电磁场与电磁波答案第四版谢处方.pdf

合集下载

电磁场与电磁波谢处方课后答案

电磁场与电磁波谢处方课后答案

电磁场与电磁波(第四版)谢处方 课后答案第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯AB C ;(8)()⨯⨯AB C 和()⨯⨯A B C 。

解 (1)23A x y z+-===+e e e A a e ee A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e ee (4)y z -+=e e -11(4)由 cos AB θ=14-==⨯A B A B ,得 1cos AB θ-=(135.5=(5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502x y z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

电磁场与电磁波[第四版]课后答案谢处方第二章习题

电磁场与电磁波[第四版]课后答案谢处方第二章习题
电位
描述电场中某点电荷所具有的势 能,其值等于单位正电荷从该点 移动到参考点时所做的功。
电介质与电位移矢量
电介质
指能够被电场极化的物质,其内部存 在大量的束缚电荷。
电位移矢量
描述电场中某点的电场强度和电介质 极化效应的矢量,其值等于电场强度 和极化强度矢量的矢量和。
高斯定理与泊松方程
高斯定理
在静电场中,穿过任意闭合曲面的电 场强度通量等于该闭合曲面内所包围 的电荷量。
填空题答案及解析
答案
麦克斯韦方程组
解析
麦克斯韦方程组是描述电磁场的基本方程,其中包括了 变化的磁场产生电场和变化的电场产生磁场两个重要的 结论。因此,填空题2的答案是麦克斯韦方程组。
计算题答案及解析
答案:见解析
解析:根据电磁场理论,电场和磁场是相互依存的,变化的电场产生磁场,变化的磁场产生电场。在 计算题1中,需要利用法拉第电磁感应定律和麦克斯韦方程组进行计算和分析。具体计算过程和结果 见解析部分。
泊松方程
描述静电场中某点的电位与电荷分布 的关系,其解为该点的电位分布。
03
恒定磁场
磁场强度与磁感应强度
磁场强度
描述磁场强弱的物理量,与电流、导线的环绕方向相关。
磁感应强度
描述磁场对放入其中的导体的作用力的物理量,与磁场强度和导体在磁场中的放置方式 相关。
Hale Waihona Puke 安培环路定律与磁通连续性原理
安培环路定律
偏振是指电磁波的振动方向与传播方向之间的关系,可以分为横波和纵波两种类 型。在时变电磁场中,电磁波通常是横波,其电场矢量和磁场矢量都与传播方向 垂直。
05
习题答案及解析
选择题答案及解析
选择题1答案及解析

电磁场与电磁波(第四版)课后答案__谢处方

电磁场与电磁波(第四版)课后答案__谢处方

电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。

解 (1)23A x y z +-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分 量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)4x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

电磁场和电磁波[第四版]课后问题详解及解析汇报__谢处方,共138页

电磁场和电磁波[第四版]课后问题详解及解析汇报__谢处方,共138页

电磁场与电磁波(第四版)课后答案第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A BC 。

解 (1)23A x y z+-===e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e(3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=111238=A B AB ,得 1cos AB θ-=(135.5= (5)A 在B 上的分量 B A=A cos AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波谢处方_课后答案

电磁场与电磁波谢处方_课后答案

电磁场与电磁波(第四版)谢处方 课后答案第一章习题解答给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯AB C ;(8)()⨯⨯AB C 和()⨯⨯A B C 。

解 (1)23A x y z+-===+e e e A a ee e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e(4)y z -+=e e -11(4)由 cos AB θ=14-==⨯A B A B ,得 1cos AB θ-=(135.5=(5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502x y z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波答案(第四版)谢处方汇编

电磁场与电磁波答案(第四版)谢处方汇编

AB AB
11 14 17
1 1 ,得 238
AB c o s1 (
11 ) 135.5
238
( 5) A 在 B 上的分量
AB
A c o s AB
AB B
11 17
( 6) A C
ex ey ez 12 3 50 2
ex 4 e y13 ez10
( 7)由于 B C
ex ey ez 0 41 50 2
解 rP
ex 3 ey ez 4 , rP ex 2 ey 2 ez 3 ,
1 7. 1 3

RP P rP rP ex 5 ey 3 ez
且 RP P 与 x 、 y 、 z 轴的夹角分别为
x cos 1( ex RP P ) cos 1( 5 ) 32.31
RP P
35
y
cos 1( ey
RP P )
10 1 4 ex 2 ey 40 ez5
50 2
A (B C)
ex ey ez 12 3 8 5 20
ex 55 ey 44 ez11
更多精品文档
学习 ----- 好资料
1.2 三角形的三个顶点为 P1(0,1, 2) 、 P2(4,1, 3) 和 P3 (6, 2,5) 。 ( 1)判断 P1P2 P3 是否为一直角三角形;
25 1 E er r 2 2
Ex ex E E cos rx ( 2)在直角坐标中点 ( 3, 4, 5) 处, r
1 3 32
2 5 2 20 ex3 ey 4 ez 5 ,所以
E
25 r2
25r r3
ex 345ey ez 10 2
故 E 与 B 构成的夹角为

电磁场与电磁波答案(第四版)谢处方

电磁场与电磁波答案(第四版)谢处方
0 0
2 r
A d S = (e r
S 4 2
+ ez 2 z ) (er d Sr + e d S + ez d S z ) =
5 2
2 5 5d d z + 2 4r d r d = 1200 0 0 0 0
故有 1.13

A d = 1200 = A d S
(2)三角形的面积
S=

RPP = rP − rP = ex 5 − e y 3 − ez
且 RPP 与 x 、 y 、 z 轴的夹角分别为
1.4
ex RPP 5 ) = cos −1 ( ) = 32.31 RPP 35 e R −3 y = cos −1 ( y P P ) = cos −1 ( ) = 120.47 RPP 35 e R 1 z = cos −1 ( z PP ) = cos −1 (− ) = 99.73 RPP 35 给定两矢量 A = ex 2 + e y 3 − ez 4 和 B = ex 4 − e y 5 + ez 6 ,求它们之间的夹角和 A 在

在由 r = 5 、 z = 0 和 z = 4 围成的圆柱形区域,对矢量 A = er r 2 + ez 2 z 验证散度定
A=
4 2
1 (rr 2 ) + (2 z) = 3r + 2 r r z
5 0

S
A d = d z d (3r + 2)r d r = 1200
e + e 2 − ez 3 A 1 2 3 = x y = ex + ey − ez A 14 14 14 12 + 22 + (−3)2

《电磁场与电磁波》第4版(谢处方_编)课后习题答案_高等教育出版社

《电磁场与电磁波》第4版(谢处方_编)课后习题答案_高等教育出版社

1 1 ( ) 2 d y dz ( ) 2 d y dz 2 2 1 2 1 2 1 2 1 2
1 1 2 x 2 ( ) 2 d x dz 2 x 2 ( ) 2 d x d z 2 2 1 2 1 2 1 2 1 2 1 1 1 24 x y ( )3 d x d y 24 x 2 y 2 ( )3 d x d y 2 2 24 1 2 1 2 1 2 1 2
1 r 42 32 5 、 tan (4 3) 53.1 、 2 3 120 故该点的球坐标为 (5,53.1 ,120 ) 1.9 用球坐标表示的场 E e 25 , r r2 (1)求在直角坐标中点 (3, 4, 5) 处的 E 和 E x ;
(2) 在球坐标系中
故 PP 为一直角三角形。 1 2P 3
1 1 1 R1 2 R 2 3 R 1 2 R 2 3 1 7 6 9 17.13 2 2 2 1.3 求 P(3,1, 4) 点到 P(2, 2,3) 点的距离矢量 R 及 R 的方向。 解 rP ex 3 e y ez 4 , rP ex 2 e y 2 ez 3 ,
(2)三角形的面积
S

RPP rP rP ex 5 e y 3 ez
且 RPP 与 x 、 y 、 z 轴的夹角分别为
1.4
ex RPP 5 ) cos 1 ( ) 32.31 RPP 35 e R 3 y cos 1 ( y P P ) cos 1 ( ) 120.47 RPP 35 e R 1 z cos 1 ( z PP ) cos 1 ( ) 99.73 RPP 35 给定两矢量 A ex 2 e y 3 ez 4 和 B ex 4 e y 5 ez 6 ,求它们之间的夹角和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档