复杂网络9讲-加权网络教学教材
软件执行过程的加权复杂网络

关键词 : 复杂 网络 ; 小世界效应 ; 无标度特性 ; 加权 网络 ; 关键路径
复杂网络 PPT课件

二十一世纪(二十世纪末),系统成为主要的研 究对象,整合成为主要方法;
整合的方法在于了解细部以后,研究“如何组合”的
问题,这导致复杂网络结构的研究; 如:普列高津的耗散结构理论、哈肯的协同学、混沌 和复杂系统理论、系统生物学、…
复杂系统与复杂网络
复杂系统与复杂网络的概念
系统:集合(具体元素)+ 系统的结构是什么?
统失控等一系列不同网络间的连锁反应。
(4)网络分层结构的复杂性
行政管理网络是具有层结构的,多数网络都有节点的
分层结构,只是在许多网络中没有意识到是一种造成 复杂性的重要结构。
对复杂网络的理解
复杂网络是二十一世纪科学研究的思想和理念, 它启发我们用什么观点理解这个世界:整个世界 以及组成世界的任何细部都是由网络及其变化形 成的; 复杂网络也是研究复杂系统的一种技术和方法, 它关注系统中个体相互作用的拓扑结构,是理解 复杂系统性质和功能的基本方法。
复杂网络 Complex Network
为什么研究复杂网络?
二十一世纪涌现的新现象
互联网是怎样“链”接的? 从一个页面到另一个页面,
平均需要点击多少次鼠标?
美国航空网
城市公共交通网
为什么两者结构差异如此之大? 这种差异是必然还是偶然的? 城市交通涌堵的原因是什么?
• 非典发现在广州,为什么却 在北京爆发呢? • 传染病是怎样扩散和消失的?
互联网 病毒传播网
计算机病毒是怎样传播的? 为什么“好事不出门,坏事 行千里”呢?……
神经网络
生态网络
社交网络
电力网络
电信网络航空网络Biblioteka Facebook 全球友谊图
关于复杂网络的课程设计

关于复杂网络的课程设计一、课程目标知识目标:1. 学生能够理解复杂网络的定义、特点及其在现实生活中的应用;2. 学生能够掌握复杂网络的基本概念,如度、聚类系数、最短路径等;3. 学生能够了解复杂网络的主要模型及其生成机制;4. 学生能够运用复杂网络的原理分析简单的社会、技术、生物等网络现象。
技能目标:1. 学生能够运用复杂网络分析方法,对给定的网络数据进行处理和分析;2. 学生能够运用相关软件工具绘制复杂网络的图形,并对其进行可视化展示;3. 学生能够运用复杂网络的统计指标,评估网络的结构特征和功能特性。
情感态度价值观目标:1. 学生对复杂网络产生兴趣,认识到其在各个领域的广泛应用和重要意义;2. 学生能够培养批判性思维,对复杂网络相关现象进行理性分析和判断;3. 学生能够树立团队协作意识,通过合作交流,提高解决问题的能力。
课程性质:本课程属于选修课程,旨在拓展学生的知识视野,提高学生的实践能力和创新意识。
学生特点:学生处于高中阶段,具有一定的数学基础和逻辑思维能力,对新鲜事物充满好奇心。
教学要求:结合课本内容,注重理论与实践相结合,关注学生的个体差异,提高学生的动手操作能力和实际问题解决能力。
通过本课程的学习,使学生能够掌握复杂网络的基本概念和方法,为后续相关领域的学习和研究打下基础。
同时,培养学生的团队协作、批判性思维和情感态度价值观,为学生的全面发展奠定基石。
二、教学内容本课程依据课程目标,结合课本第四章“复杂网络”相关内容,进行以下教学安排:1. 复杂网络基本概念:介绍复杂网络的定义、分类及其特点;讲解度、聚类系数、最短路径等基本统计指标。
2. 复杂网络模型:分析 Erdős-Rényi 模型、Barabási-Albert 模型等典型复杂网络模型及其生成机制。
3. 复杂网络的实证分析:以实际社会、技术、生物等网络为例,运用复杂网络分析方法进行实证研究。
4. 复杂网络的算法与应用:讲解复杂网络中的关键算法,如最短路径算法、社区发现算法等,并探讨其在实际应用中的价值。
复杂网络的基础知识

第二章复杂网络的基础知识2.1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。
如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。
如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。
图2-1 网络类型示例(a) 无权无向网络(b) 加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。
如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。
如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。
图2-2 规则网络示例(a) 一维有限规则网络(b) 二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length )、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。
2.2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。
定义网络的直径(diameter )为网络中任意两个节点之间距离的最大值。
即}{max ,ij ji l D = (2-1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值。
即∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2)其中N 为网络节点数,不考虑节点自身的距离。
(完整版)复杂网络的基础知识

第二章复杂网络的基础知识2。
1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。
如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。
如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。
图2—1 网络类型示例(a) 无权无向网络 (b)加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。
如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。
如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。
图2—2 规则网络示例(a)一维有限规则网络 (b)二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length)、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。
2。
2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。
定义网络的直径(diameter)为网络中任意两个节点之间距离的最大值.即}{max ,ij ji l D = (2—1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值.即 ∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2) 其中N 为网络节点数,不考虑节点自身的距离.网络的平均路径长度L 又称为特征路径长度(characteristic path length)。
《复杂网络基础与应用》课程教学大纲

Complex network is a perspective and method to study complex system. It is a way to understand the nature and function of complex system by focusing on the topological structure of individual interaction in the system. Complex network research has penetrated into life science, engineering, mathematics, finance, humanities and many other disciplines. The scientific understanding of the quantitative and qualitative characteristics of complex network has become an extremely important challenge.
《复杂网络基础与应用》是计算机科学与网络工程学院各专业的博士研究生的专业课。本课程是一门研究方法类课程,为博士研究生提供研究复杂网络的具体内容、方法和工具,系统介绍复杂网络领域的基本理论框架,涵盖了复杂网络中的基本概念、网络的拓扑结构性质、小世界网络、无标度网络、社团结构、社会网络结构、博弈、传播动力学等关于复杂网络的研究。由于复杂网络研究具有很强的跨学科特色,并且新的问题和研究成果不断涌现,因此本课程重点着眼于复杂网络研究中经典的理论研究,同时介绍一些最新研究进展。旨在通过介绍复杂网络的基础理论及其应用研究,使学生掌握复杂网络的基本理论及其最新的研究进展,掌握一些相应的网络分析方法,基于复杂网络的视角来认识世界,并且能够联系实际来培养学生的系统思维以及创新意识,为博士研究生在复杂网络及其相关研究领域的研究指明方向,并通过阅读文献,了解复杂网络在相关学科的应用,为进一步的科学研究、工程应用提供理论与技术准备。
加权网络的常用统计量

!加权网络的常用统计量
! !节点强度特征 加权网络最突出的特征是连边的强度值是异质 的$ 这种异质性刻画了系统中各成分之间交互作用 是系统各种非线性和自组织行为等复杂统 的差异$ 计特征的重要原因$ 同时$ 权重和拓扑之间的非相关 性也为观察这类系统的组织结构提供了互补视角% 例如$ 细胞网络拓扑的重要性是人所共知的$ 但是$ 细胞网络是由基因& 蛋白质和其它调节细胞行为的 分子之间通过相互作用产生的复杂网络$ 最近研究 发现很 多 重 要 的 信 息 都 蕴 含 于 相 互 作 用 的 强 度
$
而吕琳媛 W L等分析了加权网络中的同步问题 $ + ; ! 和周涛研究了链路预测中弱连接的强作用* % 然而$ 相对于无权网络研究的数量$ 加权网络的
+ ; " 研究成果实际上是凤毛麟角* 尽管我们都知道$ %
的% 节点强度分布 B! 度量了节点强度为 $ 的概 $" 率$ 它和度分布 B! 以及边权分布 B! 一起$ 为 Y" [" 我们观察加权网络提供了多个视角% 比如在有些网 络中$ 节点强度分布 B! 以及边权分布 B! 都呈 $" ["
D 7 5 B 8 + 5 1 3Q 1 1 2 4 1 2 : 4A GL + 2 * 1 + BX + 1 @ A > M 4 E
$ $ 8 " 92 : ' + * 3 ' / " # $< & + = & 56 * 3 + = & !4 !6 ; (
复杂网络概述 ppt课件

星形耦合网络:有一个中心点,其余N-1个点都只与这
个中心点连接,其平均路径长度为
Lstar 2
聚类系数为
C
star
2( N 1) 2 N ( N 1)
N 1 1 N
ppt课件
( N ) ( N )
16
随机图
随机图是与规则网络相反的网络,一个典型模型 是 Erdos 和 Renyi 于 40 多年前开始研究的随机图模 型。 假设有大量的纽扣( N》1 )散落在地上,并以相 同的概率p给每对纽扣系上一根线。这样就会得到 一个有 N 个节点,约 pN(N-1)/2 条边的 ER 随机图的 实例。
ppt课件 3
3
③ 小世界实验
20世纪60年代美国哈佛大学的社会心理学家Stanley Milgram通过
一些社会调查后给出的推断是:地球上任意两个人之间的平均距
离是6。这就是著名的“六度分离”(six degrees of separation)推断。 为了检验“六度分离”的正确性,小世界实验—Bacon数。美国
ppt课件
9
小世界实验---Erdos数
Erdos从来没有一个固定的职位,从来不定居在一 个地方,也没有结婚,带着一半空的手提箱,穿 梭于学术研讨会,浪迹天涯,颇富传奇色彩。有 人称他为流浪学者(wande ring scholar)。
他效忠的是科学的皇后, 而非一特定的地方。各 地都有热心的数学家提供他舒适的食宿,安排他 的一切,他则对招待他的主人,给出一些挑战性 的数学难题,或给予研究上的指导做为回馈。 他可以和许多不同领域的数学家合作。数学家常 将本身长久解决不了的问题和他讨论,于是很快 地一篇论文便诞生了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在无权网络中:
定义节点i的近邻平均度 k nn,i ,得到度为 k 的所有节点的近邻平均度 显然 Knn(k) 是 k 的函数。那么度相关性可以通过函数 Knn(k)
的单调性得到:
如果 Knn(k) 是无单调性,那么该网络没有度相关性。 如果 Knn(k)是增函数,那么该网络是同向匹配网络。(度大的节点倾
我们可以根据不同的作用关系做三个网络:合作网络,引文网络,致谢网络. 但即便对于同一个网络比如引文网络,引文次数不同所代表的相互作用 关系不同。(无权网中能表现相互作用的强度吗?)
这时必须考虑赋边权,表示相联系的强度.
另外,我们希望在同一个网络中研究这三个层次的相互作用,还应该考虑 加权的方式.
当系统中包含同一属性的不同层次的关系的时候,必须仔细研究加权方 式.
加权的方式:
根据相关的物理量(例如:电阻网络边上的权值代表电 阻值,邮递员问题中的距离)
根据相互作用的某种属性(例如:科学家通过文献相互 作用,把引文的次数作为权重)
边权按照意义划分: 相异权: 权值越大,两点之间的距离越大,关系越疏
远.(例:邮递员问题中的距离) 相似权: 权值越大,两点之间的距离越小,关系越亲
此外还发现给定两端度值的边的权重平均值和两个端点的 度值的关系为 ij ~ (kik j ) ,其中 0.5。除了全局流量 分布的非均匀性外,计算边权差异性 Yi 还可以观察到在 单个代谢物的层面上边权分布的非均匀性。在此网络上对 出度和入度相同的顶点计算边权差异性,发现它们都服从
Watts-Strogatz 定义的聚类系数:
aij a jk aki
C (i) j,k
aij aki
j ,k
加权网的聚类系数:
wij w jk wki
C
w H
j,k
m ax ij
wij
wij wik
j,k
一些加权网络的实证结果
• 1.生物网络
Almaas等人将酵母中的新陈代谢反应看作加权网络进行 研究,把从代谢物i到j的流量看作边权 ,观察到流量具有 高度非均匀性,在理想的培养下条件下,边权的分布符合 幂律分布 p()(0 ) 其中 0 0.0003 , 1.5
Barat 定义:
CBw
1 si (ki 1)
j,k
wij
2
w
jk
aij
a
jk
aki
分母上为单位权乘以最大可能的三角形的数目,分子上是实际三角形数
目乘以与i相连的边的权重的平均值
Onnela 定义:
Cow (i)
1 ki (ki 1)
1
(wij wjk wki ) 3
j,k
wij
其中 wij 为网络中经最大权重标准化后的数值
密.(例:科学家合作网中,把次数作为权重,得到相似 权) 注意: 在计算两点间的距离和聚类系数时,边权的意 义不同,计算方式也不同.
2.加权网络上的统计量
权相关性 最短路径 集聚系数
权相关性
1.基本概念:
点权:无权网中节点度的自然推广
点权 Si wij ,即与节点i i关联的边权之和。( 其中Ni 是节点i
结论2:差异性 Yi与度 k的关系
如果与顶点i关联的边的权重值差别不大,则 Yi 与
1 ki
成正比。
Yi
[ wij Sij ]2 w ki
ki
wij 2 1
w 2 ki2
ki
如果权值相差较大,那么只有一条边的权重起主要作用,则
Yi 1
2.相关性分析 加权网络需要进行 度相关性分析 点权相关性分析 权与度相关性分析
Petter Holme 分析加权网络的聚类系数,指出它应该满足以下几条要求:
1. C w [0,1]
2.加权网退化为无权网时,聚类系数应与Watts-Strogatz定义的聚类系数的计 算结果一致。
3.权值为0表示该边不存在。
4.包含节点i的三角形中三条边对 C w (i) 的贡献应与边的权重成正比。
时,具有较大权重的边倾向于连接具有较大度值的点
当
kw nn,i
knn,i
时,具有较大权重的边倾向于连接具有较小度值的点
所以,对于相互作用强度(权重)给定的边,
kw nn,i
表明它与具有不同度值的顶
点之间的亲和力。
• 最短路径
1.加权网络中两点之间的距离与权重的关系:
距离是权重的某种函数,这时需要看权重是相似权还是相异权。
无权网:边数最少的路径
最短路径
加权网:因为距离不满足三角不等式,所以两边距离之和不一定大于第三边.
边数最少的路径
最短路径
网络的其他全局统计量,如介数,可以在加权最短路径的基础上进行计算
集聚系数
节点i的聚类系数 Ci 反映了该节点邻点的联系的程度。 Ci 越大,说明 该点的邻接点之间的联系越紧密。
加权网络中的聚类系数有多种定义方式;
向于与度大的节点相连)
如果 Knn(k) 是减函数,那么该网络是负向匹配网络。
knn (k)
k nn,i
1
1
knn,i
ki
kj
jNi
ki
aij k j
jV
在加权网络中:
定义节点的加权平均近邻度
kw nn,i
1 Si
aij wij k j
jN j
考虑权与度的相关性
当
kw nn,i
knn,i
相异权:定义两点之间的距离 lij wij
相似权:令
lij
1 wij
假设顶点i和k分别通过两条权重分别为
wij
间的距离。
和 wjk 的边相连,现求i与k之
对于相异权: lik wij w jk
对于相似权:lik
1 1 1
wij
w jk
2.最短路径:两点之间所有连通的路径中距离之和最小的一条或几条路径。
第八讲 加权网络
2010.11.13 李凯凯
主要内容: • 8.1 加权网络的统计性质 • 8.2 加权网络的演化模型 • 8.3 权重对网络结构性质的影响
8.1加权网络的统计性质
1. 加权网络的加权的必要性与方式 2. 加权网络上的统计量
1. 网络加权的必要性与赋权方式
网络加权的必要性:
例:为研究某一新思想的在一个学术领域的产生传播,研究科学家之间通 过文献相互作用的网络。相互作用分为三个层次:合作,引文,致谢 (无权 网中能体现相互作用的三个层次吗?) 。
的近邻集合)
jNi
单权位重权分:布的Ui 差 Sk异ii, 性顶:点Yi连接jN的i[ wS平iij ]均2 表权示重与. i相连的边权分布的离散程度。
拥有相同点权与单位权的两个节点相比,差异性越大,离散程度越大。
点强度分布P(s)与度分布的作用类似,主要是考察节点具有点强度s的 概率。
边权分布P(w)代表一条边具有权重w的概率。