绝对值与相反数
相反数与绝对值

相反数:①只有符号不同的两个数,叫做互为相反数。
例如:2与-2,3与-3.特殊地,0的相反数是0.②互为相反数的两个数的和是0;③负负得正,正负得负,负正得负,正正得正;④符号偶数个,得正,符号奇数个,得负;强化训练1:1.32-的相反数是_______.2.下列说法正确的是:_________①的相反数是55-;②的相反数是432411-;③互为相反数与21212-;④互为相反数与2125.2-;⑤14.3-∏的相反数是;3.一个数的相反数是非负数,这个数一定是________4.下列说法正确的是_______A.正数和负数互为相反数; B.任何一个数的相反数都与它本身不同;C.因为相反数是成对出现的,所以0没有相反数;D.相反数等于它本身的数是0;5.互为相反数是指()A.意义相反的两个量; B.一个负数前面加上“+”所得的数与原数C.数轴上原点两侧的两个点所表示的两个数;D.只有符号不同的两个数(0的相反数是0)6.____)2(=+-_____)2019(=--_____)2019(=+-______)]2019([=+--______)]}2019([{=+---7.下列各数互为相反数的是()A.)8)8(-++-(和 B.8-8-)和(+ C.8-)8(和+- D.)8()8(-+--和8.给出下面各数:)]4([41([)],41([41(),4(--++-+-+-+--+,其中,正数有_________个。
9.已知:,0,0,0=-=+=+q m p n n m 则()A.相等与q p ; B.互为相反数与q m C.相等与n m ; D.相等与n p 10.在研究相反数时,同学们有如下结论:①有理数a 的相反数是负数;②在数轴上,如果两个数所对应的点到原点的距离相等,且位于原点两侧,那么这两个数互为相反数;③符号不同的两个数,一定互为相反数;④非负数的相反数等于它本身;错误的结论是_______11.有理数a -一定是()A.负数;B.正数C.0D.正数,负数或0绝对值:①表示一个数到原点的距离,故一个数的绝对值是非负数(0≥),0≥a 。
23第二章《绝对值与相反数》精品PPT课件

想一想
数轴上表示相反数的两个点和原点 有什么关系?
在数轴上表示相反数(0除 外)的两个点位于原点的 两侧 , 且与原点的距离相等 .
请一位同学随便报一个数,然后点名叫另 一位同学说出它的相反数。
总结:a的相反数是-a。0的相反数是0
B
A
1、两只小狗从同一点O出发,在一条笔直的街上跑,一 只向右跑3米到达A点,另一只向左跑3米到达B点。若规 定向右为正,则A处记做_______,B处记做_______。 2、这两只小狗在跑的过程中,有没有共同的地方?在数 轴上的A、B两点有什么特征?
相反数呢?(小组讨论)
像+2与-2,+5与-5这样只有符号不同两 个数叫做互为相反数
???
0的相反数是??
0的相反数是0。
2.分别说出9,-7,0,-0.2的相反数.
(-9,7,0, 0.2 ) 3.指出-2.4, ,-1.7,1各是什么数的相反数?
( 2.4,1.7,-1)
4. a 的相反数是什么?
5
解: |1.6|1.6
| 8 | 8
55
| 0| 0
| 10|10
| 10|10
小小测试:
2.05 1000
7 9
0
7 -9
-1000 -2.05
相反数
-2.05
-1000
-
7 9
0
7 9
1000
2.05
绝对值
2.05
1000
7 9
0
7 9
1000
2.05
思考:通过刚才的练习,你有什么发现?
应用深化知识
哈哈!我 还是我!
绝对值与反数的代数意义和几何意义

回答下列问题.问题1:如果盈利10元记作+10元,那么亏损10元记作什么?问题2:如果河道中的水位比正常水位高4厘米记作+4厘米,那么比正常水位低4厘米记作什么?问题3:在数轴上与原点距离是2的点有几个?这些点各表示哪个数?【课堂引入】观察回顾上面问题中所画数轴,可发现:数轴上与原点距离是2的点有两个,它们表示的数是2和-2.观察这两个数,有什么相同和不同?结论:正数的相反数是负数,负数的相反数是正数,a的相反数是-a.规定:0的相反数是0.注意:(1)数a的相反数记为-a,这里的a表示任意一个数,它可以是正数也可以是负数或零.(2)两个互为相反数的数,在数轴上的所表示的点(0除外)在原点两旁,并且与原点距离相等的两个点.思考:设a表示一个数,-a一定是负数吗?师生活动:学生在教师引导下主动学习并积极思考相关问题,培养学生主动探究数学规律的能力.3.绝对值的认识(1)将问题抽象为数学问题,教师用几何画板动画演示画数轴,O是原点.(2)学生观察并思考,点A,B与原点O的距离分别是多少?(3)学生思考并完成填空:①在数轴上,表示数+1的点与原点的距离是________;②在数轴上,表示数-1的点与原点的距离是________.(4)教师说明:数轴上表示某数的点到原点的距离与它所表示的数的正负性无关.(5)教师指出绝对值的概念.一般地,在数轴上,一个数所对应的点与原点的距离,叫做这个数的+2=2;-3的绝对值等于绝对值.如+2的绝对值是等于2,记作||-3=3.3,记作||想一想:(1)互为相反数的两个数的绝对值有什么关系?(2)一个数的绝对值与这个数有什么关系?师生活动:教师引导学生动手画数轴,解决问题(1)并总结结论,继续引导学生在原点的左右各找几个点,计算它们的绝对值,并尝试归纳问题(2),教师最后完善总结.【典型例题】例1 写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.4,-12,-(-23),+(-4.5),0,-(+3).解:它们的相反数分别是-4,12,-23,4.5,0,3.在数轴上表示如图所示.例2 (教材第30页例1)求下列各数的绝对值: -21,49,0,-7.8,21.解:||-21=21,⎪⎪⎪⎪⎪⎪49=49,||0=0,||-7.8=7.8,||21=21.例3 (教材第31页例2)比较下列每组数的大小: (1)-1和-5;(2)-56和-2.7.解:(1)-1>-5.(2)-56>-2.7.例3 已知|x -3|+|y -2|=0,求x +y 的值.解析:一个数的绝对值总是大于或等于0,即为非负数,若两个非负【课堂检测】1.如图,点O 为数轴原点,则数轴上表示互为相反数的点是(B)A .点A 和点CB .点C 和点D C .点A 和点D D .点B 和点D 2.-74的相反数是74;13的相反数是-13;0的相反数是0.3.在数轴上距离原点2个单位长度的点表示的数是±2,也就是说绝对值等于2的数是±2.4.在数轴上表示下列各数,并求它们的绝对值: -32,6,-3,-8.6. 解:32;6;3;8.6.图略.5.比较下列各组数的大小:(1)-110,-27;(2)-0.5,-23;(3)0,|-23|;(4)|-7|,|7|.解:(1)-110>-27.(2)-0.5>-23.(3)0<|-23|.(4)|-7|=|7|.师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.。
初一导学课3相反数与绝对值

相反数
学习目标
1.借助数轴理解相反数的意义,懂得数轴上表示相反数的两个 点关于原点对称(难点) 2.会求有理数的相反数(重点)
内容讲解
1.相反数的概念
只有符号不同的两个数叫做互为相反数 如+5.3与-5.3互为相反数,3 与-3 互为相反数。也可以说一个数 是另一个数的相反数,如5是-5的相反数,-5的相反数是5 结论:正数的相反数是负数,负数的相反数是正数,
-5
(4)| +(-2.6) |
-|+5|
例题讲解
例2 答案 (1)-3.3 < 1 (2)0 > -5 (3)-| -3 | > -5 (4)| +(-2.6) | >
-|+5|
例题讲解
例3 把下列各数在数轴上表示出来,再按从小到大的顺序用 “<”连接起来
1
-3, 0,+3.5, -1 , 2,0.5
例题讲解
例4 已知有理数a、b、c在数轴上的位置如图所示:
(1)判断正负,用>、<或者=填空 a+b 0 a-b 0 a+b+c 0
(2)化简:| a +c |-| a +b +c |+| a -b |
例题讲解
例4 答案
(1)判断正负,用>、<或者=填空
a+b < 0
a - b > 0 a+b+c < 0
绝对值
学习目标
1.了解绝对值的表示方法,理解绝对值的意义,会计算有理数 的绝对值
2.绝对值的代数意义和几何意义
内容讲解
1.绝对值的概念
数轴上表示数 a 的点与原点的距离叫做数a 的绝对值. 记作| a |,读作 a 的绝对值 求法:一个正数的绝对值是它本身
一个负数的绝对值是它的相反数 零的绝对值是零
北师大版2024年新版七年级数学上册课件:2.1 课时2 相反数、绝对值

2.1 课时2 相反数、绝对值
学习目标
1.理解相反数和绝对值的概念; 2.能求一个数的绝对值和相反数,会利用绝对值比较两个 负数的大小; 3.通过运用绝对值解决实际问题,体会绝对值的意义和作 用.
探究新知
问题 3与-3,32与-32,5与-5这三组数有什么共同特点? 你还能列举几组具有这种特点的数吗?
求-2的相反数的绝对值, 即求2的绝对值.
|-52| =52, | -10.5 | =10.5, | 0 | =0,
| -(-2) | =2=2.
课堂练习
4.已知|x-4|+|y-3|=0,求x+y的值.
解:由题可知, |x-4|≥0,|y-3|≥0, 所以x-4=0,y-3=0, 即x=4,y=3, 所以x+y=7.
课堂练习
5.比较下列各对数的大小:
(1) 0.1和-1; (2) -(-0.01)和| 0 |;
(3) -345 和 -334;
(4)
|
-
2 3
|
和
|
3 4
|.
解:(3)因为-345<0,-334<0,
| -345 | = 345
=
76 20
,| -334 | = 334
= 7250,
因为 76 20
相反数: 如果两个数只有符号不同,那么称其中一个数为 另一个数的相反数,也称这两个数互为相反数. 0的相反数是0.
绝对值: 一个数的数量大小叫作这个数的绝对值. 正数的绝对值是它本身;负数的绝对值是它的相 反数;0的绝对值是0.
比较两个负数的大小: 两个负数比较大小,绝对值大的反而小.
因为182>192,
相反数和绝对值的定义

相反数和绝对值的定义嘿,朋友们!今天咱来聊聊相反数和绝对值,这可都是数学里超有意思的概念呀!你想想,相反数不就像是一对欢喜冤家嘛!一个正数,一个负数,它们俩呀,数值一样,就是符号相反。
就好比一个人向东走,那他的相反数就是向西走,方向完全相反,但距离是一样的哟!比如说 5 和-5,它们不就是这样的一对嘛!这多有趣呀,明明是一样的数字,却因为符号不同,就有了完全不同的意义。
这就好像生活中,有时候我们做一件事情,换个角度去看,可能就会有截然不同的感受呢!再来说说绝对值,它就像是给数字穿上了一件“保护衣”。
不管这个数字本身是正是负,绝对值都能让它变得“阳光”起来。
无论正数负数,绝对值都是它们的“正身”。
就好像一个人不管经历了多少挫折,他的本质和价值是不会变的呀!比如|-3|和|3|都是 3 呢。
你说这相反数和绝对值是不是特别神奇?它们就像是数学世界里的小精灵,总是能给我们带来意想不到的惊喜和发现。
咱再深入想想,相反数其实也能让我们看到事物的两面性呢。
就像一枚硬币有正反两面一样,每个事情也都有不同的角度去看待。
有时候我们可能只看到了一面,却忽略了另一面。
而绝对值呢,它让我们明白,不管遇到什么情况,都要看到事物最核心的东西,不要被表面的正负所迷惑。
在生活中,我们也会遇到各种各样类似相反数和绝对值的情况呀。
比如说,遇到困难的时候,我们可以把它看成是一个“负”的情况,但换个角度想想,这也许就是让我们成长和进步的机会,不就是它的“相反数”嘛!而无论我们处于什么样的境遇,我们自身的价值,就像那个绝对值一样,是不会改变的呀!所以啊,相反数和绝对值可不仅仅是数学里的概念,它们还能给我们的生活带来很多启示呢!它们让我们学会用不同的视角去看待问题,学会在任何情况下都能保持自己的价值和信心。
这不就是数学的魅力所在嘛,它不仅仅是一堆数字和公式,还蕴含着深刻的道理和智慧。
朋友们,让我们好好去理解和运用相反数和绝对值吧,让它们成为我们生活中的好帮手,带我们去发现更多的美好和可能!这就是我对相反数和绝对值的理解啦,你们觉得呢?原创不易,请尊重原创,谢谢!。
《1.3绝对值与相反数》

练一练
1.填空
(1)绝对值等于0的数是___, 0
(2)绝对值等于5.25的正数是_____, 5.25 (3)绝对值等于5.25的负数是______, -5.25 (4)绝对值等于2的数是_______. 2或-2
2.判断下列说法是否正确. (1)一个数的绝对值是4 ,则这数是-4. ×
(2)|3|>0. √
3 5
5
-5 -4
3
3 5
3
1 2 3 4
5
5
-3 -2 -1
0
(2)观察各点在数轴上的位置,得到
3 3 3 3 |3|=3,|-3|=3;|5|=5,|-5|=5; | | ,| | . 5 5 5 5
二 相反数
观察与思考
观察例1中的三组数在数轴上的位置和绝对值的大小, 想一想这三组数的共同特点是什么? 符号不同
课后作业
见教材本课时习题
x x 3x 5. 的相反数是_____ ,-3x的相反数是___. 2 2
6.判断并改错: (1) 相反数等于它本身的数只有0; ﹙ (2) 符号不同的两个数互为相反数;﹙ ﹚ ﹚ ( )
(3)一个数的绝对值等于本身,则这个数一定是正数;
(4)一个数的绝对值等于它的相反数,这个数一定是负数;(
(5)如果两个数的绝对值相等,那么这两个数一如果两个数不相等,那么这两个数的绝对值一定不等;(
(7)有理数的绝对值一定是非负数. ( )
)
7. 化简下列各数,并求出它们的绝对值. (1)-(+10) (2)+(-0.15) (3)+(+3)
(4)-(-12)
解:
(5)+[-(-1.1)]
七年级数学上册专题02_绝对值与相反数(知识点串讲)(解析版)

专题02 绝对值与相反数知识点一相反数只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)注意:1、通常a与-a互为相反数;2、a表示任意一个数,可以是正数、负数,也可以是0;3、特别注意,0的相反数是0.知识点二绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)考查题型考查题型一求一个数的相反数典例1.﹣25的相反数是()A.﹣25B.25C.﹣52D.52【答案】B 【解析】详解:-25的相反数是:25.故选:B.变式1-1.如果a表示有理数,那么下列说法中正确的是( )A.+a和一(-a)互为相反数B.+a和-a一定不相等C.-a一定是负数D.-(+a)和+(-a)一定相等【答案】D【解析】试题解析:A.()a a--=,两个数相等,故错误.B.当0a =时,a +与a -相等,故错误.C.a -可以是正数,也可以是负数,还可以是0.故错误.D .正确.故选D.变式1-2.-(-6)的相反数是 ( )A .|-6|B .-6C .0.6D .6【答案】B【详解】解:−(−6)=6,∴6的相反数是−6.答案为:−6.故选B.变式1-3已知1=a ,b 是2的相反数,则+a b 的值为( )A .-3B .-1C .-1或-3D .1或-3 【答案】C【详解】 ∵1=a ,b 是2的相反数,∴1a =或1a =﹣,2b =﹣,当1a =时,121a b +==﹣﹣;当1a =﹣时,123a b +==﹣﹣﹣;综上,+a b 的值为-1或-3,故选C .考查题型二 判断两个数是否互为相反数典例2.下列各组数中,互为相反数的是( )A .-(-1)与1B .(-1)2与1C .|1|-与1D .-12与1 【答案】D【解析】试题分析:选项A ,-(-1)与1不是相反数,选项A 错误;选项B ,(-1)2与1不是互为相反数,选项B 错误;选项C ,|-1|与1不是相反数,选项C 错误;选项D ,-12与1是相反数,选项正确.故答案选D .变式2-1.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )A.B.C.D.【答案】B【解析】试题分析:根据互为相反数的两个数到原点的距离相等,并且在原点的两侧,可知只有B答案正确.故选B.变式2-2.(2020·沈阳市期末)如图,数轴上有A,B,C,D 四个点,其中到原点距离相等的两个点是()A.点B 与点D B.点A 与点C C.点A 与点D D.点B 与点C【答案】C【解析】试题分析:到原点距离相等的两个点所表示的数互为相反数.变式2-3.下列各对数互为相反数的是()A.+(+3)与-(-3) B.+(-3)与-(+3)C.+|+3|与+|-3| D.+|-3|与-|+3|【答案】D【详解】A、+(+3)=3,-(-3)=3,两者相等,故本选项错误;B、+(-3)=-3,-(+3)=-3,两者相等,故本选项错误;C、+|+3|=3,+|-3|=3,两者相等,故本选项错误;D、+|-3|=3,-|+3|=-3,两者互为相反数,故本选项正确;故选D.考查题型三多重符号化简典例3.下列化简,正确的是()A.﹣(﹣3)=﹣3B.﹣[﹣(﹣10)]=﹣10C.﹣(+5)=5D.﹣[﹣(+8)]=﹣8【答案】B【解析】试题分析:A、-(-3)=3,故错误;B、-[-(-10)]=-10,故正确;C、-(+5)=-5,故错误;D、-[-(+8)]=8,故正确.故选B.变式3-1.化简-(+2)的结果是()A .-2B .2C .±2D .0【答案】A【详解】-(+2)=-2.故选A .变式3-2.下列各数中互为相反数的是( )A .(5)+- 与 5-B .(5)-+ 与 5-C .(5)-+ 与 |5|--D .(5)-- 与 (5)+-【答案】D【详解】解:A 、+(-5)=-5,选项错误;B 、-(+5)=-5,选项错误;C 、-(+5)=-5,-|-5|=-5,选项错误;D 、-(-5)=5,+(-5)=-5,5与-5互为相反数,选项正确.故选D .变式3-3.﹣(﹣3)的绝对值是( )A .﹣3B .13 C .3 D .﹣13 【答案】C【详解】解:∵﹣(﹣3)=3,3的绝对值等于3,∴﹣(﹣3)的绝对值是3,即|﹣(﹣3)|=3.故选:C .考查题型四 相反数的应用典例4.已知x ﹣4与2﹣3x 互为相反数,则x=( )A .1B .﹣1C .32 D .﹣32【答案】B【详解】因为x ﹣4与2﹣3x 互为相反数,所以x ﹣4+2﹣3x =0,解得:x=-1.故选B. 变式4-1.若37m -和9m -互为相反数,则m 的值是( )A .4B .1C .1-D .4-【答案】C【详解】由题意知3790m m -+-=,则379m m -=-, 22m =-,1m =-,故选:C .变式4-2.(2020·大石桥市期中)如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-1 【答案】C【详解】由a 与1互为相反数,得a+1=0,即a=-1,故|a+2|=|-1+2|=1.故选C考查题型五 求一个数的绝对值典例5.2019-=( )A .2019B .-2019C .12019D .12019- 【答案】A【详解】 20192019-=.故选A .变式5-1.如图,在数轴上点A 所表示的数的绝对值为( )A .1B .﹣1C .0D .2【答案】A由数轴可得:点A 表示的数是﹣1.∵|﹣1|=1,∴数轴上点A 所表示的数的绝对值为1.故选A .变式5-2.已知a 与1的和是一个负数,则|a |=( )A .aB .﹣aC .a 或﹣aD .无法确定【答案】B【解析】试题解析:∵a 与1的和是一个负数,∴a <-1.∴|a|=-a .故选B .变式5-3.在0,1-,2,3-这四个数中,绝对值最小的数是( )A .0B .1-C .2D .3-【答案】A【详解】解:∵|−1|=1,|0|=0,|2|=2,|−3|=3,∴这四个数中,绝对值最小的数是0;故选:A .考查题型六 化简绝对值典例6.实数a 、b 、c 在数轴上的位置如图所示,则代数式|c ﹣a |﹣|a +b |的值等于()A .c +bB .b ﹣cC .c ﹣2a +bD .c ﹣2a ﹣b【答案】A【详解】由数轴可知,b <a <0<c ,∴c-a >0,a+b <0,则|c-a|-|a+b|=c-a+a+b=c+b ,故选A .变式6-1.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-3【答案】B解:当1<a <2时,|a ﹣2|+|1﹣a |=2﹣a +a ﹣1=1.故选B .变式6-2.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( )A .3或7B .-3或-7C .-3D .-7【答案】B【解析】试题分析:由|a -b |=b -a ,知b >a ,又由|a |=5,|b |=2,知a =-5,b =2或-2,当a =-5,b =2时,a +b =-3,当a =-5,b =-2时,a +b =-7,故a +b =-3或-7. 解:∵|a -b |=b −a , ∴b >a ,∵|a |=5,|b |=2,∴a =−5,b =2或−2,当a =−5,b =2时,a +b =−3,当a =−5,b =−2时,a +b =−7,∴a +b =−3或−7.故选B.考查题型七 绝对值非负性的应用典例7.已知,则a+b 的值是( ) A .-4B .4C .2D .-2【答案】D【详解】解:根据题意得,a +3=0,b−1=0,解得a =−3,b =1,所以a +b =−3+1=−2.故选:D .变式7-1.已知|1|a +与|4|b -互为相反数,则b a 的值是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∙《绝对值与相反数》教学设计
∙
∙
∙作者:来源:时间:2009-9-14 21:19:06 阅读34次【大中小】
∙
【教学目标】
1.理解有理数的绝对值和相反数的意义.
2.会求已知数的相反数和绝对值.
3.会用绝对值比较两个负数的大小.
4.经历将实际问题数学化的过程,感受数学与生活的关系.
【教学过程设计建议(第一课时)】
1.情境创设
除课本提供的情境外,还可以根据学生的实际,创设一些类似的情境,如乘车去某地,票价、耗油、行
车时间等均与距离有关,也可以提出一些问题引导学生思考,如小明说他昨天从学校出发沿东西大街
走了3 km,你能在数轴上表示出小明昨天到达的位置吗?
2.探索活动
“议一议”的活动,应引导学生从利用“形(数轴)”比较有理数大小转化为用“数(绝对值)”来比较.
(1)通过两个正数在数轴上的位置比较两个数的大小.可以让学生再多比较几
对数的大小,然后归纳出两个正数的大小与这两个正数的绝对值的大小关系;
(2)用相同的方法归纳出两个负数的大小与这两个负数的绝对值的大小关系;
(3)在经历了(1)、(2)之后,引导学生归纳,得出用绝对值比较有理数大小的方法.
3.例题教学
例2的第(1)小题是两个正数的大小比较;第(2)小题是两个负数的大小比较,在比较一3与一6的大小时,可让学生再次观察温度计上的刻度,借助“一6℃比一3℃冷”的生活经验,认识两个负数的大小与这两个负数的绝对值的大小关系.
【教学过程设计建议(第二课时)】
1.情境创设
数轴上点A在原点的左边,点B在原点的右边,并且点A与点B到原点的距离相同.根据小明、小丽的观察发现,讨论5与一5的关系.如:小明、小丽的观察结论正确吗?
你能说得比小明、小丽更完整一些吗?
此外,还可以设计一些距离相同但方向相反的实际问题,引入互为相反数的概念.
2.探索活动
(1)给出相反数的描述性定义后,要让学生大量举例以巩固概念.
(2)围绕“只有符号不同”展开讨论,让学生充
分发表看法.搞清它的意义是判断两个数是否互为相反数的需要,要及时肯定学生中的较好的解释,如:
“两个数的符号不同,绝对值相等.”
“除0以外,绝对值相等的数有两个,一个是正数,一个是负数,它们仅仅是符号不同.”
“写已知数的相反数,只要在这个数的前面添一个负号.”
“有理数由符号和绝对值两部分组成,如果改变有理数的符号,那么数轴上表示有理数的点就从原点的一侧变到另一侧.”
(3)通过“议一议”,归纳出一个数的绝对值与这个数本身或它的相反数的关系.需要注意的是,在写一个数的绝对值时,要紧扣课本第27页上的结论,要求学生首先关注对该数的判断:是正数还是负数;然后再选择法则:正数该如何,负数该如何,0该如何;最后给出结果.否则今后极易发生这样的错误:|a|=a,|-a|=a.
3.例题教学
例4的解答中标注的理由,例5的卡通人旁白,
都只是为了强调本节课的重要结论和相反数的定义,渗透“推理要有依据”,学生作业和考试时不作要求.。