2013届高三数学二轮复习 专题一 第1讲 集合、常用逻辑用语教案
高考数学一轮复习 第1章 集合与常用逻辑用语 第1节 集合教学案 理 北师大版-北师大版高三全册数学

第1章集合与常用逻辑用语全国卷五年考情图解高考命题规律把握说明:“Ⅰ1〞指全国卷Ⅰ第1题,“Ⅱ1〞指全国卷Ⅱ第1题,“Ⅲ1〞指全国卷Ⅲ第1题. 1.考查形式本章在高考中一般考查1或2个小题,主要以选择题为主,很少以填空题的形式出现.2.考查内容从考查内容来看,集合主要有三方面考查:一是集合中元素的特性;二是集合间的关系;三是集合的运算,包含集合的交、并、补集运算;常用逻辑用语主要从四个方面考查:分别为命题及其关系、充分必要条件的判断、逻辑联结词“且〞“或〞“非〞以及全称量词与存在量词.3.备考策略(1)熟练掌握解决以下问题的方法和规律①集合的交、并、补集运算问题;②充分条件、必要条件的判断问题;③含有“且〞“或〞“非〞的命题的真假性的判断问题;④含有一个量词的命题的否定问题.(2)重视数形结合、分类讨论、转化与化归思想的应用.第一节集合[最新考纲] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表达集合间的基本关系及集合的基本运算.1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈和∉表示.(3)集合的三种表示方法:列举法、描述法、Venn图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R 2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即假设x∈A,那么x∈B)A⊆B或(B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B或B A集合相等集合A,B中的元素相同或集合A,B互为子集A=B3.集合的基本运算运算自然语言符号语言Venn图交集由属于集合A且属于集合B的所有元素组成的集合A∩B={x|x∈A且x∈B}并集由所有属于集合A或属于集合B的元素组成的集合A∪B={x|x∈A或x∈B}补集由全集U中不属于集合A的所有元素组成的集合∁U A={x|x∈U且x∉A}1.集合子集的个数对于有限集合A,其元素个数为n,那么集合A的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.2.集合的运算性质(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;∁U(A∩B)=(∁U A)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B ).一、思考辨析(正确的打“√〞,错误的打“×〞) (1)任何一个集合都至少有两个子集.( ) (2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)假设{x 2,1}={0,1},那么x =0,1.( )(4)直线y =x +3与y =-2x +6的交点组成的集合是{1,4}.( ) [答案] (1)× (2)× (3)× (4)× 二、教材改编1.假设集合A ={x ∈N |x ≤22},a =2,那么以下结论正确的选项是( ) A .{a }⊆A B .a ⊆A C .{a }∈AD .a ∉AD [由题意知A ={0,1,2},由a =2,知a ∉A .]2.集合M ={0,1,2,3,4},N ={1,3,5},那么集合M ∪N 的子集的个数为________. 64 [∵M ={0,1,2,3,4},N ={1,3,5}, ∴M ∪N ={0,1,2,3,4,5}, ∴M ∪N 的子集有26=64个.]3.U ={α|0°<α<180°},A ={x |x 是锐角},B ={x |x 是钝角},那么∁U (A ∪B )=________.[答案] {x |x 是直角}4.方程组⎩⎪⎨⎪⎧x +y =1,2x -y =1的解集为________.⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫23,13 [由⎩⎪⎨⎪⎧x +y =1,2x -y =1,得⎩⎪⎨⎪⎧x =23,y =13,故方程组的解集为⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫23,13.]5.集合A ={x |x 2-x -6<0},集合B ={x |x -1<0},那么A ∩B =________,A ∪B =________.(-2,1) (-∞,3) [∵A ={x |-2<x <3},B ={x |x -1<0}={x |x <1}, ∴A ∩B ={x |-2<x <1},A ∪B ={x |x <3}.]考点1 集合的概念与集合中的元素有关的问题的求解思路(1)确定集合的元素是什么,即集合是数集还是点集. (2)看清元素的限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数.1.(2018·全国卷Ⅱ)集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },那么A 中元素的个数为( )A .9B .8C .5D .4A [由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤ 3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为C 13C 13=9,应选A.]2.集合A ={m +2,2m 2+m },假设3∈A ,那么m 的值为________. -32 [由题意得m +2=3或2m 2+m =3, 那么m =1或m =-32.当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意; 当m =-32时,m +2=12,而2m 2+m =3,符合题意,故m =-32.]3.假设集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,那么a =________. 0或98 [当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98.]4.a ,b ∈R ,假设⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},那么a 2 020+b 2 020=________.1 [由得a ≠0,那么b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 020+b2 020=(-1)2 020+02 020=1.](1)求解此类问题时,要特别注意集合中元素的互异性,如T 2,T 4.(2)常用分类讨论的思想方法求解集合问题,如T 3.考点2 集合的基本关系判断两集合关系的方法(1)列举法:用列举法表示集合,再从元素中寻求关系.(2)化简集合法:用描述法表示的集合,假设代表元素的表达式比较复杂,往往需化简表达式,再寻求两个集合的关系.(1)(2019·某某模拟)集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },那么( )A .AB B .B AC .A ⊆BD .B =A(2)集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },那么满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(3)集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},假设B ⊆A ,那么实数m 的取值X 围为________.(1)B (2)D (3)(-∞,3] [(1)由题意知A ={x |y =1-x 2,x ∈R }, 所以A ={x |-1≤x ≤1}.所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 所以B A ,应选B.(2)因为A ={1,2},B ={1,2,3,4},A ⊆C ⊆B ,那么集合C 可以为:{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个.(3)因为B ⊆A ,所以①假设B =∅,那么2m -1<m +1,此时m <2. ②假设B ≠∅,那么⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值X 围为(-∞,3].] [母题探究]1.(变问法)本例(3)中,假设B A ,求m 的取值X 围. [解] 因为B A ,①假设B =∅,成立,此时m <2.②假设B ≠∅,那么⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,且边界点不能同时取得,解得2≤m ≤3.综合①②,m 的取值X 围为(-∞,3].2.(变问法)本例(3)中,假设A ⊆B ,求m 的取值X 围.[解] 假设A ⊆B ,那么⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3.所以m 的取值X 围为∅.3.(变条件)假设将本例(3)中的集合A 改为A ={x |x <-2或x >5},试求m 的取值X 围.[解] 因为B ⊆A ,所以①当B =∅时,2m -1<m +1,即m <2,符合题意. ②当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,解得⎩⎪⎨⎪⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12,即m >4.综上可知,实数m 的取值X 围为(-∞,2)∪(4,+∞).(1)两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.(2)空集是任何集合的子集,当题目条件中有B ⊆A 时,应分B =∅和B ≠∅两种情况讨论.1.设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,那么这样的集合M 共有( )A .6个B .5个C .4个D .3个A [由题意知,M ={1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.]2.假设集合A ={1,2},B ={x |x 2+mx +1=0,x ∈R },且B ⊆A ,那么实数m 的取值X 围为________.[-2,2) [①假设B =∅,那么Δ=m 2-4<0, 解得-2<m <2,符合题意; ②假设1∈B ,那么12+m +1=0, 解得m =-2,此时B ={1},符合题意; ③假设2∈B ,那么22+2m +1=0,解得m =-52,此时B =⎩⎨⎧⎭⎬⎫2,12,不合题意.综上所述,实数m的取值X围为[-2,2).] 考点3 集合的基本运算集合运算三步骤确定元素确定集合中的元素及其满足的条件,如函数的定义域、值域,一元二次不等式的解集等化简集合根据元素满足的条件解方程或不等式,得出元素满足的最简条件,将集合清晰地表示出来运算求解利用交集或并集的定义求解,必要时可应用数轴或Venn图来直观解决集合的运算(1)(2019·全国卷Ⅰ)集合M={x|-4<x<2},N={x|x2-x-6<0},那么M∩N=( )A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}(2)(2019·某某高考)全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},那么(∁U A)∩B=( )A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3}(3)设集合A={y|y=2x,x∈R},B={x|x2-1<0},那么A∪B等于( )A.(-1,1) B.(0,1)C.(-1,+∞)D.(0,+∞)(1)C(2)A(3)C[(1)∵N={x|x2-x-6<0}={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},应选C.(2)∵∁U A={-1,3},∴(∁U A)∩B={-1},应选A.(3)∵A={y|y>0},B={x|-1<x<1},∴A∪B=(-1,+∞),应选C.][逆向问题] A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},那么A=( )A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}D[法一:(直接法)因为A∩B={3},所以3∈A,又(∁U B)∩A={9},所以9∈A.假设5∈A,那么5∉B(否那么5∈A∩B),从而5∈∁U B,那么(∁U B)∩A={5,9},与题中条件矛盾,故5∉A.同理,1∉A,7∉A,故A={3,9}.法二:(Venn图)如下图.]集合运算的常用方法(1)假设集合中的元素是离散的,常用Venn图求解.(2)假设集合中的元素是连续的实数,那么用数轴表示,此时要注意端点的情况.利用集合的运算求参数(1)集合A={0,2,a},B={1,a2},假设A∪B={0,1,2,4,16},那么a的值为( )A.0 B.1C.2 D.4(2)集合A={x|x<a},B={x|x2-3x+2<0},假设A∩B=B,那么实数a的取值X围是( )A.a<1 B.a≤1C.a>2 D.a≥2(1)D(2)D[(1)根据并集的概念,可知{a,a2}={4,16},故只能是a=4.(2)B={x|x2-3x+2<0}={x|1<x<2},又A∩B=B,故B⊆A.又A={x|x<a},结合数轴,可知a≥2.]利用集合的运算求参数的值或取值X围的方法(1)假设集合中的元素能一一列举,那么一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.如T(1).(2)与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到,如T(2).提醒:在求出参数后,注意结果的验证(满足互异性).[教师备选例题]1.集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},那么A⊕B中元素的个数为( ) A.77 B.49C.45 D.30C[如图,集合A表示如下图的所有圆点“〞,集合B表示如下图的所有圆点“〞+所有圆点“〞,集合A⊕B显然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),那么集合A ⊕B 表示如下图的所有圆点“〞+所有圆点“〞+所有圆点“〞,共45个.故A ⊕B 中元素的个数为45.应选C.]2.设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0},假设A ∩B 中恰含有一个整数,那么实数a 的取值X 围是( )A.⎝ ⎛⎭⎪⎫0,34 B .⎣⎢⎡⎭⎪⎫34,43C.⎣⎢⎡⎭⎪⎫34,+∞ D .(1,+∞)B [A ={x |x 2+2x -3>0}={x |x >1或x <-3},设函数f (x )=x 2-2ax -1,因为函数f (x )=x 2-2ax -1图像的对称轴为直线x =a (a >0),f (0)=-1<0,根据对称性可知假设A ∩B 中恰有一个整数,那么这个整数为2,所以有⎩⎪⎨⎪⎧f 2≤0,f3>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43.应选B.] 1.(2019·全国卷Ⅱ)设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},那么A ∩B =( )A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)A [由题意得A ={x |x <2或x >3},B ={x |x <1}, ∴A ∩B ={x |x <1}.]2.(2019·某某模拟)全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |-2≤x ≤2},那么如下图阴影部分所表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤2或x ≥4}C.{x|-2≤x≤-1} D.{x|-1≤x≤2}D[依题意得A={x|x<-1或x>4},因此∁R A={x|-1≤x≤4},题中的阴影部分所表示的集合为(∁R A)∩B={x|-1≤x≤2},应选D.]3.A={1,2,3,4},B={a+1,2a}.假设A∩B={4},那么a=________.3 [因为A∩B={4},所以a+1=4或2a=4.假设a+1=4,那么a=3,此时B={4,6},符合题意;假设2a=4,那么a=2,此时B={3,4},不符合题意.综上,a=3.]。
2013届高考数学二轮复习精品教学案专题01-集合与常用逻辑用语(教师版)

【2013考纲解读】1.通过实例了解集合的含义,体会元素与集合的从属关系了解集合中元素的确定性,互异性,无序性.会用集合语言表示有关数学对象.2.掌握集合的表示方法----列举法和描述法,并能进行自然语言与集合语言的相互转换,了解有限集与无限集的概念.3.了解集合间包含关系的意义,理解子集、真子集的概念和意义,会判断简单集合的相等关系.4.理解并集、交集的概念和意义,掌握有关集合并集、交集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.掌握并集、交集的求法.5.了解全集的意义,理解补集的概念.掌握全集与补集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.6.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析种命题的相互关系;理解必要条件、充分条件与充要条件的意义.7.了解逻辑联结词“或”、“且”、“非”的含义.8.理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.【知识络构建】【重点知识整合】1.集合(1)元素的特征:确定性、互异性、无序性,元素与集合之间的关系是属于和不属于;(2)集合与集合之间的关系:集合与集合之间是包含关系和非包含关系,其中关于包含有包含和真包含,用符号⊆,表示.其中一个集合本身是其子集的子集,空集是任何非空集合的真子集;(3)集合的运算:A∩B={x|x∈A,且x∈B},A∪B={x|x∈A,或x∈B},∁U A={x|x∈U,且x∉A}.2.四种命题及其关系(1)四种命题;(2)四种命题之间的关系:四种命题是指对“若p,则q”形式的命题而言的,把这个命题作为原命题,则其逆命题是“若q,则p”,否命题是“若非p,则非q”,逆否命题是“若非q,则非p”,其中原命题和逆否命题、逆命题和否命题是等价的,而且命题之间的关系是相互的。
4.逻辑联结词(1)逻辑联结词“或”“且”“非”的含义;(2)带有逻辑联结词的命题真假:命题p∨q,只要p,q有一为真,即为真命题,换言之,只有p,q均为假命题时才为假;命题p∧q,只有p,q均为真命题时才为真,换言之,只要p,q有一为假,即为假命题;非 p 和p为一真一假两个互为对立的命题;(3)“或”命题和“且”命题的否定:命题p∨q的否定是非p∧非q;命题p∧q的否定是非p∨非q.【高频考点突破】考点一集合的关系和运算1.元素与集合的关系:元素x与集合A之间,要么x∈A,要么x∉A,二者必居其一,这就是集合元素的确定性,集合的元素还具有互异性和无序性.解题时要特别注意集合元素互异性的应用.2.运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.例1、已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是( )A.(-∞,-1] B.[1,+∞)C.[-1,1] D.(-∞,-1]∪[1,+∞)解析:因为P∪M=P,所以M⊆P,即a∈P,得a2≤1,解得-1≤a≤1,所以a的取值范围是[-1,1].答案;C【解题方法】解答集合间的包含与运算关系问题的一般思路(1)正确理解各个集合的含义,认清集合元素的属性,代表的意义.(2)根据集合中元素的性质化简集合.(3)在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时注意端点值的取舍.考点二命题真假的判断1.四种命题有两组等价关系,即原命题与其逆否命题等价,否命题与逆命题等价.2.含有逻辑联结词的命题的真假判断:命题p∨q,只要p,q至少有一为真,即为真命题,换言之,见真则真;命题p∧q,只要p,q至少有一为假,即为假命题,换言之,见假则假;非p和p为一真一假两个互为对立的命题.3.“或”命题和“且”命题的否定:命题p∨q 的否定是非p∧非q ;命题p∧q 的否定是非p∨非q. 例2. 原命题:若a =1,则函数f (x )=x 3+ax 2+ax +1没有极值,以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A .0B .1C .2D .4解析:先考虑原命题,当a =1时,f (x )=13x 3+12x 2+12x +1,f ′(x )=x 2+x +12=(x +12)2+14>0,所以f (x )没有极值,故原命题为真,因而逆否命题也为真;其逆命题是“若函数f (x )=13x 3+12ax 2+12ax +1没有极值,则a =1”.由f (x )没有极值,故f ′(x )≥0,即x 2+ax +12a ≥0恒成立,这等价于Δ=a 2-4×1×12a ≤0⇔0≤a ≤2,所以其逆命题是假命题,因而否命题也为假命题.答案;C【变式】已知a ,b ,c 都是实数,则命题“若a >b ,则ac 2>bc 2”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .4B .2C .1D .0【解题方法】命题真假的判定方法(1)一般命题p 的真假由涉及到的相关交汇知识辨别真假.(2)四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无必然联系.(3)形如p 或q 、p 且q 、非p 命题的真假根据真值表判定. 考点三 充要条件的判断对于p 和q 两个命题,若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;若p ⇔q ,则p 和q 互为充要条件.推出符号“⇒”具有传递性,等价符号“⇔”具有双向传递性.例3、设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【变式】设x ,y ∈R,则“x ≥2且y ≥2”是“x 2+ y 2≥4”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:因为x ≥2且y ≥2⇒x 2+y 2≥4易证,所以充分性满足,反之,不成立,如x =y =74,满足x 2+y 2≥4,但不满足x ≥2且y ≥2,所以x ≥2且y ≥2是x 2+y 2≥4的充分而不必要条件.答案:A【解题方法】对充分、必要条件的判断或探求要注意以下几点(1)要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推 出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ;(2)要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明;(3)要注意转化:如果p 是q 的充分不必要条件,那么非p 是非q 的必要不充分条件,同理,如果p 是q 的必要不充分条件,那么非p 是非q 的充分不必要条件,如果p 是q 的充要条件,那么非p 是非q 的充要条件.【难点探究】难点一 集合的关系及其运算例1、设集合M ={y |y =|cos 2x -sin 2x |,x ∈R},N =x ⎪⎪⎪⎪⎪⎪⎪⎪⎪x -1i<2,i 为虚数单位,x ∈R,则M ∩N 为( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]【拓展】本题需要注意两个问题,一是两个集合的含义,二是要注意集合N 中的不等式是一个复数模的实数不等式,不要根据实数的绝对值求解.高考考查集合一般是以集合的形式与表示等式的解、函数的定义域、函数的值域等,在解题时要特别注意集合的含义.【变式1】若集合M ={0,1,2},N ={(x ,y )|x -y ≥0,x 2+y 2≤4,x ,y ∈M },则N 中元素的个数为( ) A .9 B .6 C .4 D .2难点二四种命题和充要条件的判断例2 、(1)已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( )A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3(2)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【拓展】一个命题的否命题、逆命题、逆否命题是根据原命题适当变更条件和结论后得到的形式上的命题,解这类试题时要注意对于一些关键词的否定,如本题中等于的否定是不等于,而不是单纯的大于、也不是单纯的小于;进行充要条件判断实际上就是判断两个命题的真假,这里要注意断定一个命题为真需要进行证明,断定一个命题为假只要举一个反例即可.难点三逻辑联结词、量词和命题的否定例3. (1)若p是真命题,q是假命题,则( )A.p∧q是真命题 B.p∨q是假命题C.非p是真命题 D.非q是真命题(2)命题“所有能被2整除的整数都是偶数”的否定..是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【拓展】(1)“或”“且”联结两个命题,这两个命题的真假确定了“或”命题和“且”命题的真假,其中“或”命题是一真即真,“且”命题是一假即假,“非”是对一个命题的否定,命题与其“非”命题一真一假;(2)否定一个命题就是否定这个命题的结论,即推翻这个命题,这与写出一个命题的否命题是不同的.一个命题的否命题,是否定条件和结论后的形式上的命题,如本题中我们把命题改写为“已知n为任意整数,若n能被2整除,则n是偶数”,其否命题是“已知n 为任意整数,若n 不能被2整除,则n 不是偶数”,显然这个命题是真命题,但这个命题的否定是假命题.【变式】有四个关于不等式的命题:p 1:∃x 0∈R,x 20+x 0+1>0;p 2:∃x 0,y 0∈R,x 20+y 0-4x 0-2y 0+6<0;p 3:∀x ,y ∈R +,2xy x +y ≤x +y 2;p 4:∀x ,y ∈R,x 3+y 3≥x 2y +xy 2.其中真命题是( )A .p 1,p 4B .p 2,p 4C .p 1,p 3D .p 2,p 3【解题技巧】1.解答集合有关问题,首先正确理解集合的意义,准确地化简集合是关键.其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和韦恩图加以解决.2.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立、一真一假的.3.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.4.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断.5.特称命题的否定是全称命题、全称命题的否定是特称命题. 【历届高考真题】 【2012年高考试题】1.【2012高考真题浙江理1】设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )= A .(1,4) B .(3,4) C.(1,3) D .(1,2)∪(3,4)2.【2012高考真题新课标理1】已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈; 则B 中所含元素的个数为( )【答案】D【解析】要使A y x ∈-,当5=x 时,y 可是1,2,3,4.当4=x 时,y 可是1,2,3.当3=x 时,y 可是1,2.当2=x 时,y 可是1,综上共有10个,选D.3.【2012高考真题陕西理1】集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =( )A. (1,2)B. [1,2)C. (1,2]D. [1,2]4.【2012高考真题山东理2】已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C AB 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C 【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.5.【2012高考真题辽宁理1】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}6.【2012高考真题江西理1】若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为( )A .5 B.4 C.3 D.2 【答案】C【解析】因为B y A x ∈∈,,所以当1-=x 时,2,0=y ,此时1,1-=+=y x z 。
高考数学二轮复习专题 集合与常用逻辑用语教学案(学生)

2013高考数学二轮复习精品资料专题01 集合与常用逻辑用语教学案(学生版)【2013考纲解读】1.通过实例了解集合的含义,体会元素与集合的从属关系了解集合中元素的确定性,互异性,无序性.会用集合语言表示有关数学对象.2.掌握集合的表示方法----列举法和描述法,并能进行自然语言与集合语言的相互转换,了解有限集与无限集的概念.3.了解集合间包含关系的意义,理解子集、真子集的概念和意义,会判断简单集合的相等关系.4.理解并集、交集的概念和意义,掌握有关集合并集、交集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.掌握并集、交集的求法.5.了解全集的意义,理解补集的概念.掌握全集与补集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.6.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析种命题的相互关系;理解必要条件、充分条件与充要条件的意义.7.了解逻辑联结词“或”、“且”、“非”的含义.8.理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.【知识网络构建】【重点知识整合】1.集合(1)元素的特征:确定性、互异性、无序性,元素与集合之间的关系是属于和不属于;(2)集合与集合之间的关系:集合与集合之间是包含关系和非包含关系,其中关于包含有包含和真包含,用符号⊆,表示.其中一个集合本身是其子集的子集,空集是任何非空集合的真子集;(3)集合的运算:A∩B={x|x∈A,且x∈B},A∪B={x|x∈A,或x∈B},∁U A={x|x∈U,且x∉A}.2.四种命题及其关系(1)四种命题;(2)四种命题之间的关系:四种命题是指对“若p,则q”形式的命题而言的,把这个命题作为原命题,则其逆命题是“若q,则p”,否命题是“若非p,则非q”,逆否命题是“若非q,则非p”,其中原命题和逆否命题、逆命题和否命题是等价的,而且命题之间的关系是相互的。
高考数学二轮复习 专题01 集合与简单逻辑教学案 理-人教版高三全册数学教学案

专题01 集合与简单逻辑集合知识一般以一个选择题的形式出现,其中以集合知识为载体,集合与不等式、解析几何知识相结合是考查的重点,难度为中、低档;对常用逻辑用语的考查一般以一个选择题或一个填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,考查充要条件或命题的真假判断等,难度一般不大.1.集合的概念、运算和性质(1)集合的表示法:列举法,描述法,图示法.(2)集合的运算:①交集:A∩B={x|x∈A,且x∈B}.②并集:A∪B={x|x∈A,或x∈B}.③补集:∁U A={x|x∈U,且x∉A}.(3)集合的关系:子集,真子集,集合相等.(4)需要特别注意的运算性质和结论.①A∪∅=A,A∩∅=∅;②A∩(∁U A)=∅,A∪(∁U A)=U.A∩B=A⇔A⊆B,A∪B=A⇔B⊆A2.四种命题(1)用p、q表示一个命题的条件和结论,¬p和¬q分别表示条件和结论的否定,那么假设原命题:假设p那么q;那么逆命题:假设q那么p;否命题:假设¬p那么¬q;逆否命题:假设¬q那么¬p.(2)四种命题的真假关系原命题与其逆否命题同真同真;原命题的逆命题与原命题的否命题同真同假.3.充要条件(1)假设p⇒q,那么p是q成立的充分条件,q是p成立的必要条件.(2)假设p ⇒q 且q ⇒/ p ,那么p 是q 的充分不必要条件,q 是p 的必要不充分条件. (3)假设p ⇔q ,那么p 是q 的充分必要条件. 4.简单的逻辑联结词“且〞、“或〞、“非〞用逻辑联结词“且〞把命题p 和命题q 联结起来,就得到一个新命题,记作“p ∧q 〞; 用逻辑联结词“或〞把命题p 和命题q 联结起来,就得到一个新命题,记作“p ∨q 〞; 对一个命题p 全盘否定,就得到一个新命题,记作“¬p 〞. 5.全称量词与存在量词 (1)全称命题p :∀x ∈M ,p (x ). 它的否定¬p :∃x 0∈M ,¬p (x 0).(2)特称命题(存在性命题)p :∃x 0∈M ,p (x 0). 它的否定¬p :∀x ∈M ,¬p (x ).考点一 集合的概念及运算例1、[2017课标3,理1]集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,那么A B中元素的个数为A .3B .2C .1D .0[答案]B[变式探究](1)集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},那么A ∩B =( ) A .{-1,0} B .{0,1} C .{-1,0,1} D .{0,1,2}解析:基本法:化简集合B ,利用交集的定义求解. 由题意知B ={x |-2<x <1},所以A ∩B ={-1,0}.应选A. 速解法:验证排除法: ∵-1∈B ,故排除B 、D.∵1∉B,∴1∉A∩B,排除C.答案:A(2)集合A={0,1,2},那么集合B={x-y|x∈A,y∈A}中元素的个数是( )A.1 B.3C.5 D.9解析:基本法:用列举法把集合B中的元素一一列举出来.当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.应选C.答案:C考点二充分、必要条件例2、[2017某某,理4]设θ∈R,那么“ππ||1212θ-<〞是“1sin2θ<〞的〔A〕充分而不必要条件〔B〕必要而不充分条件〔C〕充要条件〔D〕既不充分也不必要条件[答案]A[解析]πππ||012126θθ-<⇔<<1sin2θ⇒<,但10,sin2θθ=<,不满足ππ||1212θ-<,所以是充分不必要条件,选A.[变式探究](1) 函数f(x)在x=x0处导数存在.假设p:f′(x0)=0;q:x=x0是f(x)的极值点,那么( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:基本法:利用命题和逆命题的真假来判断充要条件,注意判断为假命题时,可以采用反例法.当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点,比如,y =x 3在x =0时,f ′(0)=0,但在x =0的左右两侧f ′(x )的符号相同,因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0. 综上知,p 是q 的必要条件,但不是充分条件. 答案:C(2)“x ∈⎣⎢⎡⎦⎥⎤-3π4,π4〞是“函数y =sin ⎝⎛⎭⎪⎫x +π4为单调递增函数〞的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[变式探究]x ∈R ,那么“x 2-3x >0〞是“x -4>0〞的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:基本法:判断x2-3x>0⇒x-4>0还是x-4>0⇒x2-3x>0.注意到x2-3x>0⇔x<0或x>3,x-4>0⇔x>4.由x2-3x>0不能得出x-4>0;反过来,由x-4>0可得出x2-3x>0,因此“x2-3x>0〞是“x-4>0〞的必要不充分条件.应选B.答案:B速解法:利用反例和实数的运算符号寻找推导关系.如x=4时,满足x2-3x>0,但不满足x-4>0,即不充分.假设x-4>0,那么x(x-3)>0,即必要.应选B.答案:B考点三命题判定及否定例3、(1)设命题p:∃n∈N,n2>2n,那么綈p为( )A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n解析:基本法:因为“∃x∈M,p(x)〞的否定是“∀x∈M,綈p(x)〞,所以命题“∃n∈N,n2>2n〞的否定是“∀n∈N,n2≤2n〞.应选C.答案:C(2)命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,那么以下命题中为真命题的是( )A.p∧q B.(綈p)∧qC.p∧(綈q) D.(綈p)∧(綈q)解析:基本法:当x=0时,有2x=3x,不满足2x<3x,∴p:∀x∈R,2x<3x是假命题.如图,函数y=x3与y=1-x2有交点,即方程x3=1-x2有解,∴q:∃x∈R,x3=1-x2是真命题.∴p∧q为假命题,排除A.∵綈p为真命题,∴(綈p)∧q是真命题.选B.速解法:当x=0时,不满足2x<3x,∴p为假,排除A、C.利用图象可知,q为真,排除D,必选B.答案:B[变式探究]命题p :∃x ∈R,2x >3x;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sin x ,那么以下是真命题的是( )A .(綈p )∧qB .(綈p )∨(綈q )C .p ∧(綈q )D .p ∨(綈q )1.[2017课标1,理1]集合A ={x |x <1},B ={x |31x <},那么 A .{|0}A B x x =<B .A B =RC .{|1}AB x x =>D .AB =∅[答案]A[解析]由31x <可得033x <,那么0x <,即{|0}B x x =<,所以{|1}{|0}{|0}A B x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,应选A.2.[2017课标II ,理]设集合{}1,2,4A =,{}240x x x m B =-+=。
江苏省高考数学二轮复习 第1讲 集合与简单逻辑用语教学案

专题一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语1. 理解集合中元素的意义是解决集合问题的关键:弄清元素是函数关系式中自变量的取值?还是因变量的取值?还是曲线上的点?…2. 数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决.3. 已知集合A、B,当A∩B=时,你是否注意到“极端”情况:A=或B=?求集合的子集时是否忘记?分类讨论思想的建立在集合这节内容学习中要得到强化.4. 对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.是任何集合的子集,是任何非空集合的真子集.1. A、B是非空集合,定义A×B={x|x∈A∪B,且,若A={x∈R|y=x2-3x},B={y|y=3x,x∈R},则A×B=______________.2. 已知命题P:n∈N,2n>1 000,则P为________.3. 条件p:a∈M={x|x2-x<0},条件q:a∈N={x||x|<2},p是q的______________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4. 若命题R,x2+(a-1)x+1>0”是假命题,则实数a的取值范围为________.【例1】已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若,求实数p的取值范围.【例2】设A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C=?若存在,求出k,b的值;若不存在,请说明理由.【例3】(2011·广东)设S是整数集Z的非空子集,如果,b∈S,有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z且,b,c∈T,有abc∈T,,y,z∈V,有xyz∈V.则下列结论恒成立的是________.A. T,V中至少有一个关于乘法封闭B. T,V中至多有一个关于乘法封闭C. T,V中有且只有一个关于乘法封闭D. T,V中每一个关于乘法封闭【例4】已知a>0,函数f(x)=ax-bx2.(1) 当b>0时,若R,都有f(x)≤1,证明:0<a≤2b;(2) 当b>1时,证明:1],|f(x)|≤1的充要条件是b-1≤a≤2 b.1. (2011·江苏)已知集合A={-1,1,2,4},B={-1,0,2},则A∩B=________.2.(2011·天津)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是________.3.(2009·江苏)已知集合A={x|log2x≤2},B=(-∞,a),若,则实数a的取值范围是(c,+∞),其中c=________.4.(2009·陕西)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.5.(2011·陕西)设n∈N+,一元二次方程x2-4x+n=0有正整数根的充要条件是n=________.6.(2011·福建)在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 011∈[1];②-3∈[3];③Z =[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一‘类’”的充要条件是“a-b∈[0]”. 其中,正确结论的个数是________个.(2011·全国)(本小题满分14分)设a∈R ,二次函数f(x)=ax 2-2x -2a.若f(x)>0的解集为A ,B ={x|1<x<3},,求实数a 的取值范围.解:由f(x)为二次函数知a≠0,令f(x)=0解得其两根为x 1=1a -2+1a 2,x 2=1a+2+1a2, 由此可知x 1<0,x 2>0,(3分)① 当a>0时,A ={x|x<x 1}∪{x|x>x 2},(5分)的充要条件是x 2<3,即1a +2+1a 2<3,解得a>67,(9分) ② 当a<0时, A ={x|x 1<x<x 2},(10分)的充要条件是x 2>1,即1a+2+1a2>1,解得a<-2,(13分)综上,使成立的实数a 的取值范围为(-∞,-2)∪⎝ ⎛⎭⎪⎫67,+∞.(14分)一 集合、简单逻辑用语、函数、不等式、导数及应用第1讲 集合与简单逻辑用语1. (2011·安徽)设集合A ={1,2,3,4,5,6},B ={4,5,6,7},则满足A 且的集合S 的个数为________.A. 57B. 56C. 49D. 8【答案】 B 解析:集合A 的所有子集共有26=64个,其中不含4,5,6,7的子集有23=8个,所以集合S 共有56个.故选B.2. (2011·江苏)设集合A ={(x ,y)|m 2≤(x-2)2+y 2≤m 2,x ,y∈R }, B ={(x ,y)|2m≤x+y≤2m+1,x ,y∈R }, 若,则实数m 的取值范围是________.【答案】 ⎣⎢⎡⎦⎥⎤12,2+2 解析:由得,,所以m 2≥m 2,m≥12或m≤0.当m≤0时,|2-2m|2=2-2m >-m ,且|2-2m -1|2=22-2m >-m ,又2+0=2>2m +1,所以集合A 表示的区域和集合B 表示的区域无公共部分;当m≥12时,只要|2-2m|2≤m 或|2-2m -1|2≤m,解得2-2≤m≤2+2或1-22≤m≤1+22,所以实数m 的取值范围是⎣⎢⎡⎦⎥⎤12,2+2.点评:解决此类问题要挖掘问题的条件,并适当转化,画出必要的图形,得出求解实数m 的取值范围的相关条件.基础训练 1. (-∞,3) 解析:A =(-∞,0]∪[3,+∞),B =(0,+∞),A∪B=(-∞,+∞),A∩B=[3,+∞).N,2n≤1 0003. 充分不必要 解析:M ==(-2,2).4. a≥3或a≤-1 解析:Δ=(a -1)2-4≥0,a≥3或a≤-1. 例题选讲例1 解:由x 2-3x -10≤0得-2≤x≤5. ∴ A=[-2,5]. ① 当时,即p +1≤2p-由得-2≤p+1且2p -1≤5.得-3≤p≤3.∴ 2≤p≤3.② 当B =时,即p +1>2p -<成立.综上得p≤3. 点评:从以上解答应看到:解决有关A∩B=,A∪B=A ,A∪B=B 或等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中全方位、多角度审视问题.变式训练 设不等式x 2-2ax +a +2≤0的解集为M ,如果,求实数a 的取值范围.解: 有n 种情况:其一是M =,此时Δ<0;其二是,此时Δ≥0,分三种情况计算a 的取值范围.设f(x)=x 2-2ax +a +2,有Δ=(-2a)2-(4a +8)=4(a 2-a -2), ① 当Δ<0时,-1<a <2,M =成立; ② 当Δ=0时,a =-1或2,当a =-1时,M ={-,当a =2时,M =; ③ 当Δ>0时,a <-1或a >2.设方程f(x)=0的两根为x 1,x 2,且x 1<x 2,那么M =[x 1,x 2],1<x 2⎩⎪⎨⎪⎧且,1≤a≤4且Δ>0.即⎩⎪⎨⎪⎧-a +3≥0,18-7a≥0,1≤a≤4,a <-1或a >2,解得:2<a≤187,综上实数a 的取值范围是⎝⎛⎦⎥⎤-1,187.例2 解: ∵ (A∪B)∩C=,∵A∩C=且B∩C=,由 ⎩⎪⎨⎪⎧y 2=x +1,y =kx +b得k 2x 2+(2bk -1)x +b 2-1=0,∵ A∩C=,∴ k≠0,Δ1=(2bk -1)2-4k 2(b 2-1)<0, ∴ 4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1,①∵ ⎩⎪⎨⎪⎧4x 2+2x -2y +5=0,y =kx +b ,∴ 4x 2+(2-2k)x +(5-2b)=0,∵ B∩C=,∴ Δ2=4(1-k)2-16(5-2b)<0,∴ k 2-2k +8b -19<0, 从而8b<20,即b<2.5, ②由①②及b∈N ,得b =2,代入由Δ1<0和Δ2<0组成的不等式组,得⎩⎪⎨⎪⎧4k 2-8k +1<0,k 2-2k -3<0,∴ k=1,故存在自然数k =1,b =2,使得(A∪B)∩C=.点评:把集合所表示的意义读懂,分辨出所考查的知识点,进而解决问题.变式训练 已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫,⎪⎪⎪1-y x +1=3,B ={(x ,y)|y =kx +3},若A∩B=, 求实数k 的取值范围.解: 集合A 表示直线y =-3x -2上除去点(-1,1)外所有点的集合,集合B 表示直线y =kx +3上所有点的集合,A∩B=,所以两直线平行或直线y =kx +3过点(-1,1),所以k =2或k =-3.例3 【答案】 A 解析:由于T∪V=Z ,故整数1一定在T ,V 两个集合中的一个中,不妨设1∈T,则,b∈T,由于a ,b,1∈T,则a·b·1∈T,即ab∈T,从而T 对乘法封闭;另一方面,当T ={非负整数},V ={负整数}时,T 关于乘法封闭,V 关于乘法不封闭,故D 不对;当T ={奇数},V ={偶数}时,T ,V 显然关于乘法都是封闭的,故B ,C 不对. 从而本题就选A.例4 证明:(1) ax -bx 2≤1对x∈R 恒成立,又b >0, ∴ a 2-4b≤0,∴ 0<a≤2 b.(2) 必要性,,|f(x)|≤1恒成立,∴ bx 2-ax≤1且bx 2-ax≥-1, 显然x =0时成立,对x∈(0,1]时a≥bx-1x 且a≤bx+1x ,函数f(x)=bx -1x 在x∈(0,1]上单调增,f(x)最大值f(1)=b -1.函数g(x)=bx +1x 在⎝ ⎛⎦⎥⎤0,1b 上单调减,在⎣⎢⎡⎦⎥⎤1b ,1上单调增,函数g(x)的最小值为g ⎝⎛⎭⎪⎫1b =2b ,∴ b-1≤a≤2b ,故必要性成立; 充分性:f(x)=ax -bx 2=-b(x -a 2b )2+a 24b ,a 2b =a 2b ×1b ≤1×1b≤1,f(x)max =a24b≤1,又f(x)是开口向下的抛物线,f(0)=0,f(1)=a -b ,f(x)的最小值从f(0)=0,f(1)=a -b 中取最小的,又a -b≥-1, ∴ -1≤f(x)≤1,故充分性成立; 综上命题得证.变式训练 命题甲:方程x 2+mx +1=0有两个相异负根;命题乙:方程4x 2+4(m -2)x +1=0无实根,这两个命题有且只有一个成立,求实数m 的取值范围.解: 使命题甲成立的条件是: ⎩⎪⎨⎪⎧Δ1=m 2-4>0,x 1+x 2=-m <0>2.∴ 集合A={m|m>2}.使命题乙成立的条件是:Δ2=16(m-2)2-16<0,∴ 1<m<3.∴ 集合B={m|1<m<3}.若命题甲、乙有且只有一个成立,则有:① m∈A∩B,② m∈A∩B.若为①,则有:A∩B={m|m>2}∩{m|m≤1或m≥3}={m|m≥3};若为②,则有:B∩A={m|1<m<3}∩{m|m≤2}={m|1<m≤2};综合①、②可知所求m的取值范围是{m|1<m≤2或m≥3}.点评:明确命题为真时的充要条件,再分类确定.高考回顾1. {-1,2}2. 若f(x)不是奇函数,则f(-x)不是奇函数3. 4 解析:A=(0,4],>4, ∴ c=4.4. 8 解析:画韦恩图.设同时参加数学和化学小组的有x人,则20-x+11+x+4+9-x=36,x=8.5. 3或4 解析:令f(x)=x2-4x+n,n∈N*,f(0)=n>0, ∴ f(2)≤0即n≤4,故n =1,2,3,4,经检验,n=3,4适合,或直接解出方程的根,x=2±4-n,n∈N*,只有n=3,4适合.6. 3 解析:正确的是①③④,在②中-3∈[2]才对.。
高考一轮复习教案数学(理)新课标 第一篇 集合与常用逻辑用语 1 集合的概念与运算

第1讲集合的概念与运算【2013年高考会这样考】1.考查集合中元素的互异性.2.求几个集合的交、并、补集.3.通过给的新材料考查阅读理解能力和创新解题的能力.【复习指导】1.主要掌握集合的含义、集合间的关系、集合的基本运算,立足基础,抓好双基.2.练习题的难度多数控制在低中档即可,适当增加一些情境新颖的实际应用问题或新定义题目,但数量不宜过多.基础梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法、区间法.(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.(5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、空集.2.集合间的基本关系(1)子集:对任意的x∈A,都有x∈B,则A⊆B(或B⊇A).(2)真子集:若A⊆B,且A≠B,则A B(或B A).(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即∅⊆A,∅B(B≠∅).(4)若A含有n个元素,则A的子集有2n个,A的非空子集有2n-1个.(5)集合相等:若A⊆B,且B⊆A,则A=B.3.集合的基本运算(1)并集:A∪B={x|x∈A,或x∈B}.(2)交集:A∩B={x|x∈A,且x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.(4)集合的运算性质①A∪B=A⇔B⊆A,A∩B=A⇔A⊆B;②A∩A=A,A∩∅=∅;③A∪A=A,A∪∅=A;④A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A.一个性质要注意应用A⊆B、A∩B=A、A∪B=B、∁U A⊇∁U B、A∩(∁U B)=∅这五个关系式的等价性.两种方法韦恩图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.三个防范(1)空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.(2)认清集合元素的属性(是点集、数集或其他情形).(3)在解决含参数的集合问题时,要检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致结论错误.双基自测1.(人教A版教材习题改编)设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于().A.{x|3≤x<4} B.{x|x≥3}C.{x|x>2} D.{x|x≥2}解析B={x|3x-7≥8-2x}={x|x≥3},∴结合数轴得:A∪B={x|x≥2}.答案 D2.(2011·浙江)若P ={x |x <1},Q ={x |x >-1},则( ).A .P ⊆QB .Q ⊆PC .∁R P ⊆QD .Q ⊆∁R P解析 ∵∁R P ={x |x ≥1}∴∁R P ⊆Q .答案 C3.(2011·福建)i 是虚数单位,若集合S ={-1,0,1},则( ).A .i ∈SB .i 2∈SC .i 3∈S D.2i ∈S解析 ∵i 2=-1,∴-1∈S ,故选B.答案 B4.(2011·北京)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ).A .(-∞,-1]B. [1,+∞) C .[-1,1] D .(-∞,-1]∪[1,+∞)解析 因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].答案 C5.(人教A 版教材习题改编)已知集合A ={1,3,m },B ={3,4},A ∪B ={1,2,3,4},则m =________.解析 A ∪B ={1,3,m }∪{3,4}={1,2,3,4},∴2∈{1,3,m },∴m =2.答案 2考向一 集合的概念【例1】►已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.[审题视点] 分m +2=3或2m 2+m =3两种情况讨论.解析 因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不合乎题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3合乎题意.所以m =-32.答案 -32集合中元素的互异性,一可以作为解题的依据和突破口;二可以检验所求结果是否正确.【训练1】 设集合A ={-1,1,3},B ={a +2,a 2+2},A ∩B ={3},则实数a 的值为________.解析 若a +2=3,a =1,检验此时A ={-1,1,3},B ={3,5},A ∩B ={3},满足题意.若a 2+2=3,则a =±1.当a =-1时,B ={1,3}此时A ∩B ={1,3}不合题意,故a =1.答案 1考向二 集合的基本运算【例2】►(2011·天津)已知集合A ={x ∈R ||x +3|+|x -4|≤9},B =⎩⎨⎧⎭⎬⎫x ∈R |x =4t +1t -6,t ∈(0,+∞),则集合A ∩B =________.[审题视点] 先化简集合A ,B ,再求A ∩B .解析 不等式|x +3|+|x -4|≤9等价于⎩⎨⎧ x ≥4,x +3+x -4≤9或⎩⎨⎧ -3<x <4,x +3+4-x ≤9或⎩⎨⎧ x ≤-3,-x -3+4-x ≤9,解不等式组得A =[-4,5],又由基本不等式得B =[-2,+∞),所以A ∩B =[-2,5].答案 {x |-2≤x ≤5}集合运算时首先是等价转换集合的表示方法或化简集合,然后用数轴图示法求解.【训练2】 (2011·江西)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x ≤0,则A ∩B =( ).A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x ≤2}D .{x |0≤x ≤1}解析 ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}.答案 B考向三 集合间的基本关系【例3】►已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.[审题视点] 若B ⊆A ,则B =∅或B ≠∅,故分两种情况讨论.解 当B =∅时,有m +1≥2m -1,得m ≤2,当B ≠∅时,有⎩⎨⎧ m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上:m ≤4.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.【训练3】 (2011·江苏)设集合A =⎩⎪⎨⎪⎧ (x ,y )⎪⎪⎪ m 2≤(x -2)2+y 2≤m 2,⎭⎪⎬⎪⎫x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________.解析 ①若m <0,则符合题的条件是:直线x +y =2m +1与圆(x -2)2+y 2=m 2有交点,从而|2-2m -1|2≤|m |,解得2-22≤m ≤2+22,与m <0矛盾; ②若m =0,代入验证,可知不符合题意;③若m >0,则当m 2≤m 2,即m ≥12时,集合A 表示一个环形区域,集合B 表示一个带形区域,从而当直线x +y =2m +1与x +y =2m 中至少有一条与圆(x -2)2+y 2=m 2有交点,即符合题意,从而有|2-2m |2≤|m |或|2-2m -1|2≤|m |,解得2-22≤m ≤2+2,由于12>2-22,所以12≤m ≤2+ 2.综上所述,m 的取值范围是12≤m ≤2+ 2. 答案 ⎣⎢⎡⎦⎥⎤12,2+2难点突破1——集合问题的命题及求解策略在新课标高考中,可以看出,集合成为高考的必考内容之一,考查的形式是一道选择题或填空题,考查的分值约占5分,难度不大.纵观近两年新课标高考,集合考题考查的主要特点是:一是注重基础知识的考查,如2011年安徽高考的第8题;二是与函数、方程、不等式、三角等知识相结合,在知识的交汇点处命题,如2011年山东高考的第1题,与不等式相结合;三是在集合的定义运算方面进行了新的命题,如2011年浙江高考的第10题.一、集合与排列组合【示例】► (2011·安徽)设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数是( ).A .57B .56C .49D .8二、集合与不等式的解题策略【示例】► (2011·山东)设集合M ={x |x 2+x -6<0},N ={x |1≤x ≤3},则M ∩N 等于( ).A.[1,2) B.[1,2] C.(2,3] D.[2,3]三、集合问题中的创新问题【示例】►(2011·浙江)设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若|S|,|T|分别为集合S,T的元素个数,则下列结论不可能的是().A.|S|=1且|T|=0 B.|S|=1且|T|=1C.|S|=2且|T|=2 D.|S|=2且|T|=3。
高三数学高考二轮复习教案、考案(1)集合精品

集合【专题要点】1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用【考纲要求】1. 集合部分的考点主要是集合之间的关系和集合的交并补运算;2. 掌握集合的表示法和用图示法表示集合之间的关系【知识纵横】⎧⎧⎪⎪→→⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪−−→⎨⎪⎪⎪⎩⎪⎪→⎧⎨−−→⎨⎪⎩⎪⎪⎧⎫⎪⎪⎪→⎫⎪⎪⎪⎪⎪⎪⎪−−→→−−→←⎨⎬⎬⎪⎪⎪⎪⎪→⎭⎪⎪⎪⎪⎪⎭⎪⎩⎩确定性概念元素性质互异性无序性列举法表示方法描述法图示法集合属于关系关系包含关系命题及其关系充要条件交集且逻辑联结词运算并集或常用逻辑用语补集非存在量词与全称量词 【教法指引】集合是数学中最基本的概念之一,集合语言是现代数学的基本语言,因此集合的概念以及集合之间的关系是历年高考的必考内容之一,本部分的考查一般有两种形式:一是考查集合的相关概念,集合之间的关系,题型以选择题、填空题为主;二是考查集合语言、集合思想的理解与应用,这多与其他知识融为一体,题型也是一般以选择填空为主,单纯的集合问题以解答题形式出出现的几率较小,多是与函数、不等式等联系。
在复习中还要特别注意,新课标的中特别强调表达与描述同一问题的三种语言“自然语言、图形语言、集合语言”之间的关系,因此要注意利用韦恩图数轴函数图象相结合的作用,另外集合新定义信息题在近几年的命题中时有出现。
【典例精析】1.对集合中有关概念的考查例1第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是 ( )A .A ⊆B B .B ⊆C C .A ∩B=CD .B ∪C=A分析:本例主要考查子集的概念及集合的运算.解析:易知选D .点评:本题是典型的送分题,对于子集的概念,一定要从元素的角度进行理解.集合与集合间的关系,寻根溯源还是元素间的关系.2.对集合性质及运算的考查例2.已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则 ( )A .{}4,6M N =B .M N U =C .U M N C u = )(D .N N M C u = )( 分析:本题主要考查集合的并、交、补的运算以及集合间关系的应用.解析:由{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,故选B .点评:对集合的子、交、并、补等运算,常借助于文氏图来分析、理解.高中数学中一般考查数集和点集这两类集合,数集应多结合对应的数轴来理解,点集则多结合对应的几何图形或平面直角坐标系来理解.3.对与不等式有关集合问题的考查例3.已知集合{}30,31x M x N x x x ⎧+⎫=<=-⎨⎬-⎩⎭…,则集合{}1x x …为 ( )A .M NB .M NC .()R M N ðD .()RM N ð 分析:本题主要考查集合的运算,同时考查解不等式的知识内容.可先对题目中所给的集合化简,即先解集合所对应的不等式,然后再考虑集合的运算. 解析:依题意:{}{}31,3M x x N x x =-<<=-…,∴{|1}M N x x ⋃=<, ∴()R M N =ð{}1.x x …故选C . 点评:同不等式有关的集合问题是高考命题的热点之一,也是高考常见的命题形式,且多为含参数的不等式问题,需讨论参数的取值范围,主要考查分类讨论的思想,此外,解决集合运算问题还要注意数形结合思想的应用.4.对与方程、函数有关的集合问题的考查例4.已知全集{12345}U =,,,,,集合2{|320}A x x x =-+=, {|2}B x x a a A ==∈,,则集合)(B A C U 中元素的个数为 ( )A .1B .2C .3D .4分析:本题集合A 表示方程的解所组成的集合,集合B 表示在集合A 条件下函数的值域,故应先把集合A 、B 求出来,而后再考虑)(B A C U .解析:因为集合{}{}1,2,2,4A B ==,所以{}1,2,4A B =,所以{}()3,5.U C A B =故选B .点评:在解决同方程、函数有关的集合问题时,一定要搞清题目中所给的集合是方程的根,或是函数的定义域、值域所组成的集合,也即要看清集合的代表元素集合【专题测试】一、选择题:1 下列命题正确的有( )(1)很小的实数可以构成集合;(2)集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合;(3)3611,,,,0.5242-这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集 A 0个 B 1个 C 2个 D 3个2 (2008广东文1).第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A ={参加北京奥运会比赛的运动员},集合B ={参加北京奥运会比赛的男运动员}。
高中数学《第一章集合与常用逻辑用语复习课》教学设计

《第一章集合与常用逻辑用语复习课》教学设计一、内容和内容解析1.内容2.内容解析本章学习内容包括集合的有关概念,关系和运算,还有充分条件、必要条件、充要条件、全称量词、存在量词、全称量词命题与存在量词命题及其否定。
这些知识在后续学习中会得到大量应用,是进一步学习的重要基础。
复习本章所学知识,在知识的复习和再现的基础上,用联系的观点和递进的方式可以加深对本章内容的理解。
复习本章知识能有效总结和提升学习内涵,整理学习方法提高学习效率,对于全章知识的联系和整合也能有更好的效果。
在本章内容的复习中,首先应掌握集合语言的表述方式,学习了集合的含义,明确了集合中元素的确定性、无序性、互异性等特征;再学习了列举法、描述法等集合的表示法,其中描述法利用了研究对象的某种特征,需要先理解研究对象的性质;类比数与数的关系,我们研究了集合之间的包含关系与相等关系,这些关系是由元素与集合的关系决定的,其中集合的相等关系很重要;类比数的运算,我们学习了集合的交、并、补运算,通过这些运算可以得到与原有集合紧密关联的集合,由此可以表示研究对象的某些关系。
常用逻辑用语是数学语言的重要组成部分,是逻辑思维的基本语言,也是数学表达和交流的工具。
充分条件、必要条件和充要条件,全称量词命题,存在量词命题及它们的否定都能与许多已学过的内容进行融合,如初中学习过的数学定义、定理、命题及许多代数结论等都可以用常用逻辑用语表示。
利用常用逻辑用语表述数学内容,进行推理论证,可以大大提升表述的逻辑性和准确性,提升逻辑推理素养。
结合以上分析,确定本节课的教学重点是:引领复习全章重点内容。
二、目标和目标解析1.目标(1)理解集合的含义,表示法,明确元素与集合,集合与集合的关系;(2)理解并掌握集合的运算法,能解决集合的交、并、补运算问题;(3)能通过“若p,则q”形式命题的真假性,判断充分条件、必要条件、充要条件;(4)能辨别全称量词命题和存在量词命题的真假,并能写出否定形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一 集合、常用逻辑用语、函数与导数、不等式第1节 集合、常用逻辑用语自主学习导引真题感悟1.(2012·浙江)设集合A ={x | 1<x <4},集合B ={x | x 2-2x -3≤0},则A ∩(∁R B )=A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4)解析 首先用区间表示出集合B ,再用数轴求A ∩(∁R B ).解x 2-2x -3≤0得-1≤x ≤3,∴B =[-1,3],则∁R B =(-∞,-1)∪(3,+∞),∴A ∩(∁R B )=(3,4). 答案 B2.(2012·福建)下列命题中,真命题是A .∃x 0∈R ,0e x≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是a b=-1 D .a >1,b >1是ab >1的充分条件 解析 应用量词和充要条件知识解决.对于∀x ∈R ,都有e x>0,故选项A 是假命题;当x =2时,2x=x 2,故选项B 是假命题;当a b =-1时,有a +b =0,但当a +b =0时,如a =0,b =0时,a b无意义,故选项C 是假命题;当a >1,b >1时,必有ab >1,但当ab >1时,未必有a >1,b >1,如当a =-1,b =-2时,ab >1,但a 不大于1,b 不大于1,故a >1,b >1是ab >1的充分条件,选项D 是真命题. 答案 D考题分析高考对集合的考查主要集中在集合的运算与集合间关系的判定与应用,常用逻辑用语考查知识面十分广泛,可以涵盖函数、立体几何、不等式、向量、三角函数等内容.考查的形式多为选择题,难度不大,但需掌握基本知识与方法.网络构建高频考点突破考点一:集合的概念与运算【例1】(1)(2012·朝阳二模)已知集合A={0,1},B={-1,0,a+3},且A⊆B,则a等于A.1 B.0 C.-2 D.-3(2)(2012·西城二模)已知集合A={x| log2x<1},B={x| 0<x<c,其中c>0}.若A∪B =B,则c的取值范围是A.(0,1] B.[1,+∞) C.(0,2] D.[2,+∞)(3)(2012·宜春模拟)设全集U=R,A={x| 2x(x-2)<1},B={x| y=ln(1-x)},则图中阴影部分表示的集合为A.{x| x≥1} B.{x| 1≤x<2}C.{x| 0<x≤1} D.{x| x≤1}[审题导引] (1)利用子集的定义求解;(2)解出A,然后借助于数轴解决;(3)观察图形,求得阴影部分表示的集合,解出A,B并求解.[规范解答] (1)∵A⊆B,∴a+3=1,∴a=-2.(2)解不等式log2x<1,得0<x<2,∴A={x| 0<x<2}.∵A∪B=B,∴A⊆B,∴c≥2.(3)解不等式2x(x-2)<1=20得0<x<2,∴A={x| 0<x<2}.又易知B={x| x<1},图中阴影部分表示的集合为A∩(∁U B)={x| 0<x<2}∩{x| x≥1}={x| 1≤x<2}.[答案] (1)C (2)D (3)B【规律总结】解答集合间的关系判定与运算问题的一般思路(1)正确理解各个集合的含义,认清集合元素的属性、代表的意义. (2)根据集合中元素的性质化简集合.(3)在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化. 一般规律为:①若给定的集合是不等式的解集,用数轴求解; ②若给定的集合是点集,用数形结合法求解; ③若给定的集合是抽象集合,用Venn 图求解.[易错提示] (1)准确理解集合中代表元素的属性,以求解有关不等式(如例1中的第(3)题,集合B 表示函数y =ln(1-x )的定义域).(2)在借助于数轴进行集合的运算时,要标清实点还是虚点,避免漏解或增解(如例1中的第(2)题). 【变式训练】1.(2012·三明模拟)已知集合M ={m ,-3},N ={x | 2x 2+7x +3<0,x ∈Z },如果M ∩N ≠∅,则m 等于A .-1B .-2C .-2或-1D .-32解析 由2x 2+7x +3<0,得-3<x <-12,又x ∈Z ,∴N ={-2,-1}, 又M ∩N ≠∅,∴m =-2或-1.答案 C2.(2012·海淀二模)设全集为R ,集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x 24+y 2=1,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -3x +1≤0,则集合⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎝ ⎛⎭⎪⎫x +322+y 2=14可表示为 A .M ∪NB .M ∩NC .(∁R M )∩ND .M ∩(∁R N )解析 根据椭圆的有界性知M ={x | -2≤x ≤2},解不等式x -3x +1≤0,得N ={x | -1<x ≤3}.由圆的定义可得⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎝ ⎛⎭⎪⎫x +322+y 2=14 ={x | -2≤x ≤-1},即⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎝ ⎛⎭⎪⎫x +322+y 2=14=M ∩(∁R N ). 答案 D考点二:命题与逻辑联结词【例2】(1)(2012·潍坊模拟)命题:“若x2<1,则-1<x<1”的逆否命题是A.若x2≥1,则x≥1,或x≤-1B.若-1<x<1,则x2<1C.若x>1,或x<-1,则x2>1D.若x≥1,或x≤-1,则x2≥1(2)若p是真命题,q是假命题,则A.p∧q是真命题 B.p∨q是假命题C.⌝p是真命题 D.⌝q是真命题[审题导引] (1)按照四种命题的定义即可解决;(2)由复合命题的真值表判定.[规范解答] (1)∵“-1<x<1”的否定是x≥1,或x≤-1.又由逆否命题的定义,∴原命题的逆否命题为:若x≥1,或x≤-1,则x2≥1.(2)由条件知,⌝p是假命题,⌝q是真命题,故选D.[答案] (1)D (2)D【规律总结】命题真假的判定方法(1)一般命题p的真假由涉及到的相关交汇知识辨别.(2)四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无必然联系.(3)形如p或q、p且q、⌝p命题的真假根据真值表判定.【变式训练】3.(2012·衡水模拟)命题A:若函数y=f(x)是幂函数,则函数y=f(x)的图象不经过第四象限.那么命题A的逆命题、否命题、逆否命题这三个命题中假命题的个数是A.0 B.1 C.2 D.3解析易知命题A是真命题,其逆否命题也是真命题,A的逆命题与否命题都是假命题.答案 C4.(2012·石家庄模拟)有下列命题:p:函数f(x)=sin4x-cos4x的最小正周期是π;q:已知向量a=(λ,1),b=(-1,λ2),c=(-1,1),则(a+b)∥c的充要条件是λ=-1;r:若111adx x =⎰(a>1),则a=e.其中所有的真命题是A.r B.p,q C.q,r D.p,r解析 ∵f(x)=sin 4x -cos 4x=(sin 2x +cos 2x )(sin 2x -cos 2x )=-cos 2x , ∴T =π,故p 是真命题;∵a +b =(λ-1,λ2+1),(a +b )∥c , 则λ2+λ=0,即λ=-1或λ=0, 故q 是假命题;⎠⎛1a1x d x =ln x 1|a=ln a =1, ∴a =e ,故r 是真命题. 答案 D考点三:量词、含有量词的命题的否定【例3】下列命题中是假命题的是A .∀x ∈⎝⎛⎭⎪⎫0,π2,x >sin xB .∃x 0∈R ,sin x 0+cos x 0=2C .∀x ∈R, 3x>0 D .∃x 0∈R ,lg x 0=0[审题导引] 对全称命题与特称命题真假的判定,要结合具体的知识进行,要特别注意思维的严谨性.[规范解答] ∀x ∈⎝ ⎛⎭⎪⎫0,π2,设单位圆与角x 的终边交于点P (m ,n ),与m 轴正半轴交于点A (1,0),作PM ⊥m 轴于M ,由正弦函数的定义,知MP =sin x , AP 的长l =x ,由S扇形OAP>S △OAP ⇒x >sin x ,故∀x ∈⎝ ⎛⎭⎪⎫0,π2,x >sin x ,即选项A 是真命题;sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2,所以不存在x 0∈R ,使sin x 0+cos x 0=2,故选项B 是假命题.故选B.(事实上,由指数函数的值域∀x ∈R,3x>0是真命题;取x 0=1,lg x 0=lg 1=0,故∃x 0∈R ,lg x 0=0是真命题.) [答案] B【规律总结】全称命题与特称命题的判断方法对于特称命题的判断,只要能找到符合要求的元素使命题成立,即可判断该命题成立;对于全称命题的判断,必须对任意元素证明这个命题为真,也就是证明一个一般性的命题成立时,方可证明该命题成立,而只要找到一个特殊元素使命题为假,即可判断该命题不成立. [易错提示] 注意对数函数、指数函数、三角函数、不等式、方程等知识在解题中的应用,在判断由这些知识组成的全称或者特称命题时,要特别注意对数函数的定义域、指数函数的值域、三角函数的定义域和周期性、不等式成立的条件等.【变式训练】5.(2012·朝阳二模)若命题p :∀x ∈R ,1x 2+x +1>0,则其否定是_______________.解析 ∵不等式1x 2+x +1>0的隐含条件为1x 2+x +1>0且x 2+x +1≠0, ∴綈p :∃x ∈R ,1x 2+x +1<0,或x 2+x +1=0.答案 綈p :∃x ∈R ,1x 2+x +1<0,或x 2+x +1=06.命题p 1:∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫13x;p 2:∃x ∈(0,1),12log x >13log x ;p 3:∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >12log x ;p 4:∀x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x<13log x ,其中的真命题是A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析 取x =12,则12log x =1,1log x =log 32<1,p 2正确;当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x<1,而13log x >1,p 4正确.答案 D考点四:充分必要条件【例4】(1)(2012·黄冈模拟)已知条件p :x ≤1,条件q :<1,则綈p 是q 的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既非充分也非必要条件(2)(2012·丰台二模)已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),若⌝p 是⌝q的充分不必要条件,则实数m 的取值范围是A .(0,9)B .(0,3)C .(0,9]D .(0,3] [审题导引] (1)求出綈p 与q 中x 的范围后,再判断;(2)先解p 与q 中的不等式,然后利用数轴求解.[规范解答] (1)⌝p :x >1,又易知q :x <0或x >1, ∴⌝p 是q 的充分不必要条件.(2)解不等式⎪⎪⎪⎪⎪⎪1-x -13≤2得p :-2≤x ≤10,又x 2-2x +1-m 2=[x -(1-m )][x -(1+m )]≤0, 且m >0,∴q :1-m ≤x ≤1+m .∵⌝p 是⌝q 的充分不必要条件,∴q 是p 的充分不必要条件.由图得⎩⎪⎨⎪⎧1-m >-21+m ≤10m >0或⎩⎪⎨⎪⎧1-m ≥-21+m <10m >0∴0<m ≤3.[答案] (1)A (2)D 【规律总结】充分必要条件的判定方法(1)充要关系的判断就是在两个条件之间互推,当问题为A 是B 的什么条件时,如果A ⇒B ,反之不成立的话,则A 是B 的充分不必要条件(B 是A 的必要不充分条件);如果B ⇒A ,反之不成立的话,则A 是B 的必要不充分条件(B 是A 的充分不必要条件);若A ⇔B ,则A ,B 互为充要条件.(2)充要关系可以从集合的观点理解,即若满足命题p 的集合为M ,满足命题q 的集合为N ,则M 是N 的真子集等价于p 是q 的充分不必要条件,N 是M 的真子集等价于p 是q 的必要不充分条件,M =N 等价于p 和q 互为充要条件,M ,N 不存在相互包含关系等价于p 既不是q 的充分条件也不是q 的必要条件[易错提示] 充分必要条件的判断应注意问题的设问方式,我们知道:①A 是B 的充分不必要条件是指:A ⇒B 且B ¿A ;②A 的充分不必要条件是B 是指:B ⇒A 且A ¿B .在解题中一定要弄清它们的区别,以免出现错误. 【变式训练】7.(2012·咸阳二模)下面四个条件中,使a >b 成立的充分而不必要的条件是 A .a >b +1 B .a >b -1 C .a 2>b 2D .a 3>b 3解析 ∵a >b +1>b ,∴a >b +1是a >b 的充分条件, 但当a >b 时不能推出a >b +1,故选A. 答案 A8.(2012·成都模拟)已知p :|x -10|+|9-x |≥a 的解集为R ,q :1a<1,则綈p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 ∵|x -10|+|9-x |≥1, 且|x -10|+|9-x |≥a 的解集为R , ∴p :a ≤1,则⌝p :a >1;解不等式1a<1,得q :a <0或a >1,∴⌝p 是q 的充分不必要条件.答案 A名师押题高考【押题1】设全集U =R ,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪x 3-x ≥0,B ={x ∈Z | x 2≤9},则图中阴影部分表示的集合为A .{1,2}B .{0,1,2}C .{x | 0≤x <3}D .{x | 0≤x ≤3}解析 图中阴影表示的是A ∩B ,化简集合:A=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪x x -3≤0=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪⎩⎪⎨⎪⎧ x x -3≤0,x -3≠0={x ∈Z | 0≤x <3}={0,1,2},B ={x ∈Z | -3≤x ≤3}={-3,-2,-1,0,1,2,3},所以A ∩B ={0,1,2},故选B.答案 B[押题依据] 高考对集合的考查集中在三个方面:集合的表示方法,元素的性质特征与集合的运算.本题与不等式的解法交汇命题、综合性较强.重点考查集合的运算,难度不大,但重点突出,立意新颖,故押此题.【押题2】已知命题p 1:当x ,y ∈R 时,|x +y |=|x |+|y |成立的充要条件是xy ≥0. p 2:函数y =2x +2-x 在R 内为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(⌝p 1)∨p 2和q 4:p 1∧(⌝p 2)中,真命题是A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4解析 解法一 p 1是真命题,事实上:(充分性)若xy ≥0,则x ,y 至少有一个为0或两者同号,∴|x +y |=|x |+|y |一定成立.(必要性)若|x +y |=|x |+|y |,两边平方,得x 2+2xy +y 2=x 2+2|xy |+y 2,∴xy =|xy |.∴xy ≥0.故p 1为真.而对于p 2:y ′=2x ln 2-12x ln 2=ln 2⎝⎛⎭⎪⎫2x -12x ,当x ∈[0,+∞)时,2x≥12x ,又ln 2>0,∴y ′≥0,函数单调递增;同理得当x ∈(-∞,0)时,函数单调递减,故p 2是假命题. 由此可知,q 1真,q 2假,q 3假,q 4真.故选C.解法二 p 1是真命题,同解法一.对p 2的真假可以取特殊值来判断,如取x 1=1<x 2=2,得y 1=52<y 2=174;取x 3=-1>x 4=-2,得y 3=52<y 4=174,即可得到p 2是假命题,由此可知,q 1真,q 2假,q 3假,q 4真.故选C.解法三 p 1是真命题,同解法一.对p 2:由于y =2x+2-x≥22x ·2-x=2(等号在x =0时取得),故函数在R上有最小值2,故这个函数一定不是单调函数,p2是假命题,由此可知,q1真,q2假,q3假,q4真.故选C.答案 C[押题依据] 常用逻辑用语重要的数学基础知识,是高考考查的热点,本题综合考查了命题的真假判断,充分必要条件及逻辑联结词,题目难度适中,体现了对基础知识,重点知识的考查,故押此题.。