy
x2+y2
(x−y)2=x2−2xy+y2
x2+y2= (x−y)2+2xy
例题讲解
例 求代数式的值: (2) 已知x−y=6,xy=−8,求x2+y2的值. 解: ∵ ( x − y ) 2= x 2− 2 x y + y 2,
= x2+6xy+9y2−x2+9y2
4.灵活运用公式:
= x2+6xy+9y2−(x2−9y2)
八年级数学《平方差公式》课件图文详解

知2-导
利用这个公式, 可以直接计算 两数和乘以这 两数的差.
这两个特殊的多项式相乘,得到的结果特别简洁:
(a + b) (a-b)=a2 -b2.
这就是说,两数和与这两数差的积,等于这两数的平方差. 这个公式叫做两数和与这两数差的乘法公式,有时也简称 为平方差公式.
知2-讲
平方差公式: 两数和与这两数差的积,等于这两数的平方差. 用式子表示为:(a+b)(a-b)=a2-b2.
-2 0192 =2 0192-1-2 0192=-1.
总结
知3-讲
本题运用转化思想求解.运用平方差公式计算两数乘 积问题,关键是找到这两个数的平均数,再将原两个 数与这个平均数进行比较,变形成两数的和与这两数 的差的积的形式,利用平方差公式可求解.
知3-练
1 计算2 0162-2 015×2 017的结果是( )
项的平方 减去相反项的平方 . 3. 理解字母a,b的意义,平 方差公式中的a,b既
可代 表一个单项式,也可代表 一个多项式 .
知1-讲
知1-练
1 下列计算能运用平方差公式的是( )
A.(m+n)(-m-n)
B.(2x+3)(3x-2)
C.(5a2-b2c)(bc2+5a2)
D.
2 3
m2
3 4
解: (1) (a+3)(a-3)=a2-32=a2-9. (2)(2a+3b)(2a-3b)=(2a)2-(3b)2=4a2-9b2. (3) (1+2c)(1-2c)=12-(2c)2=1-4c2. (4)(-2x-y)(2x-y)=(-y-2x)(-y+2x)=(-y)2-(2x)2=y2-4x2.
n3
平方差公式课件PPT

$(a+b-c)^2 = a^2 + b^2 - c^2 + 2ab - 2bc$
$(a-b+c)^2 = a^2 - b^2 + c^2 + 2(ab)c$
平方差公式的其他变种形式
$(a+b)^3 = (a+b)(a^2 - ab + b^2)$ $(a-b)^3 = (a-b)(a^2 + ab + b^2)$
平方差公式课件
目录
CONTENTS
• 平方差公式的基本概念 • 平方差公式的推导过程 • 平方差公式的证明 • 平方差公式的应用举例 • 平方差公式的变种 • 总结与回顾
01 平方差公式的基本概念
平方差公式的定义
总结词
平方差公式是数学中一个重要的恒等 式,用于表示两个数的平方差与这两 个数之间的关系。
$(a+b+c)^3 = (a+b+c)(a^2 - ab + b^2 - ac + bc - c^2)$
06 总结与回顾
本节课的重点回顾
01
02
03
04
平方差公式的形式和结 构
平方差公式的推导过程
平方差公式的应用范围 和条件
平方差公式的代数表示 和几何意义
本节课的难点解析
01
02
03
04
如何理解和记忆平方差公式的 形式和结构
目标
证明该公式成立
证明的步骤
01
02
03
步骤1
展开左侧,得到 $(a+b)(a-b) = a^2 b^2 + ab - ab$
步骤2
合并同类项,得到 $(a+b)(a-b) = a^2 b^2$
苏科版七年级数学下册9.乘法公式——平方差公式课件

9.4 乘法公式(2) ——平方差公式
环节一 复习回顾
完全平方公式:(a b)2 a2 2ab b2 (a b)2 a2 2ab b2
计算: (x 2 y)2 解:原式 x2 2 x 2 y (2 y)2
x2 4xy 4 y2
做一做
a
a
a-b
将图中纸片只剪一刀,
再拼成一个长方形.
(x)2 (3y)2 x2 9y2
完全平方公式、平方差公式通常叫做乘法公式。
环节四 释疑、运用
1.计算: (a b c)(a b c) 解法一:原式 a2 ab ac ab b2 bc ac bc c2
a2 2ac c2 b2
解法二:原式 (a c b)(a c b)
2.填空:
(1)(x __6_)(x _6__) x2 36;
x2 62
(2)(m _5_n_)(m _5_n_) m2 25n2; m2 (5n)2
(3)(a b)(__b__a__) b2 a2;
(4)(___x_2 __1_)(1 x2 ) x4 1. (x2 )2 12 (x2 )2 12例1.Fra bibliotek平方差公式计算:
(1)(5x y)(5x y);
解:原式 5(5xx2 )2 y2y2
25x2 y2
(2)(m 2n)(2n m)
解:原式 (2n m)(2n m) (2n)2 m2 4n2 m2
环节三 例题讲授
例2. 计算: (3y x)(x 3y) 把-x、3y分别看成a、b 解:原式 (x 3y)(x 3y)
布置作业:
(1)左边是两个二项式的__积__,在这两个二项式中有一项(a)完全_相__同__,
另一项(b与-b)互为_相__反__; 右边为这两个数的_平__方__差__即右边是完全相同的项的平方减去符号相
环节一 复习回顾
完全平方公式:(a b)2 a2 2ab b2 (a b)2 a2 2ab b2
计算: (x 2 y)2 解:原式 x2 2 x 2 y (2 y)2
x2 4xy 4 y2
做一做
a
a
a-b
将图中纸片只剪一刀,
再拼成一个长方形.
(x)2 (3y)2 x2 9y2
完全平方公式、平方差公式通常叫做乘法公式。
环节四 释疑、运用
1.计算: (a b c)(a b c) 解法一:原式 a2 ab ac ab b2 bc ac bc c2
a2 2ac c2 b2
解法二:原式 (a c b)(a c b)
2.填空:
(1)(x __6_)(x _6__) x2 36;
x2 62
(2)(m _5_n_)(m _5_n_) m2 25n2; m2 (5n)2
(3)(a b)(__b__a__) b2 a2;
(4)(___x_2 __1_)(1 x2 ) x4 1. (x2 )2 12 (x2 )2 12例1.Fra bibliotek平方差公式计算:
(1)(5x y)(5x y);
解:原式 5(5xx2 )2 y2y2
25x2 y2
(2)(m 2n)(2n m)
解:原式 (2n m)(2n m) (2n)2 m2 4n2 m2
环节三 例题讲授
例2. 计算: (3y x)(x 3y) 把-x、3y分别看成a、b 解:原式 (x 3y)(x 3y)
布置作业:
(1)左边是两个二项式的__积__,在这两个二项式中有一项(a)完全_相__同__,
另一项(b与-b)互为_相__反__; 右边为这两个数的_平__方__差__即右边是完全相同的项的平方减去符号相
乘法公式ppt课件

感悟新知
(2)几何图形证明法(数形结合思想)
知2-讲
图14.2-2 ①:大正方形的面积为(a+b)2=a2+b2+2ab;
图14.2-2 ②:左下角正方形的面积为(a-b)2=a2-2ab+b2.
感悟新知
知2-讲
3. 完全平方公式的几种常见变形
(1)a2+b2=(a+b)2-2ab=(a-b)2+2ab;
原式=x2-4xy+4y2;
(4)(-2xy-1)2.
原式=4x2y2+4xy+1.
感悟新知
知2-练
2
例 4 计算:(1)999 ;(2) .
解题秘方:将原数转化成符合完全平方公式的形式,再
利用完全平方公式展开计算即可.
感悟新知
(1)9992;
知2-练
解:9992=(1 000-1)2=1 0002-2×1 000×1+12
(2)(a+b)2=(a-b)2+4ab;
(3)(a-b)2=(a+b)2-4ab;
(4)(a+b)2+(a-b)2=2(a2+b2);
(5)(a+b)2-(a-b)2=4ab;
感悟新知
知2-讲
2
2
2
(6)ab= [(a+b) -(a +b )]=
[(a+b)2-(a-b)2];
(7)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;
公式进行计算.
感悟新知
知2-练
(1)(x+7y)2;
解:(x+7y)2=x2+2·x·(7y)+(7y)2
括号不能漏掉.
=x2+14xy+49y2;
(2)(-4a+5b)2;
(-4a+5b)2 =(5b-4a)2
乘法平方差公式PPT课件

4
例题:
1、(5m+2n)(5m-2n)= (5m)2-(2n)2 = 25m2-4n2
(a + b)( a - b )= a2 - b2
2. (1)(-4a-1)(-4a+1) (2) [(x+y)+z][(x+y)-z]
(3)(-2a2+7)(-2a2-7)
2020年10月2日
5
演讲完毕,谢谢观看!
(3)(1+n)(1-n)=_1_2_-_n2_ (4)(10+5)(10-5)=_1_0_2_-_5_2
2、判断下列式子是否可用平方差公式。
(1)(-a+b)(a+b)(是)(2)(-2a+b)(-2a-b)(是)
(3)(-a+b)(a-b) (否)(4)(a+b)(a-c)(否)
2020年10月2日
汇报人:XXX 汇报日期:20XX年10月10日
6
(2)两个二项式相乘时,若有一
项相同,另一项符号相反,积
等于相同项平方减去相反项平方。
202注0年10:月2日第(2)点是判断的依据和方法。3
练习:
1、参照平方差公式“(a+b)(a-b)=a2-b2”填 空。
(1)(t+s)(t-s)=_t_2-_s_2 (2)(3m+2n)(3m-2n)=(_3_m_)_2_-(_2_n_)_2
2020年10月2日
1
平方差公式
2020年10月2日
制作人:吴先兵 2
公式1 (x+a)(x+b)=x2+(a+b)x+ab 计算:(x+a)(x-a)= x2+(a-a)x-a2=x2-a2
11.2 乘法公式(第1课时 平方差公式)(课件)-七年级数学上册(沪教版2024)

图①,阴影部分的面积是 a2- b2
;比较图①,图②阴影部分的面积,可以
得到乘法公式 ( a + b )( a - b )= a2- b2
课堂小结
5 −3 − 2 3 − 2
6 − 2 + 2 + 2 − 2 +
=(-2x-3 )(-2x+3)
=x²-(2y)²+(2x)²-y²
=(-2x)²-3²
= x²-4y ²+4x²-y²
=4x²-9
=5x²-5 y²
分层练习-基础
1. 下列各式能用平方差公式计算的是( B
= 42 − 92 .
课本例题
例2
计算:
(1) − + 1 − − 1 ;
解(1)( − + 1 − − 1
= − 2 − 12
= 2 − 1.
2 2 − 3 −2 − 3
2 2 − 3 −2 − 3
= −3 + 2 −3 − 2
=
( − 3)
2
− ( 2)
1. 计算:
(1) 2 + 5 2 − 5 ;
解: 1 2 + 5 2 − 5
= 2 ²- 5²
=4²-25
1 2 1
+
2
3
3
3
1 2 1
+
2
3
1
2
1 4
1
−
4
9
1 2 1
−
;
2
3
1 2 1
−
2
3
1
3
= ( 2 )²−( )²
=
2 1 − 2 1 + 2
;比较图①,图②阴影部分的面积,可以
得到乘法公式 ( a + b )( a - b )= a2- b2
课堂小结
5 −3 − 2 3 − 2
6 − 2 + 2 + 2 − 2 +
=(-2x-3 )(-2x+3)
=x²-(2y)²+(2x)²-y²
=(-2x)²-3²
= x²-4y ²+4x²-y²
=4x²-9
=5x²-5 y²
分层练习-基础
1. 下列各式能用平方差公式计算的是( B
= 42 − 92 .
课本例题
例2
计算:
(1) − + 1 − − 1 ;
解(1)( − + 1 − − 1
= − 2 − 12
= 2 − 1.
2 2 − 3 −2 − 3
2 2 − 3 −2 − 3
= −3 + 2 −3 − 2
=
( − 3)
2
− ( 2)
1. 计算:
(1) 2 + 5 2 − 5 ;
解: 1 2 + 5 2 − 5
= 2 ²- 5²
=4²-25
1 2 1
+
2
3
3
3
1 2 1
+
2
3
1
2
1 4
1
−
4
9
1 2 1
−
;
2
3
1 2 1
−
2
3
1
3
= ( 2 )²−( )²
=
2 1 − 2 1 + 2
2.平方差公式PPT课件

(4)(5a+b)(5a-b)= 25a2-b2 (5)(n+3m)(n-3m)= n2-9m2
(6)(x+2y)(x-2y)= x2-4y2
计算下列各题
视察 & 发现
(1)(a+5)(a-5)= a2-25 视察以上算式及其运
算结果,你发现了什
(2)(m+3) (m-3)= m2-9 么规律?
(3)(3x+7)(3x-7)= 9x2-49
平方差公式
平方差公式的几何背景:
第一回忆我们曾经用 几何的意义即图形面积来解释整式乘法
运算法则,如:a(b+c)=ab+ac;
平方差公式
平方差公式的几何背景:
请同学们思考如何用几何图形的 面积来解释(a +b)(a-b)呢? 1、当a>b>0时,我们可能看成是以长为(a+b) , 宽为(a-b)的长方形的面积。
平方差公式
回顾 & 思考☞
多项式乘法 法则是:
用一个多项式的每一项 乘另一个多项式的每一项 再把所得的积相加。
(m+a)(n+b)= mn+mb+an+ab
如果m=n,且都用 x 表示,那么上式就成为:
(x+a)(x+b) = x2+(a+b)x+ab
这是上一节学习的 一种特殊多项式的乘法——
两个相同字母的 二项式的ห้องสมุดไป่ตู้积 .
如果 (x+a)(x+b)中的a、b再有某种特殊关系, 又将得到什么特殊结果呢? 这就是从本课起要学习的内容.
计算下列各题
视察 & 发现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*左边是两个多项式相乘,这两个二项式中有 一项相同,另一项为相反数。
*右边是相同项与相反项的平方差。 *公式中的字母可以表示具体的数,也可以
表示单项式或多项式。
2021
6
快乐学习1:
运用平方差公式计算
2021
7
快乐学习2:
辨一辨: 辨别下列两个多项式相乘,那些可以使 用平方差公式?
(1)(2m-3n)(3m-2n) (2)(2m-3n)(3n-2m) (3)(3p-2q)(3p+2q) (4)(-4a-1)(4a-1)
11
谢 谢!
2021
12
2021
3
(a+b)(a-b)=a2-b2
两个数的和与这两个数 的差的积等于这两个数的平 方差。
2021
4
a
a
b
a2
a
b2
b
剩下的面积=a2-b2
长方形的面积=(a+b)(a-b)
2021
5
那平方差公式具有什么样的特征? 公式的左边两个多项式中各项符号有什么特点? 右边各项符号与左边的各项符号有什么关系?
2021
8
同桌间每人利用平方差公式出两道题, 然后交换解答,找出对方做错的地方,并
通过互助共同解决问题。
2021
9
思维拓展
1001×999
492-482
2021
10
1. 本节课你学会了什么?它有什 么作用?
2.利用公式计算需要注意什么? 你还有什么疑惑吗?
3.你对自己的表现满意吗?方差公式
2021
1
《乘法公式──平方差公式》
回顾多项式乘多项式
2021
2
观察下列多项式,并进行计算,你 能发现什么规律?
(x+1)(x-1) =x2-x+x-1 =x2-1 (m+2)(m-2) =m2-2m+2m-22 =m2-22 =m2-4
(2x+1)(2x-1) =(2x) 2-2x+2x-1 =(2x) 2-1 =4x 2-1
*右边是相同项与相反项的平方差。 *公式中的字母可以表示具体的数,也可以
表示单项式或多项式。
2021
6
快乐学习1:
运用平方差公式计算
2021
7
快乐学习2:
辨一辨: 辨别下列两个多项式相乘,那些可以使 用平方差公式?
(1)(2m-3n)(3m-2n) (2)(2m-3n)(3n-2m) (3)(3p-2q)(3p+2q) (4)(-4a-1)(4a-1)
11
谢 谢!
2021
12
2021
3
(a+b)(a-b)=a2-b2
两个数的和与这两个数 的差的积等于这两个数的平 方差。
2021
4
a
a
b
a2
a
b2
b
剩下的面积=a2-b2
长方形的面积=(a+b)(a-b)
2021
5
那平方差公式具有什么样的特征? 公式的左边两个多项式中各项符号有什么特点? 右边各项符号与左边的各项符号有什么关系?
2021
8
同桌间每人利用平方差公式出两道题, 然后交换解答,找出对方做错的地方,并
通过互助共同解决问题。
2021
9
思维拓展
1001×999
492-482
2021
10
1. 本节课你学会了什么?它有什 么作用?
2.利用公式计算需要注意什么? 你还有什么疑惑吗?
3.你对自己的表现满意吗?方差公式
2021
1
《乘法公式──平方差公式》
回顾多项式乘多项式
2021
2
观察下列多项式,并进行计算,你 能发现什么规律?
(x+1)(x-1) =x2-x+x-1 =x2-1 (m+2)(m-2) =m2-2m+2m-22 =m2-22 =m2-4
(2x+1)(2x-1) =(2x) 2-2x+2x-1 =(2x) 2-1 =4x 2-1