复旦大学2012-2013数学分析B下A卷

合集下载

上海海事大学1213数值分析试A卷答案

上海海事大学1213数值分析试A卷答案

上海海事大学2012---2013学年第 2 学期 研究生 数值分析 课程考试试卷A (答案)学生姓名: 学号: 专业:1. 利用Seidel 迭代法求解Ax=b 时,其迭代矩阵是))-1s U L D B -=(; 当系数矩阵A 满足 严格对角占优 时,Seidel 迭代法收敛 。

7. 反幂法是求可逆矩阵按模最小 特征值和特征向量的计算方法. 6. QR 法是计算 非奇异矩阵的 所有 特征值和特征向量的计算方法 1. 利用Jacobi 迭代法求解Ax=b 时,其迭代矩阵是)(1U L D B J +=-;当系数矩阵A 满足 严格对角占优 时,Jacobi 迭代法收敛 。

2. 对于求解Ax=b ,如果右端有b δ的扰动存在而引起解的误差为x δ,则相对误差≤xxδ bbA Cond δ)(3. 幂法是求矩阵 按模最大 特征值和特征向量的计算方法.Jacobi 法是计算 实对称矩阵的所有 特征值和特征向量的计算方法 六.设方程组Ax=b 有唯一解*x ,其等价变形构造的迭代格式为f Bx x k k +=+)()1(,如矩阵谱半径1)(>B ρ,但B 有一个特征值满足1<λ,求证:存在初始向量)0(x ,使得迭代产生的序列{})(x x 收敛于*x 。

(7分)证明: 由f Bx x k k +=+)()1(,f Bx x +=**()()*)0(1k *)(*)1(---x x B x x B x xk k ++== 对于B 的一个特征值满足1<λ,特征向量设为y ,,,11y y B y By k k ++==λλ故取初始向量y x x +=*)0(,有()y y B x x B x x k k 11k *)0(1k *)1(--++++===λ∞→→==+++k yy x xk k k ,0-11*)1(λλ,所以{})(x x 收敛于*x八.给定函数函数)(x f ,对于一切x ,存在)(x f ',且M x f m ≤'≤<)(0, 证明对于范围M20<<λ内的任意定数λ,迭代过程)(-1k k k x f x x λ=+均收敛于0)(=x f 的根。

复旦大学数学系陈纪修《数学分析》 第二版 习题答案ex

复旦大学数学系陈纪修《数学分析》 第二版 习题答案ex

− x ≤ sup S ,即 x ≥ − sup S ;同时对任意 ε > 0,存在 y ∈ S ,使得 y > sup S − ε ,
于是 − y ∈ T ,且 − y < − sup S + ε 。所以 − sup S 为集合 T 的下确界,即
inf T = − sup S 。
5. 证明有界数集的上、下确界唯一。 证 设 sup S 既等于 A ,又等于 B ,且 A < B 。取 ε = B − A > 0 ,因为 B 为
m
可能:
(i)⎜⎛ n ⎟⎞2 < 3 ,由(1)可知存在充分小的有理数 r > 0 ,使得 ⎜⎛ n + r ⎟⎞2 < 3 ,
⎝m⎠
⎝m ⎠
这说明 n + r ∈ S ,与 sup S = n 矛盾;
m
m
(ii) ⎜⎛ n ⎟⎞2 > 3 ,取有理数 r > 0 充分小,使得 4r − r 2 < ⎜⎛ n ⎟⎞2 − 3 ,于是
m +1
n < n < n + 1 ,所以 maxC 与 minC 都不存在。
m+1 m m+1
3. A, B 是两个有界集,证明:
(1) A ∪ B 是有界集;
(2) S = { x + y | x ∈ A, y ∈ B} 也是有界集。 证 (1)设 ∀x ∈ A ,有 x ≤ M1 , ∀x ∈ B ,有 x ≤ M 2 ,则 ∀x ∈ A ∪ B ,有
xn+k
= a。

设 lim n→∞
xn
=
a
,则 ∀ε
>

数学分析习题集10复旦大学

数学分析习题集10复旦大学
x0 = 0; x0 = 0;
4 − x2 ,
x −1 , x0 = 1; x +1 1+ x ⑼ ln , x0 = 0; 1− x

⑻ (1+x) ln (1-x), ⑽
e−x , x0 = 0。 1− x
1 , n2 Sn(x) = nx(1 - x)n , x x Sn(x) = ln , n n xn , Sn(x) = 1+ xn Sn(x) = (sin x)n , x2 +
1 n
(ii) x ∈ (1,+∞ ) ); (ii) x ∈ (1,+∞ ) ;
⑽ Sn(x) = (sin x) ,
1. 讨论下列函数序列在指定区间上的一致收敛性。
(i) x ∈ (0,1) , x ∈ (0,+∞ ) ; (i) x ∈ (−∞,+∞ ) , (i) x ∈ (0,1) , x ∈ ( −∞,+∞ ) ; x ∈ [0,1] ; (i) x ∈ (0,1) , (i) x ∈ (0,1) , x ∈ [0, π ] ; (i) x ∈ [0,1] ,
3n ⎛ x − 1 ⎞ ⑸ ∑ ⎜ ⎟ ; n =1 n ! ⎝ 2 ⎠

n
ln 2 n n 2 ⑹ ∑ n x ; n=2 n


⑺ ⑼
n! n x ; ∑ n n =1 n

( n !) 2 n x ; ∑ n =1 ( 2n) !

∑ (2n + 1)!!xn =1 ∞来自∞(2n )!!
n

2. 设 a>b>0,求下列幂级数的收敛域。

1. 求下列幂级数的收敛半径与收敛域。

2023-2024学年复旦大学附中高二数学(下)6月调研试卷附答案解析

2023-2024学年复旦大学附中高二数学(下)6月调研试卷附答案解析

2023-2024学年复旦大学附中高二数学(下)6月调研试卷(试卷满分:150分,考试时间:120分钟)一、填空题(本大题满分54分)本大题共有12题,第1—6题每题4分,第7—12题每题5分.1.抛物线24x y =-的准线方程为.2.某小组成员的年龄分布茎叶图如图所示,则该小组成员年龄的第25百分位数是.3.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为.4.已知点()1,2,1A --,平面α经过原点O ,且垂直于向量()1,1,3n =-,则点A 到平面α的距离为5.某校共有400名学生参加了趣味知识竞赛(满分:150分),且每位学生的竞赛成绩均不低于90分.将这400名学生的竞赛成绩分组如下:[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],得到的频率分布直方图如图所示,则这400名学生中竞赛成绩不低于120分的人数为.6.了解某中学学生的身高情况,采用分层随机抽样的方法抽取了30名男生,20名女生.已知男生身高的平均数为170cm ,方差为16,女生身高的平均数为165cm ,方差为25,则可估计该校学生的方差为.7.设R c ∈,P 为双曲线221x y -=右支上一动点.若点P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值为.8.A B C 、、三位好友进行乒乓球循环赛,A B 、先进行一局决胜负,负者下,由C 挑战A 、B 的胜者,继续进行一局决胜负,负者下,胜者下一局再接受第三人的挑战,依此进行.假设三人水平接近,任意两人的对决获胜的概率都是0.5且不受体力影响,已知三人共比赛了3局,那么这3局中三人各胜一局的概率为.9.给定数列{}2,918n n a a n n =-+-,则对所有(),,,0,n m m n m n m n S S <∈>-N 最大值为.10.设0a b >>,椭圆22221x y a b +=的离心率为1e ,双曲线2222212x yb a b-=-的离心率为2e ,若121e e <,则21e e 的取值范围是.11.在棱长为1的正方体1111ABCD A B C D -中,点F 是棱1CC 的中点,P 是正方体表面上的一点,若1D P AF ⊥,则线段1D P 长度的最大值为.12.空间直角坐标系中,从原点出发的两个向量a 、b 满足:2a b ×=,1= b ,且存在实数t ,使得20a a tb -+≥ 成立,则由a构成的空间几何体的体积是.二、选择题(本大题满分18分)本大题共有4题,第13—14题每题4分,第15—16题每题5分.13.下列统计量中,不能..度量某样本离散程度的是()A .方差B .极差C .中位数D .标准差14.已知垂直竖在水平地面上相距20米的两根旗杆的高分别为10米和15米,地面上的动点P 到两旗杆顶点的仰角相等,则点P的轨迹是A .椭圆B .圆C .双曲线D .抛物线15.如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱AB 和1DD 的中点,过点1B ,E ,F 的平面α交AD 于点G ,则AG =()A .13B .23C .34D .4316.小明同学用两个全等的六边形木板和六根长度相同的木棍搭成一个直六棱柱111111ABCDEF A B C D E F -,由于木棍和木板之间没有固定好,第二天他发现这个直六棱柱变成了斜六棱柱111111ABCDEF A B C D E F -,如图所示.设直棱柱的体积和侧面积分别为1V 和1S ,斜棱柱的体积和侧面积分别为2V 和2S ,则().A .1212V V S S >B .1212V V S S <C .1212V V S S =D .11V S 与22V S 的大小关系无法确定三、解各题(本大题满分78分)本大愿共有5题.17.从0,1,2,3这四个数字中,不放回地取两次,每次取一个.构成数对(),x y ,x 为第一次取到的数字,y 为第二次取到的数字.设事件A =“第一次取出的数字是1”,B =“第二次取出的数字是2”.(1)写出此试验的样本空间及()(),P A P B 的值;(2)判断A 与B 是否为互斥事件,并求()P A B .18.已知m ∈R ,设直线1l :10x my -+=,直线2l :440mx y m --+=.(1)若12l l ∥,求m 的值;(2)当1l 与2l 相交时,求交点I 的坐标(用m 表示),并证明点I 恒在一条定直线上.19.如图所示,已知圆锥的底面半径2m r =,经过旋转轴AO 的截面是等边三角形SAB ,点Q 为半圆弧AB 的中点,点P 为母线SA的中点.(1)求此圆锥的体积和表面积;(2)求异面直线PQ 与SO 所成角的大小;(3)若一只蚂蚁从Q 点沿着圆锥的侧表面爬至P 点,请你能否作出合情的假设,来估算该蚂蚁行程的最小值(精确到0.01m ).20.已知椭圆Γ:22221x y a b+=(0a b >>)的左、右焦点分别为1F (),2F ),点P 是Γ上一点,直线l 0y -=(m ∈R ).(1)当b l 恰经过Γ的右顶点A ,求m 的值;(2)当m =P 同时是l 上一点且12π6F PF ∠=,求a 的值;(3)设直线2PF 交l 于点Q ,对每一个给定的m ∈R ,任意满足223(1)4a m ≤+的实数a ,都有21||2QF a ≥成立.则当m 变化时,求2||QF 的最小值.21.有限数列{}n a ,若满足12131||||||m a a a a a a -≤-≤≤- ,m 是项数,则称{}n a 满足性质p .(1)判断数列3,2,5,1和4,3,2,5,1是否具有性质p ,请说明理由.(2)若11a =,公比为q 的等比数列,项数为10,具有性质p ,求q 的取值范围.(3)若n a 是1,2,...,m 的一个排列1(4),(1,2...1),{},{}k k n n m b a k m a b +≥==-都具有性质p ,求所有满足条件的{}n a .1.1y =【解析】根据抛物线的性质得结论.【详解】由抛物线方程得2p =,焦点为(0,1)-,准线方程为1y =.故答案为:1y =.2.32.5##652【分析】根据茎叶图中数据,利用百分位数的定义计算即可.【详解】因为1225%3⨯=,所以该小组成员年龄的第25百分位数是1(3233)32.52⨯+=,故答案为:32.5.3.【详解】由面积为的半圆面,可得圆的半径为2,即圆锥的母线长为2.圆锥的底面周长为.所以底面半径为1..4.61111【分析】求出AO,再利用点到平面的距离公式,求出答案.【详解】由题知()1,2,1AO =-,设点A 到平面α的距离为d ,则11AO ndn⋅===,所以点A到平面α故答案为:61111.5.220【分析】由频率分布直方图的面积和为1求出a,再计算出结果即可.【详解】由频率分布直方图可知()0.0100.0100.0250.0150.005101a+++++⨯=,解得0.035a=,这400名学生中竞赛成绩不低于120分的人数为()4000.0350.0150.00510220´++´=,故答案为:2206.25.6【分析】利用分层抽样的平均数公式、方差公式计算即得.【详解】由分层随机抽样抽取的样本中男生有30人,女生有20人,得男生所占的权重为13030.630205w===+,女生所占的权重为210.60.4w=-=,而男生身高的平均数1170cmx=,方差2116s=,女生身高的平均数2165cmx=,方差2225s=,估计该校学生身高的平均数11220.61700.4165168x w x w x=+=⨯+⨯=,方差22222111222[()][()]s w s x x w s x x=+-++-220.6[16(170168)]0.4[25(165168)]25.6=⨯+-+⨯+-=.故答案为:25.67【分析】依据题意将题目转化为平行线间距离的最值问题,利用平行线间距离公式建立方程,求解参数值即可.【详解】由双曲线方程221,x y-=可得1,1a b==,则双曲线的一条渐近线方程为y x=,因为双曲线无限接近于渐近线,且显然直线y x =与直线10x y -+=平行,则两直线之间的距离d 即为c 的最大值,此时22c d ===.8.14##0.25【分析】根据相互独立事件和概率的加法公式进行计算可得答案.【详解】设A B 、比赛A 获胜为事件M ,,A C 比赛C 获胜为事件N ,C B 、比赛B 获胜为事件Q ,且,,M N Q 相互独立,则()()()12P M P N P Q ===,设三人共比赛了3局,三人各胜一局的概率为D ,则()()()()()()()P D P M P N P Q P M P Q P N =+11111112222224=⨯⨯+⨯⨯=.故答案为:14.9.4【分析】根据题意,由数列的通项公式可得360a a ==,即可得到n m S S -的最大值是53S S -,然后代入计算,即可得到结果.【详解】由29180n a n n =-+-=可得3n =或6n =,即360a a ==,又函数()2918f x x x =-+-的图像开口向下,所以数列{}n a 的前3项为负数,当6n >时,数列中的项均为负数,在m n <的前提下,n m S S -的最大值是5345S S a a -=+,其中24449182a =-+⨯-=,25559182a =-+⨯-=所以5345224S S a a -=+=+=故答案为:410.12+⎭【分析】首先由椭圆标准方程和双曲线标准方程的定义,得出椭圆与双曲线共焦点,再分别表示出离心率,根据121e e <及2220a b ->即可求得21e e 的范围.【详解】解:由题意知椭圆的2221c a b =-,双曲线的22222222c b a b a b =+-=-,则椭圆与双曲线共焦点,设12c c c ==,则1c e a =,2c e b=,212c e e ab∴=,21e a e b =,121e e < ,2221c a b a bab ab b a-∴==-<,设0at b =>,则11t t-<,解得102t +<<,即1502a b <<,又2220a b -> ,且0a b >>,ab∴>,故21e e的取值范围是12+⎭.故答案为:152⎫⎪⎪⎭11.32##1.5【分析】建立空间直角坐标系,作出辅助线,证明出AF ⊥平面11D EHB ,故点P 在平面11D EHB 上,故当点,P H 重合时,线段1D P 长度取得最大值,求出最大值.【详解】如图,以D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,取CD 的中点E ,BC 的中点H ,连接EH ,则()()()()()()110,0,1,0,0.5,0,0.5,1,0,1,1,1,0,1,0.5,1,0,0D E H B F A ,则()()()()1111,1,0.5,0,0.5,1,1,1,0,0.5,0.5,0AF D E D B EH =-=-==,112D B EH = ,故11,D B EH平行,故()()11,1,0.50,0.5,100.50.50AF D E ⋅=-⋅-=+-= ,()()111,1,0.51,1,0110AF D B ⋅=-⋅=-+=,故AF ⊥1D E ,AF ⊥11D B ,又1111D E D B D = ,111,D E D B ⊂平面11D EHB ,故AF ⊥平面11D EHB ,故点P 在平面11D EHB 上,故当点,P H 重合时,线段1D P 长度取得最大值,()()()10.5,1,00,0,10.5,1,1D H =-=-,故1D P 32=.故答案为:3212.89π##89π【分析】由不等式有解,结合数量积运算,求得a ≤ 2ab ×= 且1= b ,可得a 围成的空间几何体是以原点为顶点,高为2.【详解】由已知得224a a tb ≥+ ,所以2223840a ta b t b +⋅+≤ ,所以存在实数t ,使得不等式2241630t t a ++≤ 有解,则有()22Δ164430a =-⨯⨯≥ ,解得a 又因为2ab ×=且1= b ,所以a 在b 方向上的数量投影是2,所以a围成的空间几何体是以原点为顶点,高为2故由a构成的空间几何体的体积为218ππ239⋅⋅=.故答案为:8π9.13.C【分析】利用中位数、极差、方差、标准差的意义判断即可.【详解】在统计量中,极差、方差、标准差都是刻画某样本离散程度的量,中位数是刻画某样本集中趋势的量,所以不能度量某样本离散程度的是中位数.故选:C 14.B【详解】如图,建立直角坐标系依题意可得,10,15,20,OA BC OB APO BPC ===∠=∠则(0,0),(0,10),(20,0),(20,15)O A B C 设(,)P x y ,因为APO BPC ∠=∠,所以tan tan APO BPC ∠=∠则OA BCOPBP=,=化简可得22323200x x y ++-=,即22(16)576x y ++=所以P 点轨迹为圆,故选B 15.D【分析】通过平行得到平面与11C D 的交点H ,从而得到与面1111D C B A 的交线,再由平行得到与平面ABCD 的交线,从而确定点G 的位置,根据H 为11C D 的四等分点得到G 为AD 的三等分点,从而得到AG 的长.【详解】如图,平面1B EF 与平面11CC D D 的交线与1B E 平行,即过点F 作1B E 的平行线,交11C D 于点H ,连接1B H ,因为E ,F 分别为棱AB 和1DD 的中点,所以H 为11C D 的四等分点,过点E 作1EG B H ,交AD 于点G .从而G 为AD 的三等分点,故24233AG =⨯=.故选:D.16.A【分析】根据柱体体积、表面积的求法,分别表示出11V S 和22V S ,分析即可得答案.【详解】设底面面积为S ,底面周长为C ,则11V S AA =⋅,11S C AA =⋅,所以11V SS C=,设斜棱柱的高为h ,则2V S h =⋅,2AB BC CD DE EF FAS AB h BC h CD h DE h EF h FA h =⨯+⨯+⨯+⨯+⨯+⨯()AB BC CD DE EF FA h Ch >+++++⨯=,所以2121V V Sh S S Ch C S <==.故选:A17.(1)14(2)512【分析】(1)根据题意直接写出样本空间的所有基本事件,再分析满足的基本事件求解即可;(2)判断是否能同时发生即可判断与是否为互斥事件,再结合(1)可得()P A B ;【详解】(1)样本空间:()()()()()()()()()()()(){}0,1,0,2,0,3,1,0,1,2,1,3,2,0,2,1,2,3,3,0,3,1,3,2Ω=,所以()12n Ω=.因为{(1,0),(1,2),(1,3)}A =,{(0,2),(1,2),(3,2)}B =,所以()3n A =,()3n B =.从而31()124P A ==,31()124P B ==.(2)因为{(1,2)}A B = ,故A 与B 不是互斥事件.又{(1,0),(1,2),(1,3),(0,2)(3,2)}A B = .所以()5n A B = .从而5()12P A B =.18.(1)2m =-(2)22,22m I m m -⎛⎫⎪++⎝⎭,点I 恒在定直线210x y +-=上【分析】(1)根据直线平行的条件列方程可得m ,然后验证是否重合可得;(2)联立直线方程求解可得点I 的坐标,然后消参可知点I 在定直线上.【详解】(1)因为12l l ∥,所以1(4)()m m ⨯-=-⨯,解得2m =±,当2m =时,直线1l :210x y -+=,直线2l :2420x y -+=即210x y -+=,显然此时两直线重合,当2m =-时,直线1l :210x y ++=,直线2l :2460x y --+=即230x y +-=,符合题意,故2m =-.(2)由(1)知,当1l ,2l 相交时2m ≠±,联立10440x my mx y m -+=⎧⎨--+=⎩,解得2222m x m y m -⎧=⎪⎪+⎨⎪=⎪+⎩,∴22,22m I m m -⎛⎫⎪++⎝⎭,因为222221222m m x y m m m -⨯++=+==+++,即210x y +-=,所以点I 恒在定直线210x y +-=上.19.(1)体积383πm 3;表面积212πm(2)能;2.95m【分析】(1)利用圆锥体积公式和表面积公式求解;(2)根据空间向量的坐标运算求异面直线所成的角;(3)利用侧面展开图,根据两点之间直线最短求解.【详解】(1)因为2m r =,所以24m SB AB r ===,则SO =,所以圆锥的体积为321π3m 3V r SO =⋅=,表面积为221π2π12πm 2S r r SB =+⨯⨯=.(2)建立如图所示空间直角坐标系,则(0,0,(0,0,0),(0,2,0),(2,0,0),S O A Q P ,所以(0,0,(2,1,SO PQ =-=- ,设异面直线PQ 与SO 所成角为α,则cos cos ,SO PQ SO PQ SO PQα⋅=<>=⋅ 所以异面直线PO 与SO所成角为(3)将该圆锥的侧面夹在母线,SQ SA 的部分展开,如图,连接PQ,因为 12ππ4AQ r =⨯=, π4AQ ASQ SA ∠==,所以SPQ中,由余弦定理可得,2222cos 20PQ SP SQ SP SQ ASQ =+-⋅∠=-所以 2.95m PQ =≈.20.(1)3m =(2)3a =+【分析】(1)利用椭圆参数,,a b c 的几何意义,再由直线过右顶点,即可求出m ;(2)由椭圆焦半径三角形,结合已知两角和焦距,即可解得a ;(3)用几何意义得到2QF 的最小值,从而得到,a m 的关系,再结合已知条件去解出m 的范围,即可求解问题.【详解】(1)由b c 得:222639a b c =+=+=,所以右顶点()30A ,,0y -=得:03m =⇒=.(2)当m =时,直线l 30y --=经过焦点2F ,点P 是Γ上一点且P 同时是l 上一点,则如图可知:12π6F PF ∠=,又因为直线l2π3PF A ∠=,用三角形的外角等于不相邻的两内角和可知:12πππ366PF F =-=∠,即212=PF F F 222121221212=+2cos 36PF PF F F PF F F F F P -∠=,即1=6PF ,由椭圆的定义得:12263a PF PF a =+=+⇒=(3)由几何性质可知2QF 的最小值是点2F 到直线l 0y -=的距离,即d =由21||2QF a ≥2a ≥,即3a m ≤,因为任意满足223(1)4a m ≤+的实数a ,都有21||2QF a ≥成立,即任意满足223(1)4a m ≤+的实数a ,都有3a ≤成立,则()223(1)34m +≤,即:23110m -+≥,解得:m ≤或m ≥所以当m 变化时,31≥或31≤--即31≥或3≥而2QF ,所以2||QF .【点睛】关键点点睛:对任意满足223(1)4a m ≤+的实数a ,都有21||2QF a ≥成立的充要条件是()223(1)34m +≤,从而问题得以求解.21.(1)第一个数列具有性质p ,第二个数列不具有性质p ;理由见解析;(2)(](),20,q ∈-∞-+∞ ;(3)答案见解析.【分析】(1)结合题设中的定义可判断给定的两个数列是否具有性质p ;(2)等比数列具有性质p 等价于()11(1)120n n q q q q --⎡⎤-+-≥⎣⎦对任意的,2n N n ∈≥恒成立,就1,01,10,1q q q q ≥<<-≤<<-分类讨论后可得q 的取值范围.(3)设1=a p ,先考虑{}3,4,3,2p m m ∈--…,均不存在具有性质p 的数列,再分别考虑1,2,,1p m m =-时具有性质p 的数列,从而得到所求的数列.【详解】(1)对于第一个数列有|23|1,|53|2,|13|2-=-=-=,满足题意,该数列满足性质p 对于第二个数列有|34|1,|24|2,|54|1-=-=-=不满足题意,该数列不满足性质p .(2)由题意可得,{}111,2,3,...,9n n q q n --≥-∈两边平方得:2221212+1n n n n q q q q ---+≥-整理得:()11(1)120n n q q q q --⎡⎤-+-≥⎣⎦当1q ≥时,得1(1)20n q q -+-≥,此时关于2n ≥恒成立,所以等价于2n =时(1)20q q +-≥,所以(2)(1)0q q +-≥,所以2q ≤-或者1q ≥,所以取1q ≥.当01q <<时,得1(1)20n q q -+-≤,此时关于n 恒成立,所以等价于2n =时(1)20q q +-≤,所以(2)(1)0q q +-≤,所以21q -≤≤,所以取01q <≤.当10q -≤<时,得11(1)20n n q q q --⎡⎤+-≤⎣⎦.当n 为奇数的时候,得1(1)20n q q -+-≤,很明显成立,当n 为偶数的时候,得1(1)20n q q -+-≥,很明显不成立,故当10q -≤<时,矛盾,舍去.当1q <-时,得11(1)20n n q q q --⎡⎤+-≤⎣⎦.当n 为奇数的时候,得1(1)20n q q -+-≤,很明显成立,当n 为偶数的时候,要使1(1)20n q q -+-≥恒成立,所以等价于2n =时(1)20q q +-≥,所以()()021q q +-≥,所以2q ≤-或者1q ≥,所以取2q ≤-.综上可得,(](),20,q ∈-∞-+∞ .(3)设1=a p ,{}3,4,3,2p m m ∈--…,,因为12131||||||m a a a a a a -≤-≤≤- ,故12||1a a -=,所以2a 可以取1p -或者1p +,若1a p =,21a p =-,则31a p =+,故42a p =+或42a p =-(舍,因为3242a a a a ->-),所以52a p =-(舍,因为3252a a a a ->-).若1a p =,21a p =+,则31a p =-,故42a p =+(舍,因为3242a a a a ->-),或42a p =-所以52a p =+(舍,因为3252a a a a ->-).所以{}3,4,3,2p m m ∈--…,均不能同时使{}n a ,{}n b 都具有性质p .当1p =时,即有21311m a a a a a a -≤-≤≤- ,故23m a a a ≤≤≤ ,故232,3,,m a a a m === ,故有数列{}n a :1,2,3,1,m m -…,满足题意.当2p =时,则21a =且3122m a a ≤-≤≤- ,故33,,m a a m == ,故有数列{}n a :2,1,3,1,m m -…,满足题意.当p m =时,12131m a a a a a a -≤-≤≤- ,故23m a a a ≥≥≥ ,故231,2,,1m a m a m a =-=-= ,故有数列{}n a :,1,321m m -…,,,满足题意.当1p m =-时,则2a m =且3111m m a m a ≤--≤≤-- ,故32,,1m a m a =-= ,故有数列{}n a :1,,2,3,321m m m m ---…,,,满足题意.故满足题意的数列只有上面四种.【点睛】本题为新定义背景下的数列存在性问题,先确定{}3,4,3,2p m m ∈--…,时均不存在具有性质p 的数列是关键,依据定义枚举再依据定义舍弃是核心,本题属于难题.。

数学分析习题集13复旦大学

数学分析习题集13复旦大学

∫ dy ∫
0
1
y y
e y f ( x)dx = ∫ (e x − e x ) f ( x)dx 。
2
1
0
14. 设 D = [0,1] × [0,1] ,证明
D
1 ≤ ∫∫ sin( x 2 ) + cos( y 2 ) dxdy ≤ 2 。
t2 ≤ cos t ≤ 1 ( | t |≤ π / 2 )证明 15.设 D = [0,1] × [0,1] ,利用不等式 1 − 2 49 ≤ ∫∫ cos( xy ) 2 dxdy ≤ 1 。 50 D 16.设 D 是由 xy 平面上的分段光滑简单闭曲线所围成的区域, D 在 x 轴和 y 轴上的投 影长度分别为 l x 和 l y , (α , β ) 是 D 内任意一点。证明
2 2
(1) (2)
∫ dx ∫ f ( y)dy = ∫ f ( y)(b − y)dy ; ∫ dy ∫
0
b
x
b
a a
a y
0
a
e
(a− x)
f ( x )dx = ∫ (a − x )e ( a − x ) f ( x )dx ( a > 0 ) 。
0
a
13.设 f ( x ) 在 [0,1] 上连续,证明
3
(2) (3)
∫∫
D D
x dxdy ,其中 D 是由圆周 x 2 + y 2 = x 所围区域;
2
∫∫ ( x + y)dxdy ,其中 D 是由圆周 x
∫∫
D
+ y 2 = x + y 所围区域;
(4)
1− x2 − y2 dxdy ,其中 D 是由圆周 x 2 + y 2 = 1 及坐标轴所围成的在第 1+ x2 + y2

数学分析(复旦大学版)课后题答案40-45

数学分析(复旦大学版)课后题答案40-45
1 0
§udÃF¼êPÂÈ©§y{'4Gª§& 1 ln xy dx9uy Q[ , b ](b > 1)þÂñ. b
+∞ a A
ln
0
b dx x
Âñ
#f (x, y)Q[ a, +∞; c, d ]ë§é[ c, d)þzy§ f (x, y) dxÂñ§¢È©Qy = duÑ. y²ùÈ©Q[ c, d ]Âñ. y²µd f (x, d) dxuѧ&∃ε > 0, ∀A > a, ∃A , A A §¦ f (x, d) dx ε
dx [ p1 , p2 ]
Q
ë
2−p
dx [ p1 , p2 ]
Q
ë
6.
π −1 p 2−p 1 2 1 p π π −1 p 2−p p 2−p p1 2−p1 1 2 1−p1 x→π −0 1 p1 2−p1 p1 π 1 π −1 p−1 2−p1 π π −1 p 2−p 1 2 π p 2−p 1 2 π −1 p 1 2 π 0 p 2−p +∞ +∞
2−p
π −1 1 p 2−p
1 π −1 π sin x sin x sin x sin x dx = dx + dx + dx p (π − x)2−p p (π − x)2−p p (π − x)2−p p (π − x)2−p x x x x 0 0 1 π −1 1 sin x dx p 2−p 0 x (π − x) sin x sin x (0 x 1, 0 < p1 p p2 < 2) p 2 − p p 2 x (π − x) x (π − x)2−p2 sin x 1 lim xp2 −1 p = 2−p 2 − p 2 2 2 x→+0 x (π − x) π 1 sin x p2 < 2 p2 − 1 < 1 dx p2 (π − x)2−p2 x 0 1 sin x dx p ∈ [ p1 , p2 ] p (π − x)2−p x 0 1 sin x sin x (0 , 1 ] × [ p , p ] dx [ p1 , p2 ] 1 2 p (π − x)2−p xp (π − x)2−p x 0 π

复旦大学《数值分析》2020-2021学年第一学期期末试卷A卷

复旦大学《数值分析》2020-2021学年第一学期期末试卷A卷

课程编号:A071001复旦大学2020-2021学年第一学期数值分析期末试题A一.解下列各题(每小题6分)1.求极限n n nn )111(lim 2++∞→.2..已知f 是可导函数,且x x f dx d 11(arctan =,求4(πf '.微分法,可以补用考虑微分次数,不断向下推。

导数法,比需两边对同一变量求导。

3.求出23||ln )(2+-=x x x x f 的间断点,并指出是第几类间断点.4.已知2)13(lim 2=++-+∞→bx ax x x ,试确定其中常数b a ,.二.解下列各题(每小题7分)1.设⎩⎨⎧+=+-=23)1ln(tt y t t x ,求22dx y d .2.试确定常数b a ,的值,使点)3,1(是曲线34bx ax y +=的拐点,并求出曲线的凹凸区间.3.求由方程0sin 21=+-y y x 所确定的隐函数)(x y y =的二阶导数.4.已知2112sin )(1lim30=--+→x x e x x f ,求)(lim 0x f x →.复合函数与函数求导公式可以一起用。

三.(9分)设数列}{n x 满足010<<-x ,),2,1,0(221 =+=+n x x x n nn ,证明}{n x 收敛,并求n n x ∞→lim .四.(9分)设)(x f 有二阶连续导数,0)0(=f ,⎪⎩⎪⎨⎧='≠=0),0(0,)()(x f x x x f x g ,求)(x g '并讨论)(x g '的连续性.五.(9分)一个体积给定的观察站底部是一个直圆柱,顶部是一个半球形,如果顶部单位面积的造价是侧面单位面积造价的二倍,问圆柱的底半径r 与高h 分别为多少时可使总造价最低?六.(8分)证明,当1>x 时,11ln +-≥x x x .七.(9分)(1)已知当0→x 时,2cos x e x -与k cx 是等价无穷小,求c 与k 的值;(2)求极限222sin )(cos 112lim 2xe x x x x x -+-+→.八.(4分)设)(xf 在],[b a 上连续,在),(b a 内可导,0)(≠'x f ,证明存在),(,b a ∈ηξ,使ηηξ---=''e ab e e f f a b )()(.最后一道题一定要会拼与凑。

高等数学复旦大学出版第三版下册课后答案习题全(陈策提mai供huan)

高等数学复旦大学出版第三版下册课后答案习题全(陈策提mai供huan)

习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s==(4) s==5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故2s=xs==ys==5zs==.6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则222222(4)1(7)35(2)z z-++-=++--解得149z=173174即所求点为M (0,0,149). 7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB |=|AC |=7.且有|AC |2+|AB |2=49+49=98=|BC |2.故△ABC 为等腰直角三角形.8. 验证:()()++=++a b c a b c .证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =c ,BC =a 表示向量1D A ,2D A ,3D A 和4D A . 解:1115D A BA BD =-=--c a 2225D A BA BD =-=--c a 3335D A BA BD =-=--c a 444.5D A BA BD =-=--c a 11. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M 的投影为M ',则1Pr j cos604 2.2u OM OM =︒=⨯= 12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----175解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP ==(3) 12cos 14xa PP α== 12cos 14ya PP β==12cos 14za PP γ==(4) 12012{14PP PP ===+e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点.求合力R 的大小和方向余弦. 解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==R cos cos cos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c=-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a ,b ,c .解:||==a||==b ||3==c176, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17.解:设{,,}x y z a a a a =则有c o s (1,1)3x a i a a i a iπ⋅====⋅ 求得12x a =. 设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则222cos 4a ba b π⋅=⇒=⋅ 则214y a = 求得12y a =± 又1,a =则2221x y z a a a ++=从而求得11{,,}222a =±或11{,,}222-± 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩177故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒==故点P 的坐标为P (2,3,6)或P (190285570,,494949).20. 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算:(1) a ·b ; (2) (3a -2b )·(a + 2b ).解:(1)a ·b =2π1cos ||||cos 3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b(2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b36238499=-⨯+=17822. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角.解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 24. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a -b ={-6,10,14}又(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a -b ).25. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ; (2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a . 解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a b179π2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 27. 求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||26θ⨯===⨯a b a b . 28. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.29. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--3{1,0,}2MP =- {4,4,4}AC =--{2,0,3}BC =-180 22222235233100122MN MP ----⨯=++=++--i j k i jk44444412208033220AC BC ---⨯=++=++--i j k i j k故 1()4MN MP AC BC ⨯=⨯.30.(1)解: x y zx y z i j ka b a a a b b b ⨯==-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k ()()()则 C=-C +-+-y z z y x z x x z y x y y x ya b a b a b a b a b C a b a b C ⨯⋅()()()() x y zx y z x y za a ab b b C C C =若 ,,C a b 共面,则有 a b ⨯后与 C 是垂直的.从而 C 0a b ⨯⋅=() 反之亦成立.(2) C x y zx y z x y za a a ab b b b C C C ⨯⋅=()a x y zx y z x y zb b b b C C C C a a a ⨯⋅=()b x y z x y z x y zC C C C a a a a b b b ⨯⋅=()由行列式性质可得:x y z x y z x y zx y z x y z x y z x y z x y z x y za a ab b b C C C b b b C C C a a a C C C a a a b b b ==故 C a ?b a b b C C a ⨯⋅=⨯⋅=⨯⋅()()()18131. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积.解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+.32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则13BCD V S h =⋅⋅,而11948222BCD S BC BD i j k =⨯=--+=又BCD ∆所在的平面方程为:48150x y z +-+=则43h ==故1942323V =⋅⋅=33. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程.解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程.35. 求通过下列两已知点的直线方程:(1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).182 解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程. 解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.38. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程.解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++=183得b =2. 故所求平面方程为1424x y z ++= 40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x – y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图7-4)(4) x –y =0表示过z 轴的平面(如图7-5)(5) 2x -3y +4z =0表示过原点的平面(如图7-6).图7-4 图7-5 图7-642. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x +y -z =0的平面.解:设平面方程为Ax +By +Cz +D =0则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1}过已知两点的向量l ={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||42θ⋅====n nn n解得2k=±44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n n(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面.解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A CA B CA B C CB⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n nn n又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为233CCx y Cz-++=即2x-y-3z=018418546. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量.解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n 故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k47. 求下列直线与平面的交点: (1) 11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0.解:(1)直线参数方程为1126x ty t z t=+⎧⎪=--⎨⎪=⎩代入平面方程得t =1故交点为(2,-3,6).(2) 直线参数方程为221332x ty t z t=-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0.故交点为(-2,1,3).48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z xy z +-+=⎧⎨++-=⎩;(2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321i j k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}186由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直;(2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行;(3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为 234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n 故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z ++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;187(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上.51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程. 解:直线的方向向量为12123111-=++-ij k i j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程.解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++=其中λ为待定常数,又因为所求平面过点(1,-2,3)故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0188 得23t =- 于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离. 解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量 即11133211==-=---ij k n s j k故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d == 55. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离.56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R ==设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.189解:设该动点为M (x ,y ,z )3.=化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22aax y -+=; (2)22149x y -+=;(3)22194x z +=; (4)20y z -=;(5)220x y -=; (6)220x y +=.解:(1)母线平行于z 轴的抛物柱面,如图7-7.(2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8(3)母线平行于y 轴的椭圆柱面,如图7-9.(4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11.(6)z 轴,如图7-12.图7-11 图7-1219059. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=;(3)222149y z x --=; (4)2221149y z x +-=;(5)22209z x y +-=.解:(1)半轴分别为1,2,3的椭球面,如图7-13.(2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15.(4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形:(1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0;(3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1.191解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-2161. 求下列曲面和直线的交点: (1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1.得交点坐标为(3,4,-2),(6,-2,2).(2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1,得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.192 解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程.(1) 平面x =2; (2) 平面y =0;(3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=.193故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1) {(x , y )|x ≠0};(2) {(x , y )|1≤x 2+y 2<4}; (3) {(x , y )|y <x 2};(4) {(x , y )|(x -1)2+y 2≤1}∪{(x , y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x , y )|x =0}. (2)既非开集又非闭集,有界集, 聚点集:{(x , y )|1≤x 2+y 2≤4},边界:{(x , y )|x 2+y 2=1}∪{(x , y )| x 2+y 2=4}. (3)开集、区域、无界集, 聚点集:{(x , y )|y ≤x 2}, 边界:{(x , y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x , y )|(x -1)2+y 2=1}∪{(x , y )|(x +1)2+y 2=1}. 2. 已知f (x , y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f ( x + y , x -y , x y ) =( x + y )xy +(x y )x +y +x -y =(x + y )xy +(x y )2x . 4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z =(3)z =(4)u =+(5)z =(6)ln()z y x =-+194(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→ 22001(2)lim;x y x y →→+00x y →→x y →→00sin (5)lim ;x y xy x →→2222221cos()(6)lim.()ex y x y x y x y +→→-++解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=01.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+1956. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x+-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩196解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z = x 2y +2xy;(2)s =22u v uv+;(3)z = x; (4)z = lntan x y; (5)z = (1+xy )y ; (6)u = z xy ;(7)u = arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+ 2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y yy x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+197[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .yyzz yy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y =+,求证:3u uxy u x y∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1981121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y ) = x +(y,求f x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z = x 4+ y 4-4x 2y 2; (2)z = arctan y x; (3)z = y x ;(4)z = 2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,1992222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x , y , z ) = xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15315.设z = x ln ( x y ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =;(3)zy u x =;(4)yzu x =.解:(1)∵2222e 2,e 2x y x y z z x y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )xy xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴ 223/2d (d d ).()x z y x x y x y =--+ (3)∵11,ln z z z y y z u uy x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂154ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则155d 0.05d 0.07(4.05,2.93)(4,3)d (4,3)0.053(0.07)]15(0.01)54.998x y f f f ==-=≈+=⨯+⨯-=+⨯-=(3)设f (x ,y )=x y ,则d f (x ,y )=yx y -1d x +x y ln x d y , 取x =2,y =1,d x =-0.03,d y =0.05,则1.05d 0.03d 0.05(1.97)(1.97,1.05)(2,1)d (2,1)20.0393 2.0393.x y f f f =-==≈+=+=19.矩型一边长a =10cm ,另一边长b =24cm, 当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l ,则d d ).l l x x y y ==+当x =10,y =24,d x =0.4,d y =-0.1时,d 0.4240.1)0.062l =⨯-⨯=(cm)故矩形的对角线长约增加0.062cm. 20.解:因为圆锥体的体积为21.3V r h π=⋅ 0030,0.1,60,0.5r r h h ====- 而221.33V V V dV r h yh r r h r h ππ∂∂≈=⋅+⋅=⋅+⋅∂∂0030,0.1,60,0.5r r h h ====-时, 2213.1430600.130(0.5)33V π≈⨯⨯⨯⨯+⨯⨯- 230()cm =-21.解:设水池的长宽深分别为,,x y z 则有:V xyz =精确值为:50.242 2.850.22 3.6 2.V =⨯⨯+⨯⨯⨯+⨯⨯⨯ 313.632()m = 近似值为:156V dV zx y xy z ≈=+0.4,0.4,0.2x y z ===430.4530.454V d V ≈=⨯⨯+⨯⨯+⨯⨯ 314.8()m =22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,zv∂∂; (2)z =arc tanx y , x =u +v ,y =u -v , 求z u ∂∂,z v∂∂; (3)ln(e e )xyu =+, y =x 3, 求d d ux; (4) u =x 2+y 2+z 2, x =e cos tt , y =e sin tt , z =e t, 求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx y u v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y xx x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.15723. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =- (2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+15825. 设22()yz f x y =-,其中f (u )为可导函数,验证: 211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,zf x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂ 由对称性知,22224.z f y f y∂'''=+∂27. 设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂1592212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x∂''''=⋅+⋅=+∂ ()()22222211122122432221112222222244,zy yf xy f y f xy f y f xy x yf y f xy f x y f ∂'''''''''=++⋅+⋅⋅+⋅∂'''''''=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yzxf xy x f xy f x f xy f x yxf ∂''''''''''=+++⋅+⋅⋅+⋅∂∂''''''''=++++∂''''=⋅+⋅=+∂∂'''''''''=++⋅+⋅⋅+⋅∂'=223411122244.x y f x yf x f ''''''+++(3)1313cos e cos e ,x y x y zf x f xf f x++∂''''=⋅+⋅=+∂ ()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y zxf x f f x f f x f xf xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y +++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+28. 试证:利用变量替换1,3x y x y ξη=-=-,可将方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档