第一课图论课件着色的计数与色多项式

合集下载

图论课件第七章图的着色

图论课件第七章图的着色
顶点着色:给每个顶点分配一个 颜色,使得相邻顶点不同色
全着色:给每个顶点和每条边都 分配一个颜色,使得相邻顶点、 边都不同色
ቤተ መጻሕፍቲ ባይዱ
添加标题
添加标题
添加标题
添加标题
边着色:给每条边分配一个颜色, 使得相邻边不同色
部分着色:只给部分顶点和边分 配颜色,部分顶点和边不参与着 色
图的着色应用
图的着色概述
图的着色应用
旅行商问题
定义:旅行商问题是一个经典的组合优化问题,指的是给定一组城市和每 对城市之间的距离,要求找到访问每个城市一次并返回到原点的最短路径。
应用场景:旅行商问题在许多领域都有应用,如物流、运输、电路设计等。
图的着色在旅行商问题中的应用:通过给城市着色,可以将问题转化为图 的着色问题,从而利用图的着色算法来求解旅行商问题。
图的着色的应用案
06

地图着色问题
定义:地图着色问题是一个经典的组合优化问题,旨在为地图上的 国家或地区着色,使得相邻的国家或地区没有相同的颜色。
背景:地图着色问题在计算机科学、数学和地理学等领域都有广泛 的应用。
应用案例:地图着色问题可以应用于许多实际场景,如地图制作、 交通规划、网络设计等。
图的着色在排课问题中的应用:通过将排课问题转化为图的着色问题,可以运用图的着色算 法进行求解,从而得到最优的排课方案
图的着色算法在排课问题中的优势:通过将排课问题转化为图的着色问题,可以运用图的 着色算法进行求解,从而得到最优的排课方案,避免了传统排课方法的繁琐和主观性
图的着色在排课问题中的实际应用案例:以某高校为例,通过运用图的着色算法进行排课, 成功解决了该校的排课问题,提高了排课效率和教学质量
贪心策略:在图的着色问题中,贪心策略是选择与当前未着色顶点相邻的未使用颜色进行着色。

图论(王树禾编著)PPT模板

图论(王树禾编著)PPT模板

2
0
2
0
感谢聆听
长算法
03
3.3极大平 面图
06
习题
04
第四章匹配理论及其应用
第四章匹配理论及 其应用
4.1匹配与许配 4.2匹配定理 4.3匹配的应用 4.4图的因子分解 习题
05
第五章着色理论
第五章着色理 论
5.1图的边 着色
5.6Rams
01
5.2图的顶
e y 数 06
着色
02
05
5.5独立

04
5.4颜色多 项式
10.1图的线性空间 10.2图矩阵 习题
11
第十一章图论中的NPC问题
第十一章图论中的 NPC问题
11.1问题、实例和算法的时间复杂 度 11.2Turing机和NPC 11.3满足问题和Cook定理 11.4图论中的一些NPC问题 习题
12习题解答与ຫໍສະໝຸດ 示习题解答与提示13
参考文献
参考文献
04
2.4求最优 树的算法
02
2.2生成树 的个数
05
2.5有序二 元树
03
2.3求生成 树的算法
06
2.6n顶有序 编码二元树
的数目
第二章树
*2.7最佳追捕问题 习题
03
第三章平面图
第三章平面图
01
3.1平面图 及其平面嵌

04
3.4平面图 的充要条件
02
3.2平面图 Euler公式
05
*3.5平面嵌 入的灌木生
08
第八章最大流的算法
第八章最大流的算 法
8.12F算法 *8.2Dinic分层算法 8.3有上下界网络最大流的算法 8.4有供需要求的网络流算法 习题

chap12 图的着色

chap12 图的着色
v∈V(G) v∈V(G)
若没有优于的k边着色,则称是最优k边着色。 注意这里没有要求是图G的正常k边着色 显然C(v) ≤ dG(v)。对任意v∈V(G),都有C(v) = dG(v)成立,当且仅当是正常k边着色。
2016/12/5 离散数学 21
定义12.2.3的例:
如下图G的两个2边着色:
2016/12/5 离散数学Fra bibliotek4独立集都是同色顶点
定理12.1.1 对任何p阶图G , 有 p /(G) (G) p – (G)+1, 其中,(G)是G的最大独立集元素个数。 证明:设S是G的一个最大独立集,|S|=(G)=, V(G)–S={v1,v2,…,vp-}。定义点着色为:u∈S, (u)=1;vi∈V(G)–S, (vi)=i+1。则是G的一个 正常(p–+1)着色,于是,(G) p–(G)+1。 设(G) =k,则存在划分V(G)=V1∪∪ Vk使 得Vi中的点均着第 i 种色,于是Vi是G的独立集, 从而|Vi| (G), i=1, , k。故p=| V1 |+ +| Vk | k (G) = (G) (G),即 p /(G) (G)。
2016/12/5 离散数学 8
临界点的度不小于色数减一
性质2:若顶点v是图G的临界点,则有 d(v)<(G)–1 d(v)≥(G)–1。 v 证明;由性质1,G–v有正常((G)–1)着 色。 … 若d(v)<(G)–1,则在的(G)–1种 颜色中至少有一种颜色i,使得任何与v … 邻接的顶点u,(u) ≠i 。于是,可以在G 中将v着颜色i,其余顶点的着色与相同, (G)–1 这样就得到了G的一个正常((G)–1)着色, 此与 (G)的定义相矛盾。故d(v)≥(G)–1。 性质2之逆不真。

图论 图的着色

图论 图的着色

X(G(V1,V2))=
X(G)=2 G为二部图
Th5.1:如果图G的顶点次数≤ρ,则G是ρ+1可着色的。
Th5.2:如果G是一个简单连通的非完全图,如果它的最大顶点次 数为ρ(ρ≥3),则称G为ρ可着色的。
下面的讨论的图为平面图:
Th5.3:每个平面图都是6可着色的。 Th5.4:每个平面图都是5可着色的。 Th5.5:每个平面图都是4可着色的。
ρ ≤ X’(G)≤ ρ+1
对任意图判断X’(G)= ρ 或X’(G)= ρ+1没有解决,但对于一些特殊图, 答案是清楚的。
对于n个点圈图: 2 or 3
.13:对于n(n>1)的完全图,
X’(kn)=n (n为奇数)X’(kn)=n-1(n为偶数) Th5.15:如G为具有最大顶点次数ρ的二部图,则X’(G)= ρ。
Corollary 5.9:地图4色定理 平面图的4色定理。 Th5.10:设G为一张每个顶点都是3次的地图,则 G为3可面着色G的每个面皆被偶数条边所围 Th5.11:如果每个3正规的地图是4可面着色的,则4色定理成立。
5.3 边的着色
G是k可边着色的:如果图G的所有的边皆可用k种颜色着色,使得 任何两条相邻的边均具有不同的颜色,则称G是k边着色的。 k为G的边色数:如果G为k可边着色的,但不是k-1可边着色的,则 称k为G的边色数,记为:X’(G)。 Th5.12:如果G为简单图且它的最大顶点次数为ρ
第五章 图的着色
5.1 色数 5.2 地图的着色 5.3 边的着色
5.1 色数
G为k可着色的:设G是一个无自环图,如果对它的每个顶点可以用 k种颜色之一着色,使得没有两个相邻的顶点有相同的颜色,则称G 是k可着色的。

《图论》图的着色(课堂PPT)

《图论》图的着色(课堂PPT)
PK3(3) = 6
19
6.2 色数多项式
a
a
a
b
cb
cb
c
a
a
a
b
cb
cb
c
PK3(3)=6
20
6.2 色数多项式
➢ 若干特殊图的 PG(k) 1) 零图: G=(V, E) ,n=|V|,|E|=0,PG(k)=kn 2) 树:根节点在 k 种颜色中任取,非根节点选取 与其父亲节点不同的颜色。 PG(k)=k(k-1)n-1 3) 完全图: PG(k)=k(k-1)(k-2)…(k-n+1) 4) 非连通图:设图G由不连通的G1和G2构成,则 由乘法原理:PG(k)=PG1(k)PG2(k)
6
6.1 色数
[临界图] G=(V, E),若对G的任一真子图H均有
(H)<(G),则称G为一个临界图。
➢ k 色临界图称为 k-临界图。
[性质]
① 任何 k 色图通过对边的反复删减测试最后可以得
到其 k-临界子图。
② 临界图是连通图。
证:设G1、G2为临界图G的两个连通分支,则
(G)=max{(G1), (G2)}。不妨设 (G)=(G1),而
① 在图G中任取一边 e; ② 在图G中去掉 e,得新图G1;
在图G中收缩 e 的两端点,得新图G2,由上述有 PG(k) = PG1(k) - PG2(k)
③ 继续分解G1和G2,直到最后全部为零图。 ④ 利用 n 阶零图的 P(k)=kn 构造图G的色数多项式。
① 若 n=2,则G为 K2,PG(k)=k(k1)=k2k。
② 若 n>2,则G除一个 K2 外其它为孤立点:
PG(k)=k(k1)kn-2=knkn-1。

图论讲义第6章-图的着色问题

图论讲义第6章-图的着色问题

| c1 (ν ) | = 1 ,其中 ci (υ ) 表示 υ 阶第 i 类图的集合。这 v →∞ | c (ν ) ∪ c (ν ) | 1 2
vk
… v3 v2
i4 i3 i2
u
… H2
ik i0

im ik
i1
vm
v1
v
但是,因 vk 在 H 1 中的度为 2(恰与一条 i0 色边和一条 ik 色边相关联) ,故它在 H 2 中的 。这与 H 2 是奇圈矛盾。 (注意 vk 必在分支 H 2 中,因它与 度为 1(仅与一条 i0 色边相关联) 。由此可知反证法假设不能成立。证毕。 vk-1 有 i0、ik 交错路( H 1 的一段)相连) 对于有重边的图 G,设 μ (G ) 表示 G 中边的最大重数,Vizing 实际上证明了一个更一般 的结论: Δ (G ) ≤
(其中 v0 点的关联边有可能是同一种色) 。按这 样可得 G*的一个边 2-染色 c = ( E1 , E 2 ) , 种办法给 G*的边染色后,去掉 v0 及其关联的边,便得到 G 的一个边 2-染色。对于 G 中偶 度点,它关联的边及其颜色与 G*中相同;对 G 的任何奇度点 v,在 G 中比在 G*中少关联一 条边,但只要 d G ( v ) > 1 , 便有 d G ( v ) ≥ 3 , 故由染色的方法知,与 v 点关联的边中两种颜色 的都有。这说明 G 的边 2-染色 c = ( E1 ∩ E (G ), E 2 ∩ E (G )) 即为所求的边 2-染色。证毕。
… H1 vk-1
ikik i0
( Δ + 1) 边染色。由引理 6.1.2, G[ Ei′0 ∪ Ei′k ] 中含有 u 的那个分支 H 1 是个奇圈。

图论课件第七章图的着色

总结词
平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。

图论课件--与色数有关的几类图和完美图


证明:只需证明:m=3n-6即可。
一方面:G是可平面图,有:m≦3n-6;
另一方面:设G是唯一4可着色的可平面图,п是一种4 着色方案,色组记为Vi(1≦i≦4).
因为i≠j时,G[Vi∪Vj] 是连通的,所以:
m(G[Vi Vj ]) ni n j 1
4
于是: m(G) (ni n j 1) 3n 6 i1 j i
例如,在下图G中,由黄色、红色色组导出的子图是 连通的。
v1
v2
v5
v3
v4
G
15
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
定理3 (夏特朗)每个唯一n (n≥2)可着色图是(n-1)连通的。
证明:设G是唯一n可着色图(n≥2)。
情形1,如果G是完全图,则G=Kn,显然G是n-1连通的。
所以,m=3n-6,即G是极大可平面图。
18
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
3、不含三角形的k色图
定义3 若图G的点色数是k,且G中不含有三角形,称G 是一个不含三角形的k色图。
例如:
不含三角形的三色图
不含三角形的4色图
19
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
以,k(G)≦Δ(G);
情形2, H是完全图Hk
在这种情况下,由于G是连通的非完全图,那么在H 之外,必然有边和H相连,即Δ≥K(H)=k(G);

数学建模之着色


x1
x2
x3
x4
红线:第1节 兰线:第2节 绿线:第3节 黑线:第4节
y1
y2
y3
y4
y5
安排4个节课, 11 11 [ ] 2, { } 3. 4 4
可安排4个教室4个节课的课表。
x1
x2
x3
x4
红线:第1节 兰线:第2节 绿线:第3节 黑线:第4节 5 6
y1
y2
y3
y4
y5
1 x1 x2 x3 x4 y1 y2 y3 y4
着色理论
1.图的边着色 定义:将简单图的边集E划分成m个非空子集,即
E (G) Ei
i 1
m
, Ei E j
, i j, Ei ,
i, j 1,2,, m. 将Ei中的边用第i种颜色上色,则
称对G的边进行了一个m边着色,记成 C=(E1,E2, …,Em).若每个Ei(i=1,2, …,3)皆是G的一个 匹配,则称C是G的m边正常着色。当G可以m边正 常着色而不能m-1边正常着色,称m为G的边色数,
假设n=2k时问题有解。
证明n=2(k+1)时成立.
若与顶点v关联的某边染有颜色i,则称颜色i在顶 点v上表现。 引理1 设G不是奇圈的连通图,则G存在一个二边 着色,使两种颜色在每个度数不小于2的顶点上表 现。 证明 假设G是非平凡图。
G是Euler图时。若G是偶圈,则G的正常2 边着色具有所要求的性质。否则,G必有一 个度数至少为4的点v0. 设v0e1v1e2…env0是G的 Euler环游,并且设
E1={ei∣i是奇数}, E2={ei∣i是偶数}
则G的二边着色(E1,E2)具有所要求的性质,因为G 的每个顶点都是v0e1v1e2…env0的内点。

图论图着色

源自v2v1v0
v4
v5
(b)去掉v0后结点v1与v3处在 同一个连通分支中,v1 与v3有一通路,其中点的颜色红黄交替出现,它与 v0构成一回路C(同一个连通分支),也就是约当曲线, 这时结点v2处在曲线的内部而结点v5则处在线的外 部,v2与v5的任何连线必与曲线C相交,与平面图的 条件矛盾。因此约当曲线C必然将黑白集中的结点分 成两个连通分支,使v2与v5分别处于两个连通分支中 (也就是v2与v5不连通), v 于是问题回到(a),可将v2 v v (或v5)所在的分支中的黑 v 白色对换,于是与v0邻接 v v 的5个结点也只着了4种颜 色, v0就可着第5种颜色。
独立集特点 (1)图G的每一个结点构成一个独立集。 (2)极大独立集不是唯一的,它的基数不一定 是最大的,但它的元素数目已达到极限, 即不可能再加入其他结点而不破坏它的独 立性。 (3)最大独立集必然也是极大独立集而且元素 数目是最多的。 (4)任一完全图Kn的独立数I(Kn)=1 (5)偶图G只有两个极大独立集,即是它的两 个互补结点子集V1和V2
v1 e1 c1 e3 c3 v3 v0 e2 c2 v2
定理6.4 若G是偶图,则 ψ e (G ) = Δ (最大结点次数) 证:设G的两个互补结点子集为Vl和V2,若|V1|<|V2|,则 在V1中增加一些结点成为V1’使|V1’|=|V2|, 对xi∈V1’及yj∈V2,若G中无边(xi,yj),则增加一条 边(xi,yj),通过以上的增添,图G=(V,E)成为图GΔ= (V’,E1’), GΔ 是 Δ次正则偶图,( 由定理5.4的推论可知)它 有一完美匹配M1,令E2’=E1’一M1,得到图 G Δ-1= (V’,E2’),则 G Δ-1是(Δ一1)次正则偶图,它也有一 完美匹配M2, 如此继续下去可以得到M1,M2,..., MΔ 个完美匹 配,每一个完美匹配可着一种颜色,使得到G的边 着 色,即 ψ e (G ) = Δ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(2)
G2
Pk (G2) k(k 1)(k 2)(k 3) 2k(k 1)(k 2) k(k 1) k(k 1)(k2 3k 3)
7
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
例2 求N4(G), N5(G)。
G 9
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
解:通过观察枚举求Nr(G)
G
1) N4(G):
G
10
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
N4(G)=6
2) N5(G):
G
解:(1) G的补图为:
G
(2) 求出关于补图的伴随多项式系数ri (1≦i≦6)
15
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
1) r = 6
2) r = 5
r6 N6 (G) 1
G
r5 N5 (G) 5
3) r =4
16
1
0.5 n 0
0.5
00
1 0.8
0.6 0.4 x 0.2
(4) 求出G的色多项式
Pk (G) k(k 1)(k 2) 2k(k 1)(k 2)(k 3) k(k 1)(k 2)(k 3)(k 4)
k (k 1)(k 2)(k 2 5k 7)
注:在例4中,k=3时,P3(G)=6, 由此可以推出G的点 色数为3.
由色多项式递推公式得:
Pk (G) Pk (G e) Pk (G e) k n (a1 1)k n1 (a2 b2 )k n2 ... (1)n1(an1 bn2 )k
0.6 0.4 x 0.2
(3)
G3


Pk (G3) k(k 1)(k3 5k 2 10k 7)
8
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
注:递推计数法的计算复杂度是指数型的。
2、理想子图计数法
(1) 预备知识 定义1:设H是图G的生成子图。若H的每个分支均为 完全图,则称H是G的一个理想子图。用Nr(G)表示G的具 有r个分支的理想子图的个数。
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
本次课主要内容
着色的计数与色多项式 (一)、色多项式概念 (二)、色多项式的两种求法 (三)、色多项式的性质
1
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(一)、色多项式概念
求出了色多项式,可以由多项式推出点色数。但是, 求色多项式的计算量是很大的。递推方法是指数类计算 量,而理想子图法中主要计算量是找出所有理想子图, 这也不是多项式时间算法。
21
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
下面,我们对定理3作证明。
定理3 若G有t个分支H1,H2,…Ht,且Hi的伴随多项式为 h (Hi, x), i=1,2,…,t, 则:
25
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
Pk (G e) k n a1k n1 a2k n2 ... (1)n1 an1k , ai 0
同样,可设G·e的色多项式为:
Pk (G e) k n1 b1k n2 b2k n3 ... (1)n2 an2k , bi 0
例1 求出下面各图的色多项式。
G1
G2
G3
5
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(1)
G1
Pk (G1) k(k 1)(k 2) k(k 1) k3 2k 2 k
也可由推论: (k 1)Pk (K2 ) k3 2k2 k
G1
注:对递推公式的使用分析:
4
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(1) 当图G的边数较少时,使用减边递推法:
Pk (G) Pk (G e) Pk (G e)
(2) 当图G的边数较多时,使用加边递推法: Pk (G e) Pk (G) Pk (G e)
所以,我们得到:qr (G) Nr (G).....(1 r V )
(2) 色多项式求法----理想子图法
上面定理2实际上给我们提供了色多项式的求法:用k种颜 色对单图G正常着色,可以这样来计算着色方式数:色组为1 的方式数+色组为2的方式数+…+色则为n的方式数。即有如下 计数公式:
n
Pk (G) Ni (G)[k]i ,其中,[k]i k(k 1)(k 2)...(k i 1) i 1
t
h(G, x) h(Hi , x) i 1
分析:由伴随多项式定义:h(G,
x)
n
Nk
(G )x k
k 1
所以,我们只需要证明 Nk (G) 等于 t h(Hi , x) 的k
次项系数即可。
i 1
ni
设 V (G) n V (Hi ) ni h(Hi , x) aij x j , j 1, 2,..., t j 1
推论:设G是单图,e=uv是G的一条边,且d(u)=1,则:
Pk (G) (k-1)Pk (G u)
证明:因为G是单图,e=uv, d(u)=1,所以G·e = G-u。 另一方面,Pk(G-e)=kPk(G-u) 所以, Pk (G) Pk (G e) Pk (G e)
kPk (G u) Pk (G u) (k-1)Pk (G u)
2
H2
3
G
解: (1) 画出G的补图 (2) 求出补图中个分支的伴随多项式
h(H1, x) x h(H2 , x) x x2 h(H3 , x) x x2
(3) 求出补图的伴随多项式
h(G, x) x(x x2 )2 x3 2x4 x5
20
1
0.5 n 0
0.5
1 2 1.5 t1
22
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
t
ni n j 1
一方面:
t
h(Hi , x)
i 1
t ni
aij x j
i1 j 1
该多项式中 xk 的系数rk为:
rk
a a 1i1 2i2
atit
i1 i2 it k
另一方面:设Mj是Hj中具有ij个分支的Hj的理想子图。 当i1+i2+…+it=k时,M1∪ M2 ∪… ∪Mt必是G的具有k个 分支的理想子图。
Nk (G)
Ni1 (H1)Ni2 (H2 ) Nit (Ht )
i1 i2 it k
a a 1i1 2i2
atit
i1 i2 it k
所以得:
h(G,
x)
t
h(Hi
,
x)
i 1
24
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(三)、色多项式的性质
r
因为Vi∩Vj=Φ(i≠j),所以
G[Vi ] 是
i 1
G 的理想子图。
这说明:G的任一r色划分必然对应 G 的一个理想子图。 容易知道,这种对应是唯一的;
12
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
另一方面,对于 G 的任一具有r个分支的理想子图, 显然它唯一对应G中一个r色组。
G
N5(G)=5
11
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
定理2 设qr(G)表示将单图G的顶点集合V划分为r个不 同色组的色划分个数,则:
qr (G) Nr (G).....(1 r V )
证明:一方面,设G的任一r色划分为:{V1,V2,…,Vr}。 于是,对于1≦i≦r, GVi 是 G 的完全子图。
(2) 若G为空图,则Pk(G)=kn。 (3) Pk(Kn)=k(k-1)…(k-n+1)。
2
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(二)、色多项式的两种求法
1、递推计数法
定理1 设G为简单图,则对任意 e E(G) 有: Pk (G) Pk (G e) Pk (G e)
相关文档
最新文档