《电磁场与电磁波》第4版(谢处方 编)课后习题答案 高等教育出版社六章习题解答
《电磁场与电磁波》(第四版)课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。
和向量错误!未找到引用源。
垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
电磁场与电磁波第4版(谢处方编)课后习题答案高等

由此可知,导线的线度小于波长,故可将该长直导线视为电偶极子天线,其辐射电阻
对于环形导线可视为磁偶极子天线,其辐射电阻
式中a为圆环的半径,由 于是 代入上式,得
由以上的计算结果可知,环形天线的辐射电阻远远小于长直天线的辐射电阻,即环形天线的辐射能力远远小于长直天线的辐射能力。
9.11为了在垂直于赫兹偶极子轴线的方向上,距离偶极子100km处得到电场强度的有效值大于 ,赫兹偶极子必须至少辐射多大功率?
天线0和天线1在P点产生的总的辐射场为
其摸为
式中
即为二元天线阵的阵因子
9.6两个半波天线平行放置,相距 ,它们的电流振幅相等,同相激励。试用方向图乘法草绘出三个主平面的方向图。
:解:由上题结论可知,二元阵的方向性函数为
其中 为单元天线的方向性函数, 为阵因子,对于半波天线,
(其方向图由题9.3给出)
九章习题解答
9.1设元天线的轴线沿东西方向放置,在远方有一移动接收台停在正南方而收到最大电场强度,当电台沿以元天线为中心的圆周在地面移动时,电场强度渐渐减小,问当电场强度减小到最大值的 时,电台的位置偏离正南多少度?
解:元天线(电基本振子)的辐射场为
可见其方向性函数为 ,当接收台停在正南方向(即 )时,得到最大电场强度。由
为相距 的天线阵I和天线阵II构成的阵列天线的方向性函数
在垂直于半波天线轴线的平面内( ) 的方向图如题9.9(2)图所示。由方向图相乘原理可得该四元阵在 平面内的辐射方向图如题9.9(2)图所示。
题9.9(2)图
9.10求波源频率 ,线长 的导线的辐射电阻:
(1)设导线是长直的;
(2)设导线弯成环形形状。
阵因子(由上题结论)
当两天线相距 ,其上的电流振幅相等,同相激励时有 代入上式,得
电磁场和电磁波第四版课后思考题答案及解析第四版全谢处方饶克谨高等教育出版社

2.1点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。
当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。
就可将带电体所带电荷看成集中在带电体的中心上。
即将带电体抽离为一个几何点模型,称为点电荷。
2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。
2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢?点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。
2.4简述 和 所表征的静电场特性表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。
表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。
高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无布的电场强度。
2.6简述 和 所表征的静电场特性。
表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。
安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即 2.8简述电场与电介质相互作用后发生的现象。
在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场2.9极化强度的如何定义的?极化电荷密度与极化强度又什么关系? 单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度 2.10电位移矢量是如何定义的?在国际单位制中它的单位是什么 电位移矢量定义为 其单位是库伦/平方米 (C/m 2) 2.11 简述磁场与磁介质相互作用的物理现象? ερ/=•∇E 0=⨯∇E ερ/=•∇E 0=⨯∇E VS 0 0=⋅∇BJ B 0μ=⨯∇0=⋅∇B J B0μ=⨯∇0μC P•∇=-p ρnsp e •=P ρE P EDεε=+=0在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质中的磁感应强度B 可看做真空中传导电流产生的磁感应强度B 0 和磁化电流产生的磁感应强度B ’ 的叠加,即 2.12 磁化强度是如何定义的?磁化电流密度与磁化强度又什么关系? 单位体积内分子磁矩的矢量和称为磁化强度;磁化电流体密度与磁化强度: 磁化电流面密度与磁化强度: 2.13 磁场强度是如何定义的?在国际单位制中它的单位是什么?2,14 你理解均匀媒质与非均匀媒质,线性媒质与非线性媒质,各向同性与各向异性媒质的含义么? 均匀媒质是指介电常数 或磁介质磁导率 处处相等,不是空间坐标的函数。
电磁场与电磁波(第四版)谢处方_课后答案

第一章习题解答
给定三个矢量 A 、 B 和 C 如下: A ex ey 2 ez 3
B ey 4 ez
C ex5 ez 2 求:(1) aA ;(2) A B ;(3) A B ;(4)AB ;(5) A 在 B 上的分量;(6) AC ;
(7) A (B C) 和 (A B) C ;(8) (A B)C 和 A(B C) 。
(4)由
cosAB
AB AB
11 14 17
11 ,得 238
AB cos1 (
11 ) 135.5 238
(5) A 在 B 上的分量
AB
A
cosAB
A B B
11 17
ex (6) AC 1
5
ey ez 2 3 ex 4 ey13 ez10 0 2
ex ey ez (7)由于 BC 0 4 1 ex8 ey 5 ez 20
解 A 与 B 之间的夹角为
AB
cos1(
A A
B B
)
cos1(
31 ) 131 29 77
A 在 B 上的分量为
B 31
AB A B
3.532 77
给定两矢量 A ex 2 ey 3 ez 4 和 B ex 6 ey 4 ez ,求 A B 在 C ex ey ez 上的分量。
解 (1)在直角坐标中点 (3, 4, 5) 处, r2 (3)2 42 (5)2 50 ,故
E
er
25 r2
1 2
Ex
ex
E
E
cosrx
1 3 2 52
3 2 20
(2)在直角坐标中点 (3, 4, 5) 处, r ex 3 ey 4 ez 5 ,所以
谢处方《电磁场与电磁波》(第4版)章节习题-第6章 均匀平面波的反射与透射【圣才出品】

第6章 均匀平面波的反射与透射一、判断题电磁波垂直入射至两种媒质分界面时,反射系数与透射系数之间的关系为ρτ1+=。
( )ρτ【答案】√二、填空题电磁波从理想介质1垂直向理想介质2入射,介质1和2的本征阻抗分别为30Ω和70Ω,则分界面处的反射系数Γ和透射系数τ分别是_______,_______。
【答案】0.4;1.4三、简答题1.简述平面电磁波在媒质分界面处的反射现象和折射现象满足的斯耐尔(Snell )定律;并具体说明什么条件下发生全反射现象,什么是临界角,给出临界角的计算公式。
答:(1)斯耐尔(Snell )定律:①反射线和折射线都在入射面内;②反射角等于入射角,即;r i θθ=③折射角的正弦值与入射角的正弦值之比等于入射波所在的媒质的折射率与折射波所在媒质的折射率之比,即,式中sin sin ii n n ττθθ=n =(2)全反射现象:①理想导体全反射。
在电磁波入射到理想导体表面时,由理想导体表面切向电场为零的条件,反射系数为±1,称为理想导体全反射现象;②理想介质全反射。
当电磁波由光密介质入射到光疏介质时,由于,根据斯耐12n n >尔定律有。
当入射角增加到某一个角度时,折射角就可能等于。
因此,i τθθ>i θπ2c θ<τθπ2在时,就没有向介质2内传播的电磁波存在,即发生全反射现象。
c θθ>能使的入射角称为临界角,有:π2τθ=c θ21sin c n n θ==2.什么是电磁波在媒质分界面的全反射现象和全折射现象?什么是临界角和布儒斯特角?一个任意极化波由空气斜入射到一介质界面,以什么角度入射才能使反射波为线极化波?说明原因。
答:(1)当电磁波由光密介质入射到光疏介质时,由于,根据斯耐尔定律有12n n >。
当入射角增加到某一个角度时,折射角就可能等于。
因此,在i τθθ>i θπ2C θ<τθπ2时,就没有向介质2内传播的电磁波存在,即发生全反射现象。
电磁场与电磁波课后练习及答案(谢处方第四版)

一章习题解答1.1给定三个矢量、和如下:求:(1);(2);(3);(4);(5)在上的分量;(6);(7)和;(8)和。
解(1) (2)(3)-11 (4)由,得 (5)在上的分量(6) (7)由于所以(8)A B C 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e A a -A B A B AB θA B ⨯A C ()⨯A B C ()⨯A B C ()⨯⨯A B C ()⨯⨯A B C 23A x y z +-===+-e e e A a e e e A -=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e =A B (23)x y z +-e e e (4)y z -+=e ecos AB θ===A B A B 1cos AB θ-=(135.5= A B B A =A cos AB θ==A B B ⨯=A C 123502xy z-=-e e e 41310x y z ---e e e ⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e ()⨯=A B C(23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e ()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e1.2三角形的三个顶点为、和。
(1)判断是否为一直角三角形; (2)求三角形的面积。
解(1)三个顶点、和的位置矢量分别为,,则,,由此可见故为一直角三角形。
(2)三角形的面积 1.3求点到点的距离矢量及的方向。
解,, 则 且与、、轴的夹角分别为1.4给定两矢量和,求它们之间的夹角和在上的分量。
最新电磁场与电磁波第四版课后思考题答案第四版全 谢处方饶克谨 高等教育出版社资料
2.1点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。
当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。
就可将带电体所带电荷看成集中在带电体的中心上。
即将带电体抽离为一个几何点模型,称为点电荷。
2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。
2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢?点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。
2.4简述和 所表征的静电场特性 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。
表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。
高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无关,即 在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。
2.6简述 和 所表征的静电场特性。
表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。
安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
2.8简述电场与电介质相互作用后发生的现象。
在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场2.9极化强度的如何定义的?极化电荷密度与极化强度又什么关系? 单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度 2.10电位移矢量是如何定义的?在国际单位制中它的单位是什么 电位移矢量定义为 其单位是库伦/平方米 (C/m 2) 2.11 简述磁场与磁介质相互作用的物理现象? ερ/=∙∇E 0=⨯∇E ερ/=∙∇E0=⨯∇E ⎰⎰=⋅VS dVS d E ρε01 0=⋅∇BJ B 0μ=⨯∇0=⋅∇B J B0μ=⨯∇0μI l d B C 0μ⎰=⋅ P∙∇=-p ρnsp e ∙=P ρE P ED εε=+=0在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质中的磁感应强度B 可看做真空中传导电流产生的磁感应强度B 0 和磁化电流产生的磁感应强度B ’ 的叠加,即 2.12 磁化强度是如何定义的?磁化电流密度与磁化强度又什么关系? 单位体积内分子磁矩的矢量和称为磁化强度;磁化电流体密度与磁化强度: 磁化电流面密度与磁化强度: 2.13 磁场强度是如何定义的?在国际单位制中它的单位是什么? 磁场强度定义为: 国际单位之中,单位是安培/米(A/m) 2,14 你理解均匀媒质与非均匀媒质,线性媒质与非线性媒质,各向同性与各向异性媒质的含义么? 均匀媒质是指介电常数 或磁介质磁导率 处处相等,不是空间坐标的函数。
电磁场与电磁波(第四版)谢处方-课后答案
电磁场与电磁波(第四版)谢处方 课后答案第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 cos AB θ===A B A B ,得 1cos AB θ-=(135.5=(5)A 在B 上的分量 B A =A cos AB θ==A B B (6)⨯=A C 123502x y z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
谢处方《电磁场与电磁波》(第4版)课后习题-第6章 均匀平面波的反射与透射【圣才出品】
第6章 均匀平面波的反射与透射(一)思考题6.1 试述反射系数和透射系数的定义,它们之间存在什么关系?答:(1)反射波电场振幅E rm与入射波电场振幅E im的比值为分界上的反射系数;透射波电场振幅E tm与入射波电场振幅E im的比值为分界面上的透射系数。
(2)反射系数Γ和透射系数τ之间的关系为:6.2 什么是驻波?它与行波有何区别?答:频率和振幅均相同,振动方向一致,传播方向相反的两列波叠加后形成的波叫驻波。
行波在介质中传播时,其波等相面随时间前移,而驻波的波形不向前推进。
6.3 均匀平面波垂直入射到两种理想媒质分界面时,在什么情况下,反射系数大于0?在什么情况下,反射系数小于0?答:均匀平面波垂直入射到两种理想媒质分界时,当时,反射系数Γ>0;当时,反射系数Γ<0。
6.4 均匀平面波向理想导体表面垂直入射时,理想导体外面的合成波具有什么特点?答:均匀平面波向理想导体表面入射时,理想导体外面的合成波具有特点如下:合成波电场和磁场的驻波在时间上有的相移,在空间上也错开了且在导体边界上,电场为零。
驻波的坡印廷矢量的平均值为零,不发生电磁能量的传输过程,仅在两个波节之间进行电场能量和磁场能量的交换。
6.5 均匀平面波垂直入射到两种理想媒质分界面时,在什么情况下,分界面上的合成波电场为最大值?在什么情况下,分界面上的合成波电场为最小值?答:当均匀平面波垂直入射到两种理想媒质分界面时,的位置时,分界面上的合成波电场为最大值。
的位置时,分界面上的合成波电场为最小值。
6.6 一个右旋圆极化波垂直入射到两种媒质分界面上,其反射波是什么极化波?答:右旋圆极化。
6.7 试述驻波比的定义,它与反射系数之间有什么关系?答:驻波比的定义是合成波的电场强度的最大值与最小值之比,即6.8 什么是波阻抗?在什么情况下波阻抗等于媒质的本征阻抗?答:在空间任意点,均匀平面波的电场与磁场强度的模值之比称为自由空间的波阻抗,在均匀无耗各向同性的无界媒质中,均匀平面波的电场与磁场的模值之比称为媒质中的阻波抗。
电磁场与电磁波(第四版)课后答案谢处方
球内电荷不仅在球壳内表面上感应电荷 ,而且在球壳外表面上还要感应电荷 ,所以球壳外表面上的总电荷为2 ,故球壳外表面上的电荷面密度为
3.6两个无限长的同轴圆柱半径分别为 和 ,圆柱表面分别带有密度为 和 的面电荷。(1)计算各处的电位移 ;(2)欲使 区域内 ,则 和 应具有什么关系?
解电荷 在 处产生的电场为
电荷 在 处产生的电场为
故 处的电场为
2.6一个半圆环上均匀分布线电荷 ,求垂直于圆平面的轴线上 处的电场强度 ,设半圆环的半径也为 ,如题2.6图所示。
解半圆环上的电荷元 在轴线上 处的电场强度为
在半圆环上对上式积分,得到轴线上 处的电场强度为
2.7三根长度均为 ,均匀带电荷密度分别为 、 和 地线电荷构成等边三角形。设 ,计算三角形中心处的电场强度。
细圆环的半径为 ,圆环平面到球心的距离 ,利用电流圆环的轴线上的磁场公式,则该细圆环电流在球心处产生的磁场为
故整个球面电流在球心处产生的磁场为
2.11两个半径为 、同轴的相同线圈,各有 匝,相互隔开距离为 ,如题2.11图所示。电流 以相同的方向流过这两个线圈。
(1)求这两个线圈中心点处的磁感应强度 ;
解(1)
(2)连接点 到点 直线方程为
即
故
由此可见积分与路径无关,故是保守场。
1.20求标量函数 的梯度及 在一个指定方向的方向导数,此方向由单位矢量 定出;求 点的方向导数值。
解
故沿方向 的方向导数为
点 处沿 的方向导数值为
1.21试采用与推导直角坐标中 相似的方法推导圆柱坐标下的公式
。
解在圆柱坐标中,取小体积元如题1.21图所示。矢量场 沿 方向穿出该六面体的表面的通量为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题6.1图所示。
滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 穿过导体回路abcda 的磁通为5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰ B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。
设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为0000()()P r r r a e r a B σεεωεεω==⋅=-⋅=-P n B e则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。
设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。
解 由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。
故回路中的感应电动势为d d d d d d in dS B S B S t t⎡⎤=-⋅=-+⎣⎦⎰⎰⎰左右B E 式中00,22()i iB B r b c d r μμππ==++-左右故0000d d ln()22d d ln()2()2b cb sc d d s i ai b cB S a r r b i ai b cB S a r b c d r b μμππμμππ+++==+==++-⎰⎰⎰⎰左右则0707777d 2ln()d 2d ln()[1.0cos(210d 4100.2ln 2sin(210)2103.484sin(210)in ai b c t b a b c t b t t Vt Vμπμπππππππ-+⎡⎤=-⎢⎥⎣⎦+=-⨯⨯⨯=⨯⨯⨯=⨯E6.4 有一个环形线圈,导线的长度为l ,分别通过以直流电源供应电压U 0和时变电源供应电压U (t )。
讨论这两种情况下导线内的电场强度E 。
解 设导线材料的电导率为γ,横截面积为S ,则导线的电阻为l R S γ=而环形线圈的电感为L ,故电压方程为d d i U Ri Lt =+当U=U 0时,电流i 也为直流,d 0d i t =。
故0l lU Ri JS J lES γγ====此时导线内的切向电场为0U E l =当U=U (t )时,d ()0d i t t ≠,故 d ()d()()()(())d d d ()()d i t U t Ri t L R E t S L E t S t tl E t E t S L S S t γγγγγ=+=+=+即d ()()()d E t lE t U t t L S L S γγ+=求解此微分方程就可得到()t E 。
6.5 一圆柱形电容器,内导体半径为a ,外导体内半径为b ,长为l 。
设外加电压为0sin U t ω,试计算电容器极板间的总位移电流,证明它等于电容器的传导电流。
解 当外加电压的频率不是很高时,圆柱形电容器两极板间的电场分布与外加直流电压时的电场分布可视为相同(准静态电场),即0sin ln ()rU tr b a ω=E e故电容器两极板间的位移电流密度为0cos ln ()d r U t t r b a ωεω∂==∂DJ e则200cos d d d ln ()l d d r r sU ti r zr b a πεωωφ=⋅=⋅⎰⎰⎰J S e e002cos cos ln ()lU t C U tb a πεωωωω==式中,2ln ()lC b a πε=是长为l 的圆柱形电容器的电容。
流过电容器的传导电流为0d cos d c Ui CC U t t ωω==可见d c i i =6.6 由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。
解 点电荷q 产生的电场满足麦克斯韦方程0∇⨯=E 和ρ∇⋅=D由ρ∇⋅=D 得d d τττρτ∇⋅=⎰⎰D据散度定理,上式即为d sq⋅=⎰ D S利用球对称性,得24rqr π=D e 故得点电荷的电场表示式24rqr πε=E e由于0∇⨯=E ,可取ϕ=-∇E ,则得2εεϕεϕρ∇⨯=∇⋅=-∇⋅∇=-∇=D E即得泊松方程2ρϕε∇=-6.7 试将麦克斯方程的微分形式写成八个标量方程:(1)在直角坐标中;(2)在圆柱坐标中;(3)在球坐标中。
解 (1)在直角坐标中yx z x y x z y y x z z H D H J y z t D H H J z x t H H D J x y t ∂⎫∂∂-=+⎪∂∂∂⎪⎪∂∂∂⎪-=+⎬∂∂∂⎪∂⎪∂∂-=+⎪∂∂∂⎪⎭yx z y x z y x z E H E y z t H E E z x t E E H x y t μμμ∂⎫∂∂-=-⎪∂∂∂⎪⎪∂∂∂⎪-=-⎬∂∂∂⎪∂⎪∂∂-=-⎪∂∂∂⎪⎭ 0y x zy x zB B B x y z D D D x y z ρ∂∂∂++=∂∂∂∂∂∂++=∂∂∂(2)在圆柱坐标中111()z r r r z rz z H H D J r z t D H H J z r t H D rH J r r r t φφφφφφ∂⎫∂∂-=+⎪∂∂∂⎪⎪∂∂∂⎪-=+⎬∂∂∂⎪∂∂∂⎪-=+⎪∂∂∂⎪⎭ 111()z r r z rz E E H r z t H E E z r t E H rE r r r t φφφμφμμφ∂⎫∂∂-=-⎪∂∂∂⎪⎪∂∂∂⎪-=-⎬∂∂∂⎪∂∂∂⎪-=-⎪∂∂∂⎪⎭ 11()011()zr zr B B rB r r r z D D rD r r r z φφφρφ∂∂∂++=∂∂∂∂∂∂++=∂∂∂(3)在球坐标系中1[(sin )]sin 11[()]sin 1[()]r r r r H D H J r tD H rH J r r t D H rH J r r t θφθφθφθφθθθφθφθ∂∂∂⎫-=+⎪∂∂∂⎪∂∂∂⎪-=+⎬∂∂∂⎪⎪∂∂∂-=+⎪∂∂∂⎭1[(sin )]sin 11[()]sin 1[()]r r r E H E r t H E rE r r t H E rE r r t θφθφφθθμθθφμθφμθ∂∂∂⎫-=-⎪∂∂∂⎪∂∂∂⎪-=-⎬∂∂∂⎪⎪∂∂∂-=-⎪∂∂∂⎭ 2222111()(sin )0sin sin 111()(sin )sin sin r r B r B B r r r r D r D D r r r r φθφθθθθθφθρθθθφ∂∂∂++=∂∂∂∂∂∂++=∂∂∂6.8 已知在空气中90.1sin10cos(610)y x t z ππβ=⨯-E e ,求H 和β。
提示:将E 代入直角坐标中的波方程,可求得β。
解 电场E 应满足波动方程220020t με∂∇-=∂EE将已知的y y E =E e 代入方程,得22200222yy y E E E x z t με∂∂∂+-=∂∂∂式中229222922929000020.1(10)sin10cos(610)0.1sin10[cos(610)]0.1sin10[(610)cos(610)]y y y E x t z xE x t z z E x t z t πππβπβπβμεμεπππβ∂=-⨯-∂∂=-⨯-∂∂=-⨯⨯-∂故得 229200(10)(610)0πβμεπ--+⨯=则54.41rad/m β==由t μ∂∇⨯=-∂H E得0090911[]1[0.1sin10sin(610)0.110cos10cos(610)]y y x z x z E E t z xx t z x t z μμβππβμπππβ∂∂∂=-∇⨯=--+∂∂∂=--⨯-+⨯⨯-H E e e e e将上式对时间t 积分,得990949491[0.1sin10cos(610]610cos10sin(610)2.310sin10cos(61054.41)1.3310cos10sin(61054.41)A/m x z x z x t z x t z x t z x t z βππβμππππβππππ--=-⨯-⨯⨯+⨯-=-⨯⨯--⨯⨯-Ηe e e e6.9 已知自由空间中球面波的电场为sin cos()E t kr r θθω=-Εe求H 和k 。
解 可以和前题一样将E 代入波动方程来确定k ,也可以直接由麦克斯韦方程求与E 相伴的磁场H 。
而此磁场又要产生与之相伴的电场,同样据麦克斯韦方程求得。
将两个电场比较,即可确定k 的值。
两种方法本质上是一样的。
由t μ∂∇⨯=-∂HE得00000011()1[sin cos()]sin sin()rE t r rE t kr rrkE t kr rφθφφμμθωμθωμ∂∂=-∇⨯=-⋅∂∂∂=--∂=-e H E e e将上式对时间t 积分,得00sin cos()kE t kr rφθωωμ=-H e (1)将式(1)代入t ε∂∇⨯=∂E H得201111[(sin )(sin )]sin sin r t r H r H r r r φθφεθθεθθθ∂=∇⨯∂∂∂=-∂∂E H e e20020002sin 1cos()sin()r kE k E t kr t kr r r θθωωεωμωμ⎡⎤=---⎢⎥⎣⎦e e将上式对时间t 积分,得20022200021sin()sin cos()r kE k E t kr t kr r r θωθωεωμωμ⎡⎤=-+-⎢⎥⎣⎦E e e (2)将已知的sin cos()E t kr r θθω=-E e与式(2)比较,可得含21r 项的E r 分量应略去,且200k ωμε=,即k =将k =1),得00sin cos()cos()t kr t kr φθωθω=-=-H e e A6.10 试推导在线性、无损耗、各向同性的非均匀媒质中用E 和B 表示麦克斯韦方程。