液压传动工作原理与系统组成
液压传动原理及其系统组成

复杂或管路较长取大值,反之取小值。
上一页 下一页 返回
1.3液压传动系统的压力和流量
1.3.2流量、流量损失和平均流速
流量和平均流速是描述油液流动时的两个主要参数。液体在 管道中流动时,通常将垂直于液体流动方向的截面称为通流 截面。
1.流量
流量就是在单位时间内流体通过一定截面积的量。这个量
上一页
返回
1.3液压传动系统的压力和流量
1.3.1 液压系统中的压力
1.压力的概念 油液的压力是由油液的自重和油液受到外力作用所产生的。
在液压传动中,与油液受到的外力相比,油液的自重一般很 小,可忽略不计。以后所说的油液压力主要是指因油液表面 受外力(不计入大气压力)作用所产生的压力,即相对压力或 表压力。 如图1 -3 (a)所示,油液充满于密闭的液压缸左腔,当活塞 受到向左的外力F作用时,液压缸左腔内的油液(被视为不可 压缩)受活塞的作用,处于被挤压状态,同时,油液对活塞有 一个反作用力FP而使活塞处于平衡状态。不考虑活塞的自重, 则活塞平衡时的受力情形如图1-3 (b)所示。
动,电动机做旋转运动。
上一页 下一页 返回
1.1液压传动原理及其系统组成
3.控制元件 包括压力阀、流量阀和方向阀等,它们的作用是根据需要
无级调节液动机的速度,并对液压系统中工作液体的压力、 流量和流向进行调节控制。 4.辅助元件 除上述三部分以外的其他元件,包括压力表、滤油器、蓄 能装置、冷却器、管件各种管接头、高压球阀、快换接头、 软管总成、测压接头、管夹等及油箱等。 5.工作介质 工作介质是指各类液压传动中的液压油或乳化液,它经过 油泵和液动机实现能量转换。
设备使用寿命长;
上一页 下一页 返回
1.1液压传动原理及其系统组成
液压传动系统的工作原理及组成

液压传动系统的优点和局限性
优点
• 高效和可靠 • 精确控制和高精度 • 适应性强和可扩展 • 重载能力强和冲击吸收 • 维护成本低和寿命长
局限性
• 液压泵和系统成本高 • 油液污染和泄漏风险 • 噪声和振动产生 • 操作和维护较为复杂
2 流量原理
通过控制液压油的流量, 实现对执行机构力和速度 的调节。
3 容积效应
液体是非可压缩的,通过 其容积效应来传递力和实 现机械运动。
液压传动系统的组成部分
液压泵和电动机
液压泵负责向液压系统提供所需的压力,而电动机提供动力驱动液压泵。
液压油箱和油液
液压油箱储存和冷却液压油,而液压油则传递压力和润滑系统中的移动部件。
液压阀和控制器
液压阀用于控制液压系统中的流量、压力和方向,控制器则对液压系统进行自动化和远程控 制。
液压传动系统的工作流程
1
输入能量
电动机向液压泵提供动力,液压泵产生
液压油流动
2
压力。
液压油在液压系统中流动,传递压力和
控制动作。
3
执行机构动作
液压油的压力通过执行机构,实现所需 的力和运动。
常见的液压传动系统应用领域
液压传动系统的工作原理 及组成
液压传动系统是一种利用液压力将能量传递到执行机构的工程技术系统。它 通过液压油的压力来控制和传递力和运动。
液压传动系统的定义
液压传动系统是一种工程技术系统,利用压缩油液传递能量并实现力和运动的控制。
ห้องสมุดไป่ตู้
液压传动系统的基本工作原理
1 压力原理
液压传动绪论..

如以τ表示液体的内摩擦切应力,即液层间单位面积上的内 摩擦力,则有
F du μ A dy
上式表达的是牛顿的液体内摩擦定律。在液体静止时, 由于du/dy=0,液体内摩擦力F为零,因此,静止的液体不呈 现黏性。
(1)动力黏度u
dy du
由此可知动力黏度的物理意义是:液体在单位速度梯度下 流动或有流动趋势时,相接触的液层间单位面积上产生的内摩 擦力。动力黏度μ又称绝对黏度。动力黏度的法定计量单位为 Pa· s(1 Pa· s=1 N· s/m2)。
1.对液压油的性能要求
① 适宜的黏度和良好的黏温特性; ② 润滑性能良好; ③ 热稳定性和氧化稳定性良好; ④ 防腐性、抗磨性和防锈性良好; ⑤ 质量纯净,不含或含有极少量的杂质、水分和水溶性 酸碱等;
⑥ 抗乳化性良好(液压油乳化会降低其润滑性,使酸性
增加、使用寿命缩短); ⑦ 在高温环境下具有较高的闪点,起防火作用;在低温
4.液体的可压缩性
液体受压力作用而体积缩小的性质称为液体的可压缩性。 可压缩性用体积压缩系数k表示,并定义为单位压力变化下的 液体体积的相对变化量。
1 V k p V
液体的压缩系数k的倒数称为液体的体积弹性模量,用K 表示。即
1 pV K k V
体积弹性模量K表示液体产生单位体积相对变化量时所需 要的压力增量。在使用中,可用K值来说明液体抵抗压缩能力 的大小。一般矿物油型液压油的体积弹性模量为K=(1.4~2) ×103 MPa。它的抗压缩性是钢的100~150倍,故一般可认为油 液是不可压缩的。
2.液压传动的缺点
① 液压系统中存在着油液泄漏,油液的可压缩性、油管的 变形等都会影响运动传递的准确性,故不宜用于对传动比要求 精确的场合。 ② 由于液压油对温度比较敏感,油温变化,容易引起工作 性能的改变,故液压传动系统不宜用于温度变化范围较大的场
液压传动

第一章1.液压传动的概念原理1.1.1概念液压传动是以密闭管道中受压液体为工作介质,进行能量转换,传递,分配,称之为液压技术,有称之为液压传动。
1.1.2工作原理1)帕斯卡原理即“施加于密封容器内平衡液体中的某一点的压力等值地传递到全部液体”因此有F1/A1=P1=P=P2=F2/A22)连续性原理如果不考虑液体的可压缩性,泄露和构件的变形,则挤压出的液体的体积等于推动上移的体积。
3)能量守恒定律略1.1.3液压系统的组成部分及作用若干液压元件和管路组成以完成一定动作的整体称液压系统。
(1)动力元件又称液压泵(2)执行元件见液压能转换成机械能的装置。
它是与液压泵作用相反的能量转换装置,是液压缸和液压马达的总称。
(3)控制元件液压系统中控制液体压力,流量和流动方向的元件总称为控制元件。
(4)辅助元件包括油箱管道管接头滤油器蓄能器加热器冷却器等。
(5)工作介质为液体通常是液压油。
1.2液压传动的主要特点及其应用1.2.1液压传动的主要优点(1)可实现大范围地无极调速,调速功能不受功率大小的限制(2)液压传动具有质量轻体积小惯性小响应快等特点。
(3)液压传动均匀平稳,负载变化时速度稳定。
(4)可实现过载自动保护。
(5)可根据设备要求与环境灵活安装,适应性强。
(6)以液压油为工作介质,具有良好的润滑条件。
(7)液压元件易于标准化、系列化、通用化,便于设计、制造和推广应用。
1.2.2液压传动的主要缺点(1)效率较低(2)泄露问题(3)对污染敏感(4)检修困难(5)对温度敏感(6)对元件加工的精确度要求高第二章工作介质2.1液压油的主要物理特性2.1.1密度和重度定义:密度(重度)的定义为单位体积液体的质量(重量)。
2.1.1黏性和黏度1)牛顿黏性定律——黏度表达式t=f/a=udu/daa——相对运动层面积f——相对运动层内内摩擦力t——液体内部切应力(单位面积上的内摩擦力)du/dy——速度梯度u——比例系数称动力黏度2)黏度的表示方法和单位(1)动力黏度上式中的u为油液种类和温度决定的比例系数,他表示液体黏性的内摩擦程度,称动力黏度或绝对黏度。
液压传动的工作原理及组成

液压传动的工作原理及组成液压传动是指利用液体传递动力和控制信号的一种传动方式。
它广泛应用于工程机械、航空航天、冶金、矿山、化工等各个领域。
本文将详细介绍液压传动的工作原理及组成。
一、液压传动的工作原理液压传动是基于压力传力原理,在系统中通过液体(通常是油)的压力来实现动力传递和控制。
液压传动的工作原理可以简单地概括为以下几个步骤:1. 压力产生:液压系统中的液体被泵送至高压腔,通过泵来产生一定的压力。
2. 压力传递:高压液体通过管路传递至执行元件(液压缸或液压马达),使其产生一定的力或运动。
3. 控制调节:液压系统通过控制阀控制压力和流量等参数,实现对执行元件的精确控制。
4. 动力转换:通过执行元件的运动或力来实现所需的机械工作。
液压传动的工作原理主要依赖于压力的传递和液体的不可压缩性。
当液体受到外力作用时,由于其不可压缩性,将会在液体内产生均匀的压力,从而实现力的传递和工作。
二、液压传动的组成液压传动主要由以下几个组成部分组成:1. 液压泵:液压泵是液压传动系统的动力源,它通过转动机械能转换为液体压力能,使液压系统产生动力。
常见的液压泵有齿轮泵、叶片泵和柱塞泵等。
2. 液压储能器:液压储能器用于储存流体能量,并在系统需要时释放能量。
它能够补偿系统的压力波动,提供瞬时功率需求,保证系统的正常运行。
3. 液压缸:液压缸是液压传动系统中的执行元件,它能够将液体的压力能转化为机械能,产生直线运动。
液压缸广泛应用于各类工程机械、船舶、冶金设备等领域。
4. 液压马达:液压马达是液压传动系统中的执行元件,它能够将液体的压力能转化为机械能,产生旋转运动。
液压马达广泛应用于各类工程机械、汽车、航空航天设备等领域。
5. 液压阀:液压阀是液压传动系统的控制元件,通过控制液体的压力和流量等参数,实现对系统的精确控制。
常见的液压阀有溢流阀、先导阀、比例阀等。
6. 油箱和管路:油箱用于储存液压油,并通过管路将液压油传递至各个组成部件。
液压传动总结

2)输入功率Ppi 实际驱动泵轴所需要的机械功率。 Ppi Tp p 2n pTp 3)输出功率Ppo 泵实际输出的流量与泵进出口压差的乘积。 Ppo p p q p p p q p
15
5、效率 容积损失:因泄漏而产生的能量损失; 机械损失:因摩擦而产生的能量损失。 1)容积效率 液压泵的输出功率与理论功率之比,即实际流量与理 论流量之比。 Ppo ppqp qp q p q p pv 1 1 Ppt p p q pt q pt q pt Vp np
q p k1 p p
k1——泵的泄漏系数
pv 1
k1 p p Vpnp
16
2)机械效率 泵的理论功率与输入功率之比,即所需要的理论转矩 与实际转矩之比。 P ,q Ppt T pt p T pt pm Ppi T p p T p 3)总效率 p ,q D 泵的输出功率与输入功 T , T , 率之比。 Ppo p pv pm Ppi
2
§1.1 液压传动系统的工作原理和组成 液压系统是以有压液体作为工作介质进行能量转换 的系统,可在动力源与工作点之间传递能量。 液压传动中两个重要结论: 1、(执行元件液动机)的工作速度取决于输入该元 件的流量。 2、系统工作压力取决于负载(并联负载中的最小 值)。
3
§1.1 液压传动系统的工作原理和组成
斜盘 传动轴 滑履 柱塞 缸体
泵体
配流盘
21
斜轴式柱塞泵结构
万向传动轴 柱塞缸 连 油窗
吸入 油窗
22
斜轴式轴向柱塞泵工作原理
排油窗覆盖区柱塞在 万向轴 球窝盘压迫下沿箭头 方向回缩将油液排出 轴颈(装轴承) 输入轴端
吸油窗
简述液压传动系统的组成

简述液压传动系统的组成液压传动系统是一种利用液体作为传动介质,通过压力的传递来实现机械运动的系统。
它具有传动效率高、可靠性好、工作平稳等优点,在各种机械和工业设备中得到广泛应用。
本文将从液压传动系统的组成、工作原理、应用领域等方面进行详细介绍。
一、液压传动系统的组成1. 液压能源装置:包括液压泵、电机和控制阀等组件。
液压泵是将机械能转化为流体能的装置,它通常由电机驱动,将油液从油箱中吸入并送至液压缸或马达中。
控制阀则可以通过调节油路和流量来控制系统的工作状态。
2. 液力变矩器:主要用于汽车和船舶等交通运输设备中,它可以通过调节转矩输出来实现变速。
3. 液压缸:是一种将流体能转化为机械能的装置,通常由活塞和缸筒两部分组成。
当油液进入缸筒时,活塞会被推动产生线性运动。
4. 液压马达:与液压缸类似,也是一种将流体能转化为机械能的装置。
不同的是,它可以通过旋转产生动力输出。
5. 油箱:主要用于存储液压油,并保持系统的油位和温度稳定。
6. 液压管路:将液压泵、控制阀、液压缸、马达等组件连接在一起,形成一个完整的传动系统。
液压管路通常由钢管或软管制成,具有良好的耐压性和耐腐蚀性。
7. 液压油:是液压传动系统中最重要的组成部分之一。
它具有良好的密封性、稳定性和润滑性能,在系统中起到传递能量、降低摩擦和冷却等作用。
二、液压传动系统的工作原理1. 原理概述液压传动系统通过控制油路和流量来实现机械运动。
当电机带动液压泵旋转时,泵内部会产生负压,将油液从油箱中吸入并送至控制阀。
控制阀通过调节油路和流量来控制液压缸或马达的工作状态,从而实现机械运动。
2. 工作过程液压传动系统的工作过程可以分为吸油、压油、控制和回油四个阶段。
具体过程如下:(1)吸油阶段:当液压泵旋转时,泵内部会产生负压,将油液从油箱中吸入。
(2)压油阶段:当泵内部产生正压时,将油液送至控制阀。
控制阀通过调节油路和流量来控制液压缸或马达的工作状态。
(3)控制阶段:根据需要调节控制阀,使液压缸或马达产生相应的机械运动。
液压传动原理和系统组成

液压传动原理和系统组成液压传动是一种常用的能量传递和控制的方式,广泛应用于各个领域,例如机械、工程、冶金、航空等。
本文将介绍液压传动的原理以及系统的组成。
一、液压传动的原理液压传动是利用液体介质来传递能量,并通过控制液体的流动和压力实现力量和运动的转换。
其基本工作原理如下:1. 原理一:帕斯卡定律液体在容器内的压力作用在任何一个方向上都是相等的,这就是帕斯卡定律。
根据帕斯卡定律,当液体受到外力作用时,液体会均匀传递压力,并将能量传递给接收器件。
2. 原理二:流体的不可压缩性液体是一种不可压缩的介质,当液体受到压力影响时,其体积几乎不会发生变化。
这使得液压传动系统能够精确地控制力量和位置。
3. 原理三:流体的连通性液压传动系统由一系列的管道和元件组成,通过这些连通的管道和元件,液体能够流动并传递能量。
控制液体流动的阀门和泵等元件可以实现液压系统的控制。
二、液压传动系统的组成液压传动系统主要由以下几个部分组成:1. 液压泵液压泵是液压传动系统的动力源,主要负责将机械能转化为液压能。
常见的液压泵有齿轮泵、液压柱塞泵等,根据不同的工作原理和要求选择合适的泵。
2. 液压储气罐液压储气罐用于储存液压系统中的液体,并平稳地供应给系统。
它能够减少压力和温度的波动,保证系统的正常运行。
3. 液压阀门液压阀门主要用于控制液体的流动、压力以及方向。
不同类型的阀门有不同的功能,例如流量控制阀、压力控制阀、方向控制阀等。
4. 液压缸和液压马达液压缸和液压马达是液压系统中的执行元件,它们根据液压能的输入,将液体的压力转化为机械能,实现力量的作用和位置的改变。
5. 油管和连接件油管和连接件用于连接液压元件,使液压系统具有完整的连通性。
油管应具有足够的强度和密封性,以确保系统的正常工作。
在液压传动系统中,液体通过泵经过油管流向液压缸或液压马达,通过阀门的控制来调节液体的流量和压力,从而实现力量的传递和位置的变化。
总结:液压传动是一种利用液体介质来传递能量的传动方式,具有平稳、精确、可靠的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课导入
液压式叉车
液压叉车工作过程 中,要求前叉运动 平稳、可靠、控制 有效。
一、液压传动工作原理 液压式叉车结构原理图中,依靠换向阀6来改变油液流入液
压缸8中方向,从而来控制叉车的运动方向;依靠节流阀4来控制 叉车运动的速度;依靠压力阀5来控制油液的压力。
液压传动的工作原理是:以油液作为工作介质,通过密封 容积的变化来传递运动,通过油液内部的压力来传递动力。
当系统工作速度较低时,油液的黏度相应提高。
液压油的性能指标与选用 液体是液压传动系统中的工作介质,在实际的液压传动系统中常
用油类作为工作介质。我们称这种油为液压油。 一、液压油的主要性能指标 1.粘性
液体在外力作用下流动时,液体内部分子间的内聚力会阻碍分子
相对运动,即分子间会产生一种内摩擦力,这一特性称为液体的粘
性。
2.黏度指数
黏度指数较直接地反映了油品黏度随温度变化而改变的性质。
3.闪点 闪点是指液压油在规定条件下,加热到它的蒸汽与火焰接触发生
瞬间闪火时的最低温度。
二、液压油的选用原则
1.根据液压系统的工作压力选择
当系统工作压力升高后,液压油的各方面性能都应提高,黏度 同时也增加。
2.根据工作环境选择 当工作条件较恶劣或环境温度较高时,对油液的各种性能都有严
格的要求,温度升高,黏度也相应提高。 3.根据工作速度选择
末端
辅助部分
将前面三部分连接在一起,组成
管路接头、油箱、过
一个系统,起储油、过滤、测量和密 滤器、蓄能器、密封件、
封等作用。
控制仪表等
任意
液压千斤顶的组成
(1)液压泵 (2)执行元件 (3)控制元件 (4)辅助元件
三、液压系统图的表达
液压式叉车的前叉液压系统原理图 液压元件的图形符号只表示元件的功能、操作(控制)方法及外部连接 口,不表示元件的具体结构参数、连接口的实际位置和元件的安装位置。
液压传动的工作原理—总结
❖ 先通过动力元件(液压泵)将 原动机(如电动机)输入的机 械能转换为液体压力能,再经 密封管道和控制元件等输送至 执行元件(如液压缸),将液 体压力能又转换为机械能以驱 动工作部件
液压式叉车液压系统结构原理图
动画演示
油箱
磨床工作台
19
18 17
16
15
节流阀 13
液压缸 换向阀
管接头、油箱、过滤器和压力计
二、液压传动系统的组成
名称
作用
常用元件
系统位置
将原动机输出的机械能转换为油 动力部分
液的压力能(液压能)。
液压泵
始端
用来控制和调节油液的压力、流
压力控制阀、流量控
控制部分
量和流动方向。
制阀、方向控制阀
中间
将液压泵输入的油液压力能转换 执行部分
为带动工作机构的机械能。
液压缸、液压马达
1-2 液压传动工作原理与系统组成
1.掌握液压传动工作原理。 2.掌握液压传动系统各组成部分及在系统中的作用。 3.了解液压系统图的表达方式。 4.了解液压油的性能指标与选用原则。
பைடு நூலகம்
看一看,想一 想:
比较液压式叉 车与液压千斤顶 的液压传动系 统,需要了解液 压叉车前叉的液 压传动系统由哪 些部件组成,分 析其工作原理, 找出两个液压传 动系统的异同。
14
12
11
16
9
10
7
8
6 5
15
液压泵
4
3
2
1
11 9
液压系统的组成
❖ 从千斤顶和液压叉车前叉的液压传动系统的液 压系统组成和工作原理可以看出,液压系统一 般由以下几个部分组成
传动介质
动力元件
控制元件
执行元件
辅助元件
液压系统的组成
❖ 动力元件:液压泵,其功能是将原动机输入的机械能转换成流
体的压力能,为系统提供动力
❖ 执行元件:液压缸、液压马达,功能是将流体的压力能转换成
机械能,输出力和速度或转矩和转速),以带动负载进行直线运 动或旋转运动
❖ 控制元件:压力、流量和方向控制阀,作用是控制和调节系统
中流体的压力、流量和流动方向,以保证执行元件达到所要求的 输出力(或力矩)、运动速度和运动方向
❖ 辅助元件:保证系统正常工作所需要的辅助装置,包括管道、